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Abstract. We investigate the effect of four-dimensional matrix transformation on new
classes of double sequences. Stretchings of a double sequence is defined, and this defi-
nition is used to present a four-dimensional analogue of D. Dawson’s copy theorem for
stretching of a double sequence. In addition, the multidimensional analogue of D. Dawson’s
copy theorem is used to characterize convergent double sequences using stretchings.
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1. Introduction. In this paper, RH-regular matrices and the stretching of double

sequences are used to characterize P -convergent sequences. To achieve this goal we

begin by defining an ε-Pringsheim-copy and a stretching of double sequences. In ad-

dition, the copy theorem of Dawson in [1] will be extended as follows: if each of A
and T is an RH-regular matrix, and x is any bounded double complex sequence with

ε being any bounded positive term double sequence with P -limi,j εi,j = 0, then there

exists a stretching y of x such that T(Ay) exists and contains an ε-Pringsheim-copy

of x. By using this extended copy theorem some natural implications and variations

of this extended copy theorem will be presented.

2. Definitions, notations, and preliminary results

Definition 2.1 (see [3]). A double sequence x = [xk,l] has Pringsheim limit L
(denoted by P -limx = L) provided that given ε > 0 there exists N ∈ N such that

|xk,l − L| < ε whenever k,l > N . We will describe such an x more briefly as “P -

convergent.”

Definition 2.2 (see [3]). A double sequence x is called definite divergent, if for

every (arbitrarily large) G > 0 there exist two natural numbers n1 and n2 such that

|xn,k|>G for n≥n1, k≥n2.

Definition 2.3. The double sequence [y] is a double subsequence of the sequence

[x] provided that there exist two increasing double index sequences {nj} and {kj}
such that if zj = xnj,kj , then y is formed by

z1 z2 z5 z10

z4 z3 z6 −
z9 z8 z7 −
− − − −

(2.1)
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The double sequence x is bounded if and only if there exists a positive number

M such that |xk,l| < M for all k and l. A two-dimensional matrix transformation is

said to be regular if it maps every convergent sequence into a convergent sequence

with the same limit. The Silverman-Toeplitz theorem [5, 6] characterizes the regu-

larity of two-dimensional matrix transformations. In [4], Robison presented a four-

dimensional analog of regularity for double sequences in which he added an addi-

tional assumption of boundedness. This assumption was made because a double

sequence which is P -convergent is not necessarily bounded. The definition of reg-

ularity for four-dimensional matrices will be stated below along with the Robison-

Hamilton characterization of the regularity of four-dimensional matrices.

Definition 2.4. The four-dimensional matrix A is said to be RH-regular if it maps

every bounded P -convergent sequence into a P -convergent sequence with the same

P -limit.

Theorem 2.5 (see [2, 4]). The four-dimensional matrixA is RH-regular if and only if

(RH1) P -limm,nam,n,k,l = 0 for each k and l;
(RH2) P -limm,n

∑∞,∞
k,l=1,1am,n,k,l = 1;

(RH3) P -limm,n
∑∞
k=1 |am,n,k,l| = 0 for each l;

(RH4) P -limm,n
∑∞
l=1 |am,n,k,l| = 0 for each k;

(RH5)
∑∞,∞
k,l=1,1 |am,n,k,l| is P -convergent; and

(RH6) there exist finite positive integers A and B such that
∑
k,l>B |am,n,k,l|<A.

Example 2.6. The sequences [yn,k]= 1 and [yn,k]=−1 for each n and k are both

subsequences of the double sequence whosen,kth term is xn,k = (−1)n. In addition to

the two subsequences given, every double sequence of 1’s and −1’s is a subsequence

of this x.

Example 2.7. As another example of a subsequence of a double sequence, we define

x as follows:

xn,k :=




1, if n= k,
1
n
, if n< k,

n, if n> k.

(2.2)

Then the double sequence

yn,k :=




1
2

4
1

10
20 · ·

8 6
1
12

22 · ·
1

18
1

16
1

14
24 · ·

32 30 28 26 · ·
· · · ·
· · · ·




(2.3)

is clearly a subsequence of x.
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Remark 2.8. Note that if the double sequence x contains at most a finite number

of unbounded rows and/or columns, then every subsequence of x is bounded. In

addition, the finite number of unbounded rows and/or columns does not affect the

P -convergence or P -divergence of x and its subsequences.

Definition 2.9. A number β is called a Pringsheim limit point of the double

sequence x = [xn,k] provided that there exists a subsequence y = [yn,k] of [xn,k]
that has Pringsheim limit β : P -limyn,k = β.

Example 2.10. Define the double sequence x by

xn,k :=



(−1)n, if n= k,
(−2)n, if n= k+1,

0, otherwise.

(2.4)

This double sequence has five Pringsheim limit points, namely −2,−1,0,1, and 2.

Remark 2.11. The definition of a Pringsheim limit point can also be stated as fol-

lows: β is a Pringsheim limit point of x provided that there exist two increasing index

sequences {ni} and {ki} such that limi xni,ki = β.

Definition 2.12. A double sequence x is divergent in the Pringsheim sense (P -

divergent) provided that x does not converge in the Pringsheim sense (P -convergent).

Remark 2.13. Definition 2.12 can also be stated as follows: a double sequence x
is P -divergent provided that either x contains at least two subsequences with dis-

tinct finite Pringsheim limit points or x contains an unbounded subsequence. Also

note that, if x contains an unbounded subsequence then x also contains a definite

divergent subsequence.

Example 2.14. This is an example of a convergent double sequence whose terms

form an unbounded set

xn,k :=



k, if n= 1,

n, if k= 2,

0, otherwise.

(2.5)

Example 2.15. This is an example of an unbounded divergent double sequence

with three finite Pringsheim limit points, namely −1,0, and 1:

xn,k :=



k+1, if n= 1,

(−1)n+1, if n= k,

0, otherwise.

(2.6)

Example 2.16. This is an example of a double sequence which contains an un-

bounded subsequence

xn,k :=



n, if n= k,
−n, if n= k+1,

0, otherwise.

(2.7)
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Example 2.17. For an example of a definite divergent sequence take xn,k = n for

each n and k; then it is also clear that x contains an unbounded subsequence.

The following propositions are easily verified.

Proposition 2.18. If x = [xn,k] is P -convergent to L then x cannot converge to a

limit M , where M �= L.

Proposition 2.19. If x = [xn,k] is P -convergent to L, then any subsequence of x is

also P -convergent to L.

Remark 2.20. For an ordinary single-dimensional sequence, any sequence is a sub-

sequence of itself. This, however, is not the case in the two-dimensional plane, as

illustrated by the following example.

Example 2.21. The sequence

xn,k :=




1, if n= k= 0,

1, if n= 0, k= 1,

1, if n= 1, k= 0,

0, otherwise

(2.8)

contains only two subsequences, namely, [yn,k]= 0 for each n and k, and

zn,k :=

1, if n= k= 0,

0, otherwise;
(2.9)

neither subsequences is x.

The following propositions are easily verified.

Proposition 2.22. If every subsequence of x = [xk,l] is P -convergent, then x is

P -convergent.

Proposition 2.23. The double sequence x is P -convergent to L if and only if every

subsequence of x is P -convergent to L.

Definition 2.24. The double sequence y contains an ε-Pringsheim-copy of x pro-

vided that y contains a subsequence yni,kj such that |yni,kj −xi,j| < εi,j , for i,j =
1,2, . . . .

Example 2.25. Let

xn,k :=

(−1)n, if k=n,

0, otherwise,
(2.10)

and let P -limn,k εn,k = 0 with

yn,k :=

(−1)n, if k=n,
εn,k, otherwise.

(2.11)

Observe that, not only does y contain an ε-Pringsheim-copy of x, but y itself is an

ε-Pringsheim-copy of x.



ANALOGUES OF SOME TAUBERIAN THEOREMS FOR STRETCHINGS 103

Definition 2.26. The double sequence y is a stretching of x provided that there

exist two increasing index sequences {Ri}∞i=0 and {Sj}∞j=0 of integers such that

yn,k :=




R0 = S0 = 1,

xn,i, if Ri−1 ≤ k < Ri,
xj,k, if Sj−1 ≤n< Sj,
i,j = 1,2 . . . .

(2.12)

Remark 2.27. This definition demonstrates the procedure which is used to con-

struct a stretching of a double sequence x. This procedure uses a sequence of stages

to construct the stretching of x. These stages are constructed using a sequence of

abutting rows and columns of x. These rows and columns are constructed as follows.

Stage 1. Begin by repeating the first row of x R1 times and denote the resulting

double sequence by y1,0 then repeat the first column of y1,0 S1 times resulting in y1,1.

Stage 2. Begin by repeating the R1+1 row of y1,1, R2−R1 times which yields y2,1

then repeat the S1+1 column of y2,1, S2−S1 times which yields y2,2.
...

Stage i. Begin by repeating the 1+∑i−1
p=1Rp row of yi−1,i−1, Ri−Ri−1 times which

yields yi,i−1 then repeat the 1+∑i−1
q=1Sq column of yi,i−1, Si−Si−1 times which yields

yi,i. Note that in each stage we repeat the number of rows and then repeat the number

of columns. However the resulting stretching y of x is the same, if we first repeat

the number of columns and then repeat the numbers of rows. Also note that every

sequence itself is a stretching of itself and the sequences that induce this kind of

stretching are Ri = i and Sj = j.

Example 2.28. The sequence

x1,1 x1,1 x1,1 x1,2 x1,2 x1,2 x1,3 x1,3 x1,3 ···
x1,1 x1,1 x1,1 x1,2 x1,2 x1,2 x1,3 x1,3 x1,3 ···
x1,1 x1,1 x1,1 x1,2 x1,2 x1,2 x1,3 x1,3 x1,3 ···
x2,1 x2,1 x2,1 x2,2 x2,2 x2,2 x2,3 x2,3 x2,3 ···
x2,1 x2,1 x2,1 x2,2 x2,2 x2,2 x2,3 x2,3 x2,3 ···
x2,1 x2,1 x2,1 x2,2 x2,2 x2,2 x2,3 x2,3 x2,3 ···
x3,1 x3,1 x3,1 x3,2 x3,2 x3,2 x3,3 x3,3 x3,3 ···
x3,1 x3,1 x3,1 x3,2 x3,2 x3,2 x3,3 x3,3 x3,3 ···
x3,1 x3,1 x3,1 x3,2 x3,2 x3,2 x3,3 x3,3 x3,3 ···

...
...

...
...

...
...

(2.13)

is a stretching of x induced by Ri = 3i and Sj = 3j.

3. Main results. The following theorem is given its name because of its similarity

to the copy theorem of Dawson in [1].

Theorem 3.1 (extended copy theorem). If each of A and T is an RH-regular matrix,

and x is any bounded double complex sequence with ε being any bounded positive term
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double sequence with P -limi,j εi,j = 0, then there exists a stretching y of x such that

T(Ay) exists and contains an ε-Pringsheim-copy of x.

Proof. We begin by introducing a few notations which are used only in this proof.

Let

∥∥A∥∥ := sup
m,n>B̄


∑
k,l

∣∣am,n,k,l∣∣

<KA, ∥∥T∥∥ := sup

m,n>B̄


∑
k,l

∣∣tm,n,k,l∣∣

<KT ,

Mi,j := 1+
i,j∑
k,l=1

∣∣xk,l∣∣, δi,j :=min
i,j

{εk,l
1
≤ k≤ i∪1≤ l≤ j

}
,

K :=KA+KT +max
i,j

{εk,l
1
≤ k≤ i∪1≤ l≤ j

}
+1, Qi,j :=KMi,j+1,

ci,j(r ,s) :=
{
(k,l)

1
≤ k < ri∪1≤ l < sj

}
,

c̄i,j(r ,s) :=
{
(k,l)
ri

≤ k <∞∪sj ≤ l <∞
}
, b̄i,j(r ,s) :=ci,j(r ,s)\ci−1,j−1(r ,s).

(3.1)

Then by (RH2) there exist mα1 and nβ1 such that for m>mα1 > B̄ and n > nβ1 > B̄,

where B̄ is defined by the sixth RH-condition,∣∣∣∣∣∣
∞,∞∑
k,l=1

am,n,k,l−1

∣∣∣∣∣∣<
δα1,β1

16Qα1,β1

. (3.2)

Also by (RH1) and (RH2) there exist aα1 and bβ1 such that

∑
(k,l)∈cα1,β1

(m,n)

∣∣taα1,bβ1
,k,l
∣∣< δα1,β1

8Qα1,β1

,

∣∣∣∣∣∣
∞,∞∑
k,l=1

taα1,bβ1
,k,l−1

∣∣∣∣∣∣<
δα1,β1

8Qα1,β1

. (3.3)

In addition, there exist m̄α1, n̄β1,α2, andβ2 such that if 1≤ψ≤aα1 and 1≤ω≤bβ1, then

∑
(k,l)∈c̄α1,β1

(m̄,n̄)

∣∣tψ,ω,k,l∣∣< δα1,β1

16Qα2,β2

. (3.4)

Also, there exist rα1 > 1 and sβ1 > 1 such that if 1≤m≤ m̄α1 and 1≤n≤ n̄β1 then

∑
(k,l)∈c̄α1,β1

(r ,s)

∣∣am,n,k,l∣∣≤ δα1,β1

16Qα2,β2

. (3.5)

Now, without loss of generality, we set αp = p and βq = q. Having chosen

{
mp,m̄p,ap,rp
nq,n̄q,bq,sq

}i−1,j−1

p=0,q=0

(3.6)

withm0 =n0 = m̄0 = n̄0 = a0 = b0 = r0 = s0 = 1, now choosemi > m̄i−1 andnj > n̄j−1

such that if m>mi and n>nj then
∣∣∣∣∣∣

∑
(k,l)∈c̄i−1,j−1(r ,s)

am,n,k,l−1

∣∣∣∣∣∣<
δi,j

16Qi,j2i+j
, (3.7)
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∑
(k,l)∈ci−1,j−1(r ,s)

∣∣am,n,k,l∣∣< δi,j
8Qi−1,j−12i+j

. (3.8)

Also choose ai > ai−1 and bj > bj−1 such that

∑
(k,l)∈ci,j (m,n)

∣∣tai,bj ,k,l∣∣< δi,j
8Qi,j

,

∣∣∣∣∣∣
∑

(k,l)∈c̄i,j (m,n)
tai,bj ,k,l−1

∣∣∣∣∣∣<
δi,j

8Qi,j
. (3.9)

Next choose m̄i >mi and n̄j > nj such that if 1≤ψ≤ ai and 1≤ω≤ bj then

∑
(k,l)∈c̄i,j (m̄,n̄)

∣∣tψ,ω,k,l∣∣< δi,j
22+i+jQi+1,j+1

. (3.10)

Then choose ri > ri−1 and sj > sj−1 such that if 1≤m≤ m̄i and 1≤n≤ n̄j then

∑
(k,l)∈c̄i,j (r ,s)

∣∣am,n,k,l∣∣< δi,j
24+i+jQi+1,j+1

, (3.11)

where mi,nj,m̄i, n̄j,ri, and sj are chosen using (RH1), (RH2), (RH3), and (RH4) such

that if 1≤ p ≤ j−1 and 1≤ q ≤ i−1 the following is obtained:
∣∣∣∣∣∣

∑
(k,l)∈b̄p,j (r ,s)

am,n,k,l

∣∣∣∣∣∣≤
δp,j

8Qp,j2p+j
,

∣∣∣∣∣∣
∑

(k,l)∈b̄i,q(r ,s)
am,n,k,l

∣∣∣∣∣∣≤
δi,q

8Qi,q2i+q
. (3.12)

Therefore by (3.9) and (3.10) we have∣∣∣∣∣∣
∑

(k,l)∈ci,j (m̄,n̄)\ci,j (m,n)
tai,bj ,k,l−1

∣∣∣∣∣∣≤
δi,j

4Qi,j
, (3.13)

and by (3.7), (3.8), and (3.11) we also obtain∣∣∣∣∣∣
∑

(k,l)∈b̄i,j (r ,s)
am,n,k,l−1

∣∣∣∣∣∣<
δi,j

8Qi,j2i+j
, (3.14)

wheremi ≤m≤ m̄i and nj ≤n≤ n̄j . Let {yk,l} be the stretching of x induced by {ri}
and {sj}. Since

(Ay)m,n−xi,j =
ri−1−1,sj−1−1∑

k,l=1

am,n,k,lyk,l+
∑

(k,l)∈b̄i,j (r ,s)
am,n,k,lyk,l−xi,j

+
∞,∞∑

p,q=i+1,j+1

∑
(k,l)∈b̄p,q(r ,s)

am,n,k,lyk,l,

(3.15)

if i,j > 1, with mi ≤m≤ m̄i and nj ≤n≤ n̄j the following is obtained:

∣∣∣∣∣∣
ri−1−1,sj−1−1∑

k,l=1

am,n,k,lyk,l

∣∣∣∣∣∣≤max
{|xk,l|

1
≤k≤i−1∪1≤l≤j−1

}ri−1−1,sj−1−1∑
k,l=1

∣∣am,n,k,lyk,l∣∣.
(3.16)
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By (3.8),

∣∣∣∣∣∣
ri−1−1,sj−1−1∑

k,l=1

am,n,k,lyk,l

∣∣∣∣∣∣≤max
{ |xk,l|

1
≤ k≤ i−1∪1≤ l≤ j−1

} δi,j
8Qi−1,j−1

. (3.17)

Since

Qi−1,j−1 =K

1+

i−1,j−1∑
k,l=1

∣∣xk,l∣∣

+1≥Kmax

{ |xk,l|
1

≤ k≤ i−1∪1≤ l≤ j−1
}
, (3.18)

the following holds: ∣∣∣∣∣∣
ri−1−1,sj−1−1∑

k,l=1

am,n,k,lyk,l

∣∣∣∣∣∣≤
δi,j
8K

, (3.19)

the following also is obtained:

∣∣∣∣∣∣
∞,∞∑

p,q=i+1,j+1

∑
(k,l)∈b̄p,q(r ,s)

am,n,k,lyk,l

∣∣∣∣∣∣≤
∞,∞∑

p,q=i+1,j+1

|xk,l|
∑

(k,l)∈b̄p,q(r ,s)

∣∣am,n,k,l∣∣

≤ δi,j
24K

∞,∞∑
p,q=i+1,j+1

1
2p+q

≤ δi,j
8K

,

(3.20)

because
∞,∞∑

k,l=rp,sq

∣∣am,n,k,l∣∣≤ δp−1,q−1

24+p+qQp,q
,

|xp,q|
Qp,q

<
1
K
. (3.21)

Therefore by (3.11),

∣∣∣∣∣∣
∑

(k,l)∈b̄i,j (r ,s)
am,n,k,lyk,l−xi,j

∣∣∣∣∣∣≤
i−1∑
q=1

|xi,q|
∣∣∣∣∣∣

∑
(k,l)∈b̄i,q(r ,s)

am,n,k,l

∣∣∣∣∣∣
+
j−1∑
p=1

|xp,j|
∣∣∣∣∣∣

∑
(k,l)∈b̄p,j (r ,s)

am,n,k,l

∣∣∣∣∣∣
+|xi,j|

∣∣∣∣∣∣
∑

(k,l)∈b̄i,j (r ,s)
am,n,k,l−1

∣∣∣∣∣∣
≤

i,j∑
p,q=1,1

|xi,j|
Qi,j

δp,q
2p+q+3

≤ δi,j
K8

i,j∑
p,q=1,1

1
2p+q

= δi,j
K2

.

(3.22)

Therefore,

∣∣(Ay)m,n−xi,j∣∣≤ δi,jK8
+ δi,j
K4

+ δi,j
K2

<
δi,j
2K

. (3.23)
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Note that the inequality (3.23) is true form1 ≤m≤ m̄1 and n1 ≤n≤ n̄1, and also this

inequality is true for i,j ≥ 1 with mi ≤m≤ m̄i and nj ≤n≤ n̄j . Hence

(Ay)m,n = xi,j+ui,j, (3.24)

where |ui,j| ≤ δi,j/2K. Note that if m̄i−1 ≤ m ≤ mi and n̄j−1 ≤ n ≤ nj , then the

following is obtained:

∣∣(Ay)m,n∣∣≤
∣∣∣∣∣∣
ri−1,sj−1∑
k,l=1

am,n,k,lyk,l

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞,∞∑
p,q=i+1,j+1

∑
k,l∈b̄p,q(r ,s)

am,n,k,lyk,l

∣∣∣∣∣∣

≤max
{ |xk,l|

1
≤ k≤ i∪1≤ l≤ j

}ri−1,sj−1∑
k,l=1

∣∣am,n,k,l∣∣

+
∞,∞∑

p,q=i+1,j+1

|xk,l|
∑

k,l∈b̄p,q(r ,s)

∣∣am,n,k,l∣∣

≤Kmi,j+
∞,∞∑

p,q=i+1,j+1

|xk,l|
δp,q

24+p+qQp+1,q+1

≤Kmi,j+
δi,j
K4

∞,∞∑
p,q=i+1,j+1

1
2p+q

≤Kmi,j+1=Qi,j.

(3.25)

Also, if mi−1 ≤m≤mi and nj−1 ≤n≤nj then

∣∣∣∣∣∣
∞,∞∑
k,l=1

am,n,k,lyk,l

∣∣∣∣∣∣≤
∣∣(Ay)m,n−xi,j∣∣+|xi,j|

≤ δi,j
2K

+Kmi,j ≤Kmi,j+1=Qi,j.
(3.26)

By using (3.25) we now show the existence of T(Ay). If ai−1 <m≤ ai and bj−1 <n≤
bj then

∣∣∣∣∣∣
∞,∞∑

k,l=m̄i+1,n̄j+1

tm,n,k,l(Ay)k,l

∣∣∣∣∣∣≤
∞,∞∑
r ,s=i,j

∑
(p,q)∈b̄r+1,s+1

(
m̄,n̄
)
∣∣tm,n,p,q(Ay)p,q∣∣

≤
∞,∞∑
r ,s=i,j

Qr+1,s+1

∑
(p,q)∈b̄r+1,s+1(m̄,n̄)

∣∣tm,n,p,q∣∣

≤
∞,∞∑
r ,s=i,j

Qr+1,s+1
δr,s

22+r+sQr+1,s+1

≤ δi,j 1
4

∞,∞∑
r ,s=1

1
2r+s

<
δi,j
4
.

(3.27)
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Therefore T(Ay) exists. Also, by (3.25) we now show that T(Ay) contains an ε-
Pringsheim-copy of x. First note that

∣∣∣∣∣∣
∞,∞∑
k,l=1

tai,bj ,k,l(Ay)k,l−xi,j
∣∣∣∣∣∣≤

mi−1,nj−1∑
k,l=1

∣∣tai,bj ,k,l(Ay)k,l∣∣

+
∣∣∣∣∣∣

∑
(k,l)∈b̄i,j (r ,s)

tai,bj ,k,l(Ay)k,l−xi,j
∣∣∣∣∣∣

+
∣∣∣∣∣∣

∞,∞∑
k,l=m̄i+1,n̄j+1

tm,n,k,l(Ay)k,l

∣∣∣∣∣∣,

(3.28)

with

mi−1,nj−1∑
k,l=1

∣∣tai,bj ,k,l(Ay)k,l∣∣=
mi−1,nj−1∑

k,l=1

∣∣tai,bj ,k,l∣∣Qi,j ≤Qi,j δi,j8Qi,j
= δi,j

8
, (3.29)

∣∣∣∣∣∣
∑

(k,l)∈b̄i,j (r ,s)
tai,bj ,k,l(Ay)k,l−xi,j

∣∣∣∣∣∣=
∣∣∣∣∣∣

∑
(k,l)∈b̄i,j (r ,s)

tai,bj ,k,l
(
xi,j+ui,j

)−xi,j
∣∣∣∣∣∣

≤ |xi,j|
∑

(k,l)∈b̄i,j (r ,s)

∣∣tai,bj ,k,l−1
∣∣

+
∑

(k,l)∈b̄i,j (r ,s)

∣∣tai,bj ,k,lui,j∣∣

≤ |xi,j|
Qi,j

δi,j
4
+ δi,j

4K

∑
(k,l)∈b̄i,j (r ,s)

∣∣tai,bj ,k,l∣∣

≤ δi,j
2
,

(3.30)

∣∣∣∣∣∣
∞,∞∑

k,l=m̄i+1,n̄j+1

tm,n,k,l(Ay)k,l
∣∣∣∣≤

∞,∞∑
r ,s=i,j

∑
(p,q)∈b̄r+1,s+1(m̄,n̄)

∣∣tai,bj ,p,q(Ay)p,q∣∣

≤
∞,∞∑
r ,s=i,j

Qr+1,s+1

∑
(p,q)∈b̄r+1,s+1(m̄,n̄)

∣∣tai,bj ,p,q∣∣

≤
∞,∞∑
r ,s=i,j

Qr+1,s+1
δr,s

22+r+sQr+1,s+1
≤ δi,j

4
.

(3.31)

Hence, ∣∣∣∣∣∣
∞,∞∑
k,l=1

tm,n,k,l(Ay)k,l−xi,j
∣∣∣∣∣∣≤

δi,j
4
+ δi,j

2
+ δi,j

8
< δi,j ≤ εi,j . (3.32)

This completes the proof of the extended copy theorem.



ANALOGUES OF SOME TAUBERIAN THEOREMS FOR STRETCHINGS 109

The next two results are immediate corollaries of the extended copy theorem.

Corollary 3.2. If T is any RH-regular matrix summability method and A is an

RH-regular matrix such that Ay is T -summable for every stretching y of x, then x is

P -convergent.

Corollary 3.3. If T is any RH-regular matrix summability method and A is an

RH-regular matrix such that Ay is absolutely T -summable for every stretching y of x,

then x is P -convergent.
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