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Abstract. This paper deals with the finite element approximation of a class of variational
inequalities (VI) and quasi-variational inequalities (QVI) with the right-hand side depending
upon the solution. We prove that the approximation is optimally accurate in L∞ combining
the Banach fixed point theorem with the standard uniform error estimates in linear VIs
and QVIs. We also prove that this approach extends successfully to the corresponding
noncoercive problems.
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1. Introduction. In this paper, we study the finite element approximation of ellip-

tic variational inequalities (VI) and quasi-variational inequalities (QVI) with nonlinear

source terms. Let � be an elliptic second-order differential operator defined on a

bounded smooth open domain Ω in RN, N ≥ 1. These problems appear in the follow-

ing formal framework:

• The variational inequality : find u such that

�u≤ f(u), u−ψ≤ 0, in Ω,(
�u−f(u))(u−ψ)= 0, in Ω.

(1.1)

• The quasi-variational inequality : find u such that

�u≤ f(u), u−Mu≤ 0, in Ω,(
�u−f(u))(u−Mu)= 0, in Ω,

u≥ 0 in Ω

(1.2)

with the addition of suitable boundary conditions.

The above VIs and QVIs may be of a great interest in stochastic control and decision

sciences. The condition u≥ 0 in (1.2) is added because this appears natural in impulse

control problems (cf. [1, 2]).

In problem (1.1) ψ is an obstacle in W 2,∞(Ω) such that ψ ≥ 0 on ∂Ω (in case of

Dirichlet boundary conditions) and (∂ψ/∂ν) ≤ 0 on ∂Ω (in case of Neumann bound-

ary condition). The nonlinearity f(·) is assumed to be nondecreasing and Lipschitz

continuous, that is,

∣∣f(x)−f(y)∣∣≤ c|x−y| ∀x,y ∈R, (1.3)

where c is a positive constant.
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LetV denote the Sobolev spaceH1
0(Ω) (orH1(Ω)) anda(u,v) the associated bilinear

form with operator �. Consider also the following convex sets:

K= {v ∈V such that v ≤ψ a.e.
}
,

K(u)= {v ∈V such that v ≤M(u) a.e.
}
.

(1.4)

Then problems (1.1) and (1.2) stated in their weak forms read, respectively, as fol-

lows: find u∈K such that

a(u,v−u)� (f(u),v−u) ∀v ∈K (1.5)

and find u∈K(u) such that

a(u,v−u)� (f(u),v−u) ∀v ∈K(u). (1.6)

Very few papers in relation with uniform error estimates for semilinear variational

inequalities exist in the literature (cf. [4, 6]). Also, as far as we know this paper contains

the first L∞-error estimate for semilinear QVIs.

Indeed, we show that, under realistic assumption on the nonlinearity, problems

(1.5) and (1.6) can be properly approximated by a finite element method which turns

out to be optimal in L∞(Ω). For this purpose, we will characterize the continuous

solution (resp., the discrete solution) as the unique fixed point of a contraction in the

continuous case (resp., the unique fixed point of a contraction in the discrete case).

Also, beside its simplicity, this approach extends successfully to the corresponding

noncoercive problems as well.

An outline of the paper is as follows: in Section 2 we associate with the VI (1.5)

a fixed point mapping and prove its contraction property. Also, using the standard

finite element method and a discrete maximum principle, a contraction mapping is

associated with the corresponding discrete VI and optimal L∞-error estimate is proved.

Section 3 is devoted to the QVI problem for which a similar study is achieved in both

the continuous and discrete cases and also a quasi-optimal uniform error estimate is

established. Finally, in Section 4, we extend the method to the corresponding nonco-

ercive problems.

2. The variational inequality. We start by giving some assumptions and notations

that are needed throughout this paper. Let � be the elliptic second-order differential

operator

�=−
∑

1≤i, j≤N

∂
∂xi

aij(x)
∂
∂xj

+
N∑
i=1

ai(x)
∂
∂xi

+a0(x), (2.1)

we assume that the coefficients aij, ai, and a0 are sufficiently smooth and satisfy the

following conditions:

aij(x)= aji(x); a0(x)� β > 0, x ∈Ω, (2.2)

∑
1≤i, j≤N

aij(x)ξiξj �α|ξ|2;
(
x ∈ Ω̄, ξ ∈RN, α > 0

)
. (2.3)
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For any u,v ∈V, we define the variational form associated with the operator �, by

a(u,v)=
∫
Ω

( ∑
1≤i,j≤N

aij(x)
∂u
∂xi

∂u
∂xj

+
N∑
i=1

ai(x)
∂u
∂xi

v+a0(x)·uv
)
dx. (2.4)

We assume that a(u,v) is coercive, that is, there exists γ > 0 such that for any

v ∈V

a(v,v)� γ‖v‖2
H1(Ω). (2.5)

We also assume that the constants c and β, respectively defined in (1.3) and (2.2), are

such that
c
β
< 1. (2.6)

Regarding the solvability of problems (1.5) and (1.6), it is standard that they both

have a maximum solution; any solution of these problems is in W 2,p(Ω) for all p ≥ 2.

(See [1, 2].) In the sequel we will prove under assumption (2.6) that such solutions are

the unique fixed points of contractions in L∞(Ω).

2.1. A contraction associated with VI (1.5). Consider the mapping

T1 : L∞(Ω) �→ L∞(Ω), w �→ T1w = ζ, (2.7)

where ζ is the solution of the following VI: find ζ ∈ K such that

a(ζ,v−ζ)� (f(w),v−ζ), v ∈K. (2.8)

Problem (2.8) being a coercive VI, thanks to [1], it has one and only one solution.

Moreover, under the preceding assumptions, ζ ∈ W 2,p(Ω), 2≤ p <∞.

Proposition 2.1. Let ‖·‖∞ denote the L∞-norm. Then under conditions (1.3) and

(2.6) the mapping T is a strict contraction in L∞(Ω), that is, for any w,w̃ ∈ L∞(Ω),
∥∥T1w−T1w̃

∥∥∞ ≤ c
β
‖w−w̃‖∞. (2.9)

Therefore, T has a unique fixed point which coincides with the solution of VI (1.5).

Proof. Let w,w̃ be in L∞(Ω). We denote by

ζ = T1w = σ(f(w)); ζ̃ = T1w̃ = σ(f(w̃)). (2.10)

Setting

Φ = 1
β
∥∥f(w)−f(w̃)∥∥∞. (2.11)

It follows that

f(w)≤ f(w̃)+
∥∥f(w)−f(w̃)∥∥∞

≤ f(w̃)+ a0(x)
β

∥∥f(w)−f(w̃)∥∥∞
≤ f(w̃)+a0Φ

(2.12)
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(because a0(x) � β > 0). Thus using standard comparison results in coercive varia-

tional inequalities, we get

σ
(
f(w)

)≤ σ(f(w̃)+a0(x)·Φ
)≤ σ(f(w̃)+Φ). (2.13)

So

ζ ≤ ζ̃+Φ. (2.14)

Interchanging the roles of w and w̃, we similarly get

ζ̃ ≤ ζ+Φ. (2.15)

Consequently, ∥∥T1w−T1w̃
∥∥∞ ≤ 1

β
∥∥f(w)−f(w̃)∥∥∞ (2.16)

and hence combining (1.3) and (2.6) the contraction property of T follows.

2.2. The discrete variational inequality. Let Ω be decomposed into triangles and

let τh denote the set of those elements; h> 0 is the mesh-size.

We assume that the triangulation τh is regular and quasi-uniform. Let Vh denote

the standard piecewise linear finite element space andφi, i= 1,2, . . . ,m(h), the nodal

basis functions. Let rh denote the usual restriction operator.

The discrete maximum principle assumption (dmp): we assume that the matrix with

generic coefficient a(ϕi,ϕj), 1≤ i, j ≤m(h), is anM-matrix (cf. [5]). Such an assump-

tion (see [8]) is needed for the existence of discrete solutions.

Consider Kh = {v ∈Vh such that v ≤ rhψ}. The discrete VI consists of seeking uh
solution to

a
(
uh,v−uh

)� (f (uh),v−uh) ∀v ∈Kh. (2.17)

Similar to the continuous problem, using the dmp, we will see that the solution of

(2.17) can be characterized as the unique fixed point of an appropriate contraction in

L∞(Ω).

2.3. A fixed point mapping associated with the VI (2.17). Consider the discrete

mapping

T1h : L∞(Ω) �→Vh, w �→ T1hw = ζh, (2.18)

where ζh ∈Kh solves the following coercive VI:

a
(
ζh,v−ζh

)� (f(w),v−ζh) ∀v ∈Kh. (2.19)

Proposition 2.2. Under the dmp and assumptions (1.3) and (2.6), the mapping Th
is a contraction in L∞(Ω), that is,

∥∥T1hw−T1hw̃
∥∥∞ ≤ c

β
‖w−w̃‖∞. (2.20)

Therefore, there exists a unique fixed point which coincides with the solution of VI (2.17).

Proof. The proof of this proposition is exactly the same as that of Proposition 2.1.
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2.4. The finite element error analysis

Remark 2.3. From now on, C will denote a constant independent of h.

The following lemma is very important in obtaining the convergence order of the

approximation.

Lemma 2.4. The following inequality holds:

∥∥T1w−T1hw
∥∥∞ ≤ Ch2| logh|2

∥∥f(w)∥∥∞. (2.21)

Proof. We know that

ζh = T1hw, ζ = Tw. (2.22)

It is also clear that ζh is the finite element approximation of ζ. Then due to [7], it

follows that

∥∥T1w−T1hw
∥∥∞ = ∥∥ζ−ζh∥∥∞ ≤ Ch2| logh|2

∥∥f(w)∥∥∞ (2.23)

which completes the proof.

2.5. L∞-error estimate to the variational inequality (1.5)

Theorem 2.5. The following inequality holds:

∥∥u−uh∥∥∞ ≤ Ch2| logh|2
∥∥f(u)∥∥∞. (2.24)

Proof. It is easy to see that

∥∥u−uh∥∥∞ ≤ ∥∥u−T1hu
∥∥+∥∥T1hu−uh

∥∥∞. (2.25)

Also, by Propositions 2.1 and 2.2, u and uh are the fixed points of T and Th, respec-

tively, that is,

u= T1u, uh = T1hu. (2.26)

Then, applying Lemma 2.4 with w =u, it follows that

∥∥u−uh∥∥∞ ≤ ∥∥T1u−T1hu
∥∥∞+∥∥T1hu−T1huh

∥∥∞
≤ Ch2| logh|2

∥∥f(u)∥∥∞+ cβ
∥∥u−uh∥∥∞ (2.27)

thus, ∥∥u−uh∥∥∞ ≤ Ch
2| logh|2

∥∥f(u)∥∥∞
1−c/β (2.28)

which is the desired error estimate.

Remark 2.6. It is well known that if ψ = +∞ the VI problem (1.5) reduces to the

equation. Therefore, all the analysis developed in the preceding section remains valid

in the unconstrained case. This leads to the same convergence order as that of the

linear equation (cf. [9])

∥∥u−uh∥∥∞ ≤ Ch2| logh|
∥∥f(u)∥∥∞. (2.29)
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3. The semilinear quasi-variational inequality problems. The QVI (1.6) is encoun-

tered in stochastic impulsive control problems (cf. [2]). Here, the cost function Mu
represents the obstacle of impulse control defined by

Mϕ(x)= k+ infϕ(x+ξ), ξ ≥ 0, x+ξ ∈ Ω̄, (3.1)

where k is a positive number.

The operator M possesses some important properties (cf. [2]): it maps C(Ω̄) into

itself and is nondecreasing, that is,

Mϕ(x)≤Mϕ̃(x) whenever ϕ(x)≤ ϕ̃(x). (3.2)

In a similar way to that of Section 2, we are able to characterize the solution of QVI

(1.6) as the unique fixed point of a contraction.

3.1. A contraction associated with QVI (1.6). Let L∞+ (Ω) be the positive cone of

L∞(Ω). We consider the following mapping:

T2 : L∞+ (Ω) �→ L∞+ (Ω), w �→ T2w = ζ, (3.3)

where ζ is the solution of the following coercive QVI:

a(ζ,v−ζ)� (f(w),v−ζ) ∀v ∈V, ζ ≤Mζ, v ≤Mζ. (3.4)

Thanks to [2], the QVI (3.4) has one and only one solution which belongs toW 2,p(Ω),
2≤ p <∞.

Notation 3.1. Let F ∈ L∞+ (Ω) and M the nonlinear operator defined in (3.1). We

denote by ζ = σ(F,Mζ) the solution of the QVI

a(ζ,v−ζ)� (F,v−ζ) ∀v ∈ V, ζ ≤Mζ; v ≤Mζ. (3.5)

Let ζ = σ(F,Mζ) and ζ̃ = σ(F̃,Mζ̃) be the solutions to QVI (3.5) with right-hand

sides F and F̃ , respectively. Then, the following comparison result holds.

Lemma 3.2. If F � F̃ then σ(F,Mζ)≥ σ(F̃,Mζ̃).

Proof. Starting from ζ0 and ζ̃0, respectively, solutions of the equations

b
(
ζ0,v

)= (F,v) ∀v ∈V,
b
(
ζ̃0,v

)= (F̃ ,v) ∀v ∈V,
(3.6)

we consider the following iterative schemes:

ζn = σ(F,Mζn−1), ζ̃n = σ(F̃ ,Mζ̃n−1). (3.7)

Clearly, for each n ≥ 1, ζn and ζ̃n are, respectively, the solutions to the following

variational inequalities:

b
(
ζn,v−ζn)� (F,v−ζn), v ∈V, ζ ≤Mζn−1, v ≤Mζn−1,

b
(
ζ̃n,v− ζ̃n)� (F̃ ,v− ζ̃n), v ∈V, ζ̃ ≤Mζ̃n−1, v ≤Mζ̃n−1.

(3.8)
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So, we inductively have

For n= 1, ζ1 = σ(F,Mζ0) and ζ̃1 = σ(F̃,Mζ̃0).
Since F � F̃ and Mζ0 �Mζ̃0 (because M is nondecreasing), applying standard com-

parison result in coercive variational inequalities, we get ζ1 � ζ̃1.
Assume now that ζn−1 � ζ̃n−1. Since F � F̃ and Mζn−1 � Mζ̃n−1, applying again

comparison result in coercive VI, we get ζn � ζ̃n.

Finally, passing to the limit, as n tends to ∞ (cf. [2, pages 343–353]) we obtain that

ζ � ζ̃. This completes the proof.

Remark 3.3. The above lemma remains valid in the discrete case provided the dmp

is satisfied.

Proposition 3.4. Let the conditions of Lemma 3.2 hold. Then the mapping T2 is a

contraction in L∞(Ω), that is,

∥∥T2w−T2w̃
∥∥∞ ≤ c

β
‖w−w̃‖∞. (3.9)

Therefore, there exists a unique fixed point which coincides with the solution of QVI

(1.6).

Proof. For w,w̃ in L∞(Ω), we consider ζ = T2w and ζ̃ = T2w̃ solutions to QVI

(3.5) with respect to the right-hand sides

F = f(w), F̃ = f(w̃). (3.10)

Setting

Φ = 1
β
∥∥F− F̃∥∥∞ (3.11)

and applying Lemma 3.2, it follows that

σ(F,Mζ)≤ σ(F̃+(a0(x)+λ
)
Φ,M

(
ζ̃+Φ))≤ σ(F)+Φ (3.12)

so,

ζ ≤ ζ̃+Φ. (3.13)

Interchanging the roles of w and w̃, we similarly get

ζ̃ ≤ ζ+Φ. (3.14)

Finally, due to (1.3) and (2.6), we obtain

∥∥T2w−T2w̃
∥∥∞ ≤ 1

β
∥∥F− F̃∥∥∞ ≤ c

β
‖w−w̃‖∞. (3.15)

3.2. The discrete quasi-variational inequality. Let Kh(uh) = {v ∈ Vh such that

v ≤ rhMuh}. The discrete quasi-variational inequality consists of findinguh ∈Kh(uh)
such that

a
(
uh,v−uh

)� (f (uh),v−uh) ∀v ∈Kh
(
uh
)
. (3.16)
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3.3. A contraction associated with discrete QVI (3.16). Consider the following dis-

crete mapping:

T2h : L∞+ (Ω) �→Vh, w �→ Thw = ζh, (3.17)

where ζh is the solution of the following discrete coercive QVI:

a
(
ζh,v−ζh

)� (f(w),v−ζh) ∀v ∈Vh, ζh ≤ rhMζh, v ≤ rhMζh. (3.18)

Proposition 3.5. Under the dmp assumption, the mapping T2h is a contraction in

L∞(Ω), that is, ∥∥T2hw−T2hw̃
∥∥∞ ≤ c

β
‖w−w̃‖∞. (3.19)

Therefore, there exists a unique fixed point, which coincides with uh, the solution of

discrete QVI (3.16).

Proof. The proof is very similar to that of Proposition 3.4.

3.4. L∞-error estimate for the QVI (1.6). Adapting [7], we have the following lemma.

Lemma 3.6. The following inequality holds:

∥∥T2w−T2hw
∥∥∞ ≤ Ch2| logh|3

∥∥f(w)∥∥∞. (3.20)

Proof. The proof is very similar to that of Lemma 2.4.

Theorem 3.7. The following inequality holds:

∥∥u−uh∥∥∞ ≤ Ch2| logh|3
(1−c/β) . (3.21)

Proof. The proof of this theorem is exactly the same as that of Theorem 2.5. We

make use of Propositions 3.4, 3.5, and Lemma 3.6.

4. The noncoercive problems. We assume that (2.5) does not hold. In this situa-

tion it is well known (cf. [1, 2]) that the question of existence for the corresponding

noncoercive problems can be treated as follows (cf. [1, 2]): there exists λ > 0 large

enough such that

a(v,v)+λ(v,v)� δ‖v‖2, δ > 0. (4.1)

As a result of this, VI (1.5), (resp., QVI (1.6)) transform into

b(u,v−u)� (f(u)+λu,v−u) ∀v ∈K, (4.2)

b(u,v−u)� (f(u)+λu,v−u) ∀v ∈K(u), (4.3)

where clearly the new variational form b(u,v)= a(u,v)+λ(u,v) satisfies the strong

coercivity assumption.

Now, in order to approximate the continuous solutions, we shall proceed as in the

previous sections. Indeed, we construct the respective fixed point mappings

T1λ : L∞(Ω) �→ L∞(Ω), w �→ Tw = ζλ, (4.4)
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where ζλ is the solution of the coercive variational inequality below

b
(
ζλ,v−ζλ

)� (f(w)+λw,v−ζλ) ∀v ∈K,

T2λ : L∞+ (Ω) �→ L∞+ (Ω),

w �→ T2λ = ζλ,
(4.5)

where ζ2λ is the solution of the coercive variational inequality below

b
(
ζλ,v−ζλ

)� (f(w)+λw,v−ζλ) ∀v ∈K(ζλ). (4.6)

Proposition 4.1. The mappings T1λ and T2λ are contractions in L∞(Ω) with the

constant of contraction equal to (c+λ)/(λ+β). Therefore, their unique fixed points

coincide with the solutions of the VI (4.2) and QVI (4.3), respectively.

Proof. We sketch the proof for the VI. The QVI’s case being very similar.

It suffices to set

ζλ = σ(F,ψ); ζ̃λ = σ
(
F̃ ,ψ

)
, Φ = 1

λ+β
∥∥F− F̃∥∥∞, (4.7)

where F = f(w)+λw; F̃ = f(w̃)+λw̃, and next use the same arguments as those

developed in the proof of Proposition 2.1.

4.1. The discrete noncoercive problems. The discrete noncoercive VI and QVI are

defined, respectively, as follows:

b
(
uh,v−uh

)� (f (uh)+λuh,v−uh) ∀v ∈Kh,

b
(
uh,v−uh

)� (f (uh)+λuh,v−uh) ∀v ∈Kh
(
uh
)
.

(4.8)

Their associated fixed point mappings are, respectively,

T1λ,h : L∞(Ω) �→ L∞(Ω), w �→ T1λ,hw = ζλ,h, (4.9)

where ζ1λ,h is the unique solution of the following coercive VI:

b
(
ζλ,h,v−ζλ,h

)� (f(w)+λw,v−ζλ,h) ∀v ∈Kh,

T2λ,h : L∞(Ω) �→ L∞(Ω), w �→ T2λ,hw = ζλ,h,
(4.10)

where ζ1λ,h is the unique solution of the following coercive QVI:

b
(
ζλ,h,v−ζλ,h

)� (f(w)+λw,v−ζλ,h) ∀v ∈Kh
(
ζλ,h

)
. (4.11)

Similar to the continuous case, one can easily prove under the “dmp” that T1λ,h and

T2λ,h are contractions in L∞(Ω) with as constant of contraction: (c+λ)/(λ+β).
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4.2. L∞-error estimates for the noncoercive problems

4.2.1. The noncoercive VI. Adapting [7], we have the following lemma.

Lemma 4.2. The following inequality holds:

∥∥T1λw−T1λ,hw
∥∥∞ ≤ Ch2| logh|2

∥∥f(w)+λw∥∥∞, (4.12)

and then the error estimate follows.

Theorem 4.3. The following inequality holds:

∥∥u−uh∥∥∞ ≤ Ch2| logh|2
1−(c+λ)/(λ+β)

∥∥f(u)+λu∥∥∞. (4.13)

Proof. The proof is very similar to that of Theorem 2.5.

4.2.2. The noncoercive QVI

Lemma 4.4. Adapting [7], then

∥∥T2λw−T2λ,hw
∥∥∞ ≤ Ch2| logh|3

∥∥f(w)+λw∥∥∞. (4.14)

Consequently, using the fact that T2λ and T2λ,h are contractions in L∞(Ω), one can

easily get the following theorem.

Theorem 4.5. The following inequality holds:

∥∥u−uh∥∥∞ ≤ Ch2| logh|3
1−(c+λ)/(λ+β)

∥∥f(u)+λu∥∥∞. (4.15)

Corollary 4.6. If the right-hand side is independent of u, problem (4.2) reduces

to the well-known linear noncoercive variational inequalities of stochastic control [8],

while problem (4.3) reduces to the linear noncoercive quasi-variational inequality of

impulse control [2, 3, 4]. In this situation the approximation convergence orders (4.13)

and (4.15) transforms, respectively, into:

For the VI of stochastic control (cf. [8])

∥∥u−uh∥∥∞ ≤ Ch2| logh|2
1−λ/(λ+β)‖u‖∞. (4.16)

For the QVI of impulse control (cf. [3])

∥∥u−uh∥∥∞ ≤ Ch2| logh|3
1−λ/(λ+β)‖u‖∞. (4.17)
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