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CONSTRUCTING IRREDUCIBLE POLYNOMIALS
WITH PRESCRIBED LEVEL CURVES

OVER FINITE FIELDS

MIHAI CARAGIU
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Abstract. We use Eisenstein’s irreducibility criterion to prove that there exists an abso-
lutely irreducible polynomial P(X,Y) ∈ GF(q)[X,Y] with coefficients in the finite field
GF(q) with q elements, with prescribed level curves Xc := {(x,y)∈GF(q)2 | P(x,y)= c}.
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1. Introduction. Let GF(q) be the finite field with q elements. Assume that for any

c ∈GF(q), a subset Xc (possibly empty) of the finite affine plane GF(q)2 is given, such

that Xc∩Xd ≠∅ for any c ≠ d and

GF(q)2 =
⋃

c∈GF(q)
Xc. (1.1)

In this paper, we use Eisenstein’s irreducibility criterion to build absolutely irreducible

polynomials

P(X,Y)∈GF(q)[X,Y] (1.2)

such that for any c ∈ GF(q) the level curve {(x,y) ∈ GF(q)2 | P(x,y) = 0} coin-

cides with Xc . Note that P(X,Y)∈GF(q)[X,Y] is called absolutely irreducible if it is

irreducible over the algebraic closure of GF(q).
If we define a function f :GF(q)2 →GF(q) taking a constant value c on the set Xc

for any c ∈GF(q), it is easy to see that this is equivalent to the fact that there exists

an absolutely irreducible polynomial which interpolates the function f .

It is of course well known that there exists a polynomial that interpolates the func-

tion f (see [3, Section 7.5] for a general discussion on this topic). Thus, our result can

be viewed as a stronger version of this basic fact, going back to Weber [4].

The basic facts about bivariate polynomial interpolation over finite fields that we

will need are summarized in the following theorem.

Theorem 1.1. Any function f :GF(q)2 →GF(q) can be interpolated by some polyno-

mial in two variables. Moreover, there exists a unique polynomial F(X,Y)∈GF(q)[X,Y]
of degree less than q in both X and Y that interpolates the function f , that is, satisfying

F(a,b)= f(a,b) for any (a,b)∈GF(q)2. Also, any two interpolating polynomials for

f are congruent modulo the ideal of GF(q)[X,Y] generated by Xq−X and Yq−Y .
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Our main result is the following theorem.

Theorem 1.2. Let f :GF(q)2 →GF(q) be a function. Then there exists an absolutely

irreducible polynomial P(X,Y)∈GF(q)[X,Y] that interpolates the function f .

2. Proof of the main result. Let f : GF(q)2 → GF(q) be an arbitrary function. By

Theorem 1.1, there exists a unique interpolating polynomial H(X,Y) ∈ GF(q)[X,Y]
for f , of degree at most q− 1 in both X and Y . We order H(X,Y) in terms of the

powers of Y

H(X,Y)= c0(X)+c1(X)Y +···+cq−1(X)Yq−1, (2.1)

where c0(X),c1(X), . . . ,cq−1(X)∈GF(q)[X,Y] are of degree at most q−1.

Clearly, if we add Yq−Y to H(X,Y), we still get an interpolating polynomial for f ,

say K(X,Y), that is, monic in Y . Thus, it will be perfectly legitimate to start with an

interpolating polynomial of the form

K(X,Y)= Yq+dq−1(X)Yq−1+···+d1(X)Y +d0(X), (2.2)

where d0(X), d1(X), . . . ,dq−1(X)∈GF(q)[X,Y] are of degree at most q−1.

It is well known (see [3, Corollary 2.11]) that there are irreducible polynomials of any

degree over a finite field GF(q). Fix such an irreducible polynomial h(X)∈GF(q)[X]
of degree 2. Clearly h(X) has two roots in the algebraic closure ofGF(q), each of them

generating the quadratic extension of GF(q). Let α be a root of h(X) in GF(q), the

algebraic closure of GF(q).
Our construction is based on replacing each polynomial coefficient di(X) of (2.2)

with a polynomial of the form

ei(X)= di(X)+
(
Xq−X)ui(X), (2.3)

where ui(X)∈GF(q)[X], such that each ei(X) is divisible by h(X) for i= 0, . . . ,q−1,

while e0(X) is not divisible by h(X)2. Clearly, the polynomial F(X,Y) we get by per-

forming these replacements

F(X,Y)= Yq+eq−1(X)Yq−1+···+e1(X)Y +e0(X) (2.4)

will still be an interpolating polynomial for f , by Theorem 1.1. We will then see that

F(X,Y) follows to be absolutely irreducible.

We prove that for some choice of ui(X) ∈ GF(q)[X] in (2.3), ei(X) is divisible by

h(X), that is,

di(X)+
(
Xq−X)ui(X)≡ 0

(
modh(X)

)
(2.5)

is solvable. Indeed, from the way we defined h(X), Xq−X is relatively prime to h(X).
Thus, (2.5) is a linear congruence modulo h(X) in the Euclidean ring GF(q)[X] in

which the coefficient Xq−X of the unknown ui(X) is relatively prime to the modulus

h(X). This being the case, a solution ui(X) of (2.5) exists, and is uniquely determined

up to a multiple of h(X). It follows that we can select a solution ui(X) of (2.5) which is
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a polynomial of degree one. This will completely take care of the cases i= 1, . . . ,q−1.

For the special case i = 0 we are looking for a solution u0(X) of (2.5) satisfying the

additional requirement

d0(X)+
(
Xq−X)u0(X) �≡ 0

(
modh(X)2

)
. (2.6)

This can be done as follows. If the solution u0(X) of the i = 0 case of (2.5) already

satisfies (2.6) there is nothing to prove. Otherwise, if u0(X) satisfies

d0(X)+
(
Xq−X)u0(X)≡ 0

(
modh(X)2

)
, (2.7)

just replace u0(X) with u0(X)+ h(X). This last polynomial will satisfy both (2.5)

and (2.6).

The last step in our proof will consist in showing that the polynomial F(X,Y) con-

structed above is absolutely irreducible.

The key ingredient of this last step is Eisenstein’s irreducibility criterion (see [2,

Theorem 6.15]), to the effect that if P(X) = γnXn +γn−1Xn−1 + ··· +γ1X +γ0 is a

polynomial with coefficients in some unique factorization domain R, if we can find

some irreducible element p ∈ R which divides γ0, . . . ,γn−1, does not divide γn, while

p2 does not divide γ0, then P(X) is an irreducible element of R[X].
We view F(X,Y) as a (monic) polynomial in Y with coefficients in the unique fac-

torization domain GF(q)[X], that is, F(X,Y)∈ (GF(q)[X])[Y].
Pick up the irreducible

p(X) :=X−α∈GF(q)[X]. (2.8)

Since α is a root of h(X), by the way we constructed F(X,Y) it follows that p(X)
divides the polynomial coefficients e0(X),e1(X), . . . ,eq−1(X) ∈ GF(q)[X] and p(X)2

does not divide the free coefficient e0(X). Also, the coefficient of the highest power of

Y in (2.4) is 1. Thus, we can apply now Eisenstein’s criterion to conclude that F(X,Y)
is an irreducible element of the polynomial ring (GF(q)[X])[Y] � GF(q)[X,Y]. In

other words, the interpolating polynomial F(X,Y) for f is absolutely irreducible. This

concludes the proof of our main theorem.

By our construction, the degrees of the polynomial coefficients e1(X), . . . ,eq−1(X) of

F(X,Y) are at most q+1, the degree of e0(X) is at most q+2, while F(X,Y) is monic

of degree q in Y .

Theorem 1.2 may be seen as a useful tool in the theory of curves over finite fields,

since it allows a fairly elementary and efficient construction of equations of absolutely

irreducible plane curves over GF(q) with a given set Z ⊂ GF(q)2 of GF(q)-rational

points (we may, for example, apply our construction to the special case in which the

level curves areX0 = Z ,X1 =GF(q)2\Z , andXc =∅ for any c ∈GF(q)\{0,1}). Finally,

our interpolation result (with a construction based on a different method, though less

direct) still holds true for the case of more than two variables (the proof of this will

appear in [1]).
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