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ILLUMINATION BY TAYLOR POLYNOMIALS

ALAN HORWITZ
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Abstract. Let f(x) be a differentiable function on the real line R, and let P be a point
not on the graph of f(x). Define the illumination index of P to be the number of distinct
tangents to the graph of f which pass through P . We prove that if f ′′ is continuous and
nonnegative on R, f ′′ ≥m > 0 outside a closed interval of R, and f ′′ has finitely many
zeros onR, then any point P below the graph of f has illumination index 2. This result fails
in general if f ′′ is not bounded away from 0 onR. Also, if f ′′ has finitely many zeros and f ′′

is not nonnegative on R, then some point below the graph has illumination index not equal
to 2. Finally, we generalize our results to illumination by odd order Taylor polynomials.

2000 Mathematics Subject Classification. 26A06.

1. Introduction. The central problem in differential calculus is to find the tangent

line to a given curve y = f(x) at a given point (c,f (c)) on the graph of f . A somewhat

more complicated problem is: given a point P = (s,t) not on the graph of f , find all

values of c so that the tangent line to the graph of f at (c,f (c)) passes through P . If

such a c exists, we say that the point (c,f (c)) illuminates P . A typical example is: find

all tangents to y = x2 which pass through the point (2,3). In this case, each of the

points (1,1) and (3,9) would illuminate P . Of course, it is certainly possible that no

tangent line at all passes through the given point (s,t)—for example, if y = x2 and

P = (1,3). A simple, but interesting exercise is: let P be any point below the graph of

y = x2. Prove that there are exactly two tangents to the graph which pass through P .

In considering this type of problem, the following question naturally arises: given

f(x), for which points P = (s,t) is there a tangent line to f which passes through P?

Also, how many tangents pass through P?

The questions above lead to some potentially interesting ideas for research. For

example, suppose that f is convex on R, and let P be any point below the graph of

y = f(x). Are there always exactly two tangents to the graph which pass through P?

What if one assumes that f ′′(x) > 0 on R? We give the answers in Section 2 (see, in

particular, Theorem 2.6).

In Section 3, we prove a converse result to Theorem 2.6. It is also natural to try to

extend our results to illumination by higher order Taylor polynomials. In Section 4, we

prove results similar to Theorem 2.6 for illumination by odd order Taylor polynomials.

Most of the proofs extend verbatim, but some results from [3] are needed.

2. Illumination by tangent lines

Definition 2.1. Let f(x) be a differentiable function on the real line, and let P
be any point not on the graph of f . We say that the illumination index of P is k if
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there are k distinct tangents to the graph of f which pass through P . We include the

possibility that k=∞.

Remark 2.2. Call a tangent line T multiple if T is tangent to the graph of f at more

than one point. If only one tangent line T passes through P , but T is a multiple tangent,

we still define the illumination index of P to be one. One could, of course, define an

illumination index which takes into account the number of points of tangency of each

tangent line.

As noted earlier, any point below the graph of y = x2 has illumination index 2.

We now generalize this to convex C2 functions in general, with the added condition

that f ′′ is bounded below by a positive number outside some closed interval (see

Theorem 2.6 below). First we prove a couple of lemmas.

Lemma 2.3. Let f(x)∈ C2(R), and suppose that there exists T > 0 such that f ′′(x)≥
m> 0 on |x|> T . Let Tc(x) be the tangent line to f at (c,f (c)). Then for any fixed s,
lim|c|→∞Tc(s)=−∞.

Proof. For fixed s, let g(c) = Tc(s), which implies that g′(c) = (s−c)f ′′(c). Let

U =max(s,T), u=min(s,−T). It follows that

g′(c) is



≤ 0, c > U

≥ 0, c < u
(2.1)

which implies that

g(c) is




decreasing on (U,∞)
increasing on (−∞,u).

(2.2)

Also, since f ′′(x)≥m> 0 on |x|> T ,

lim
c→∞g

′(c)=−∞, lim
c→−∞g

′(c)=∞. (2.3)

Partition [U,∞) into infinitely many subintervals, [ck−1,ck], of constant width h >
0. By (2.3), given M > 0, there exists C > 0 such that g′(c) ≤ −M for c ≥ C . Now

g(ck)= g(ck−1)+
∫ ck
ck−1

g′(t)dt ≤ g(U)−Mh if ck−1 ≥ C . Since this inequality holds for

any M > 0, g(ck)→−∞. Also, since this inequality holds for any increasing sequence

{ck} →∞, with ck−ck−1 constant, limc→∞g(c) = −∞. A similar argument shows that

limc→−∞g(c)=−∞.

Remark 2.4. Lemma 2.3 is a little easier to prove under the stronger assumption

that f ′′(x) is positive and bounded away from 0 on the real line. One can then just

examine the error Ec(x)= f(x)−Tc(x) and use Taylor’s remainder formula.

Lemma 2.5. Suppose that f ′′(x) is continuous, nonnegative, and has finitely many

zeros in R. Then at most two distinct tangent lines to f can pass through any given

point P in the plane.

Proof. Suppose that three distinct tangents, T1, T2, and T3 pass through P , and

suppose that the Ti are tangent at (xi,f (xi)), i = 1,2,3. Assume, without loss of
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generality, that x1 < x2 < x3. Since f is convex on any open interval, each pair of

tangents has a unique point of intersection. Let I1 = intersection point of T1 and T2,

and let I2 = intersection point of T2 and T3. Since all three tangents pass through P ,

I1 = I2 = P . If I1 = (s1, t1) and I2 = (s2, t2), then, again, since f is convex on any open

interval, x1 < s1 < x2 and x2 < s2 < x3, which implies that s1 < s2, which contradicts

the fact that I1 = I2.

Theorem 2.6. Suppose that f ′′(x) is continuous, nonnegative, and has finitely many

zeros in R. Assume also that there exists T > 0 such that f ′′(x)≥m> 0 on |x|> T . Let

P = (s,t) with t < f(s). Then there are exactly two distinct tangent lines to the graph

of f which pass through P .

Proof. Since t < f(s), for c sufficiently close to s, Tc(s)= f(c)+f ′(c)(s−c) > t.
By Lemma 2.3, lim|c|→∞Tc(s) = −∞. Hence, for |c| sufficiently large, Tc(s) < t. By the

Intermediate Value Theorem, Tc(s)= t for at least two values of c. Note also that for

a convex function, c1 ≠ c2 implies that Tc1 ≠ Tc2 . Hence the illumination index of P is

at least two. By Lemma 2.5, the illumination index of P is at most two. This proves the

theorem.

The following example shows that Theorem 2.6 does not hold in general for func-

tions that only satisfy f ′′(x) > 0 on R.

Example 2.7. Let f(x) =
∫ x
0 (
∫ t
0 e−u

2du)dt = (1/2)erf(x)
√
πx+ (1/2)e−x2 − 1/2,

where erf(x) =
∫ x
0 e−t

2dt. Since f ′′(x) = e−x2
, limx→±∞f ′′(x) = 0. We now show that

no tangent to f passes through the point (0, t) when t < −1/2 < f(0) = 0. If the

tangent line Tc to f passes through (s,t), then f(c)+f ′(c)(s− c) = t. So consider

the function h(x) = f(x)+f ′(x)(s−x)− t = (1/2)e−x2 −1/2+ (1/2)erf(x)
√
πs− t.

If s = 0, then h(x) = (1/2)e−x2 −1/2− t ⇒ h′(x) = −xe−x2
, which implies that h(x)

is increasing for x < 0 and decreasing for x > 0. Since limx→±∞((1/2)e−x
2−1/2−t)=

−1/2−t, if t <−1/2 then h is always positive and thus has no real zeros.

Our definition of the illumination index k includes the possibility that k = ∞. Of

course, for polynomials the illumination index is always finite (indeed, it is bounded

above by the degree of the polynomial). The following example shows that there are

entire functions, however, where almost every point not on the graph has infinite

illumination index.

Example 2.8. Let f(x) = sinx, and let P = (s,t) be any point not on the graph

of f , with t ≠±1. The tangent line at (c,f (c)) passes through P if and only if f(c)+
f ′(c)(s − c) = t, that is, when g(c) = sinc + (s − c)cosc − t = 0. For n sufficiently

large and even, g(nπ)= (−1)n(s−nπ)−t < 0, while for n sufficiently large and odd,

g(nπ) > 0. Henceg has infinitely many zeros c1, c2, c3, . . . .Note that since t ≠±1, none

of the zeros is an odd multiple of π/2, and hence none of the tangents at (cj,sincj)
is horizontal. Now each of these tangents passes through P , but they may not all

be distinct. However, since a nonhorizontal line can only be tangent to y = sinx at

finitely many points, it is clear that infinitely many distinct tangents pass through P ,

and thus P has infinite illumination index.
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Remark 2.9. Given f , one may define, for each nonnegative integer k, the set

Dk, equal to the set of points in the plane with illumination index k. The Dk form

a partition of R2 −G, where G is the graph of f . For example, if f(x) = x3, it is

not hard to show that D3 = {(s,t) : s > 0, 0 < t < s3}∪ {(s,t) : s < 0, s3 < t < 0},
D2 = {(s,t) : s ≠ 0, t = 0}, D1 =G−(D2∪D3), and Dk =∅ for k= 0 or k > 3.

3. A converse result. Suppose that f(x) is not convex on R. Is it possible for every

point below the graph of f to have illumination index 2? The answer is no, and thus

we have the following partial converse of Theorem 2.6.

Theorem 3.1. Let f ∈ C3(R) and suppose that f ′′(x) has finitely many zeros in R.

If f ′′(x) is not nonnegative on R, then there is a point P below the graph of f with

illumination index not equal to 2.

Proof. If f ′′(x) ≤ 0 on R, then clearly any point P below the graph of f has

illumination index 0. Hence we may assume that there are real numbers s and u such

that f ′′(s) > 0, f ′′(u) = 0, and f ′′(x) changes sign at x = u, with f ′′ ≥ 0 between s
and u. We consider the case s < u, the other case being similar. Let P = (s,t), with t
to be chosen shortly. Now the tangent line at (c,f (c)) passes through P if and only if

f(c)−cf ′(c)+f ′(c)s = t, which holds if and only if h(c)= 0, where

h(c)= f(c)−cf ′(c)+f ′(c)s,
h′(c)= (s−c)f ′′(c), h′′(c)= (s−c)f ′′′(c)−f ′′(c). (3.1)

Note that h(s) = f(s), h′(s) = 0, and h′′(s) = −f ′′(s) < 0, so that h(s) is a local

maximum of h(c). Since h′(c)≤ 0 on (s,u) and h′(c)≥ 0 on (u,u+ε), h(u) is a local

minimum of h(c). Note that h(u) < h(s). Let T be the line y = h(u), the tangent to

h at (u,h(u)).
Case 1. T only intersects the graph of h at (u,h(u)). Then let t = h(u).
Case 2. T intersects the graph of h at some point Q ≠ (u,h(u)). If a Q exists

such that h−T changes sign at Q, then y = h(u)+ε intersects the graph of h in at

least three points for some ε > 0. If no such Q exists, then h must have another local

minimum at Q. Then y = h(u)+ε intersects the graph of h in at least four points for

some ε > 0. In either case, let t = h(u)+ ε, with ε chosen sufficiently small so that

h(u)+ε < h(s). Since the zeros of h correspond to values of c such that the tangent

line at (c,f (c)) passes through P , for case two there are at least three such values of c.

However, it is possible that some of the corresponding tangents could be multiple. It

was shown in [1], however, that f can have only finitely many multiple tangent lines in

any bounded interval. Also, since each tangent is tangent at only finitely many points,

we can also choose ε sufficiently small so that none of the tangents corresponding to

the zeros of h is multiple. Thus at least three distinct tangents pass through P .

In each case covered, P lies below the graph of f since h(s) = f(s). Hence the

illumination index of P is either one or greater than or equal to three, and thus cannot

equal two.

4. Illumination by higher order Taylor polynomials. The results of Section 3 can

be extended to illumination by Taylor polynomials of order r , r is odd. In certain
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ways, the odd order Taylor polynomials Pc(x) behave like tangent lines. Suppose that

f ∈ Cr+1(−∞,∞), and let Pc(x) denote the Taylor polynomial to f of order r at x = c.

In [2] it was proved that if f (r+1)(x)≠ 0 on [a,b], then there is a unique u, a<u< b,

such that Pa(u) = Pb(u). This defines a mean m(a,b) ≡ u. We shall prove a slightly

stronger version of this result. The method of the proof is very similar to that used

in [3], where further results and generalizations of the means m(a,b) were proved.

For the rest of this section we assume that r is an odd positive integer.

Let Ec(x)= f(x)−Pc(x). By the integral form of the remainder, we have

Ec(x)= 1
r !

∫ x
c
f (r+1)(t)(x−t)rdt. (4.1)

Lemma 4.1. Suppose that f (r+1)(x) is continuous, nonnegative, and has finitely

many zeros in [a,b]. Then Pb−Pa has precisely one real zero c, a< c < b.

Proof. By (4.1),

Ea(x)= 1
r !

∫ x
a
f (r+1)(t)(x−t)rdt,

Eb(x)= 1
r !

∫ b
x
f (r+1)(t)(t−x)rdt,

E′a(x)=
1

(r −1)!

∫ x
a
f (r+1)(t)(x−t)r−1dt.

(4.2)

This implies that

E′a(x) < 0 for x < a, E′a(x) > 0 for x > a. (4.3)

Hence Ea(x) is strictly increasing on (a,b). Similarly, Eb(x) is strictly decreasing on

(a,b). Since Ea(a)= 0 and Eb(b)= 0, there is a unique c, a< c < b, such that Eb(c)−
Ea(c)= 0. This implies that Pb(c)−Pa(c)= 0. Now

(
Eb−Ea

)
(x)=−

∫ b
a
f (r+1)(t)(x−t)rdt (4.4)

which implies that

(
Eb−Ea

)′(x)=−r
∫ b
a
f (r+1)(t)(x−t)r−1dt (4.5)

which is less than or equal 0 on R. Since f (r+1) has finitely many zeros, this implies

that Eb − Ea is strictly decreasing on R. Hence Eb − Ea has precisely one real zero,

which implies that Pb−Pa has precisely one real zero c, a< c < b.

Lemma 4.2. Suppose that f (r+1)(x) is continuous, nonnegative, and has finitely

many zeros in [a,b]. Let P be any point in the xy-plane. Then at most two distinct

Taylor polynomials of order r at x = c, a≤ c ≤ b, can pass through P .

Proof. Suppose that three distinct Taylor polynomials of order r , Pc1 , Pc2 , and

Pc3 , pass through P = (s,t). Then (Pc2 −Pc1)(s) = 0 and (Pc3 −Pc2)(s) = 0. Without
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loss of generality, assume that a ≤ c1 < c2 < c3 ≤ b. By Lemma 4.1, c1 < s < c2 and

c2 < s < c3, which is a contradiction. Hence at most two distinct Taylor polynomials

of order r can pass through P .

Lemma 4.3. Let f(x)∈Cr+1(R). Suppose that there exists T >0 such that f (r+1)(x)≥
m> 0 on |x|> T . Then for any fixed s, lim|c|→∞Pc(s)=−∞.

Proof. The proof is almost identical to that of Lemma 2.3, and we omit it.

Theorem 4.4. Suppose that f (r+1)(x) is continuous, nonnegative, and has finitely

many zeros inR. In addition, assume that there exists T > 0 such that f (r+1)(x)≥m> 0

on |x| > T . Let P = (s,t) with t < f(s). Then there are exactly two distinct Taylor

polynomials of order r to the graph of f which pass through P .

Proof. Since t<f(s), for c sufficiently close to s, Pc(s)=f(s)+
∑r
k=1(f (k)(c)/k!)(s−

c)k > t. By Lemma 4.3, lim|c|→∞Pc(s) = −∞, and hence, for |c| sufficiently large,

Pc(s) < t. By the Intermediate Value Theorem, Pc(s) = t for at least two values of c.

Also, it is not hard to show that if f (r+1)(x) > 0 on R, then c1 ≠ c2 implies that

Pc1 ≠ Pc2 . Hence the illumination index of P is at least two. By Lemma 4.2, it is at most

two. This completes the proof.

Example 4.5. Let f(x)= ex+x4, P = (0,0), and r = 3. Then Theorem 4.4 applies,

and the illumination index of P equals 2. We now verify this by estimating the actual

values of c. The third order Taylor polynomial to f at (c,f (c)) is

Pc(x)=
3∑
k=0

ec(x−c)k
k!

+c4+(4c3)(x−c)+(6c2)(x−c)2+4c(x−c)3, (4.6)

and so we get

Pc(0)= ec−ecc+ 1
2
ecc2− 1

6
ecc3−c4 = 0. (4.7)

Numerical estimates give the solutions c1 ≈−0.9953 and c2 ≈ 0.9782.

Note that if f(x)= ex instead, then the illumination index of P equals 1. This does

not contradict Theorem 4.4 since f (iv)(x)→ 0 as x→−∞.
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