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ON Q-ALGEBRAS

JOSEPH NEGGERS, SUN SHIN AHN, and HEE SIK KIM

(Received 29 January 2001)

ABSTRACT. We introduce a new notion, called a Q-algebra, which is a generalization of
the idea of BCH/BCI/BCK-algebras and we generalize some theorems discussed in BCI-
algebras. Moreover, we introduce the notion of “quadratic” Q-algebra, and show that every
quadratic Q-algebra (X;*,e), e € X, has a product of the form x x y = x —y + e, where
x,y € X when X is a field with |X]| > 3.

2000 Mathematics Subject Classification. 06F35, 03G25.

1. Introduction. Imai and Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras (see [4, 5]). It is known that the class of BCK-algebras is a
proper subclass of the class of BCI-algebras. In [2, 3] Hu and Li introduced a wide class
of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras
is a proper subclass of the class of BCH-algebras. Neggers and Kim (see [8]) intro-
duced the notion of d-algebras, that is, (I) x x x = ¢; (IX) e xx = ¢; (VI) x xy = e and
v *x = e imply x = y, which is another useful generalization of BCK-algebras, after
which they investigated several relations between d-algebras and BCK-algebras, as
well as other relations between d-algebras and oriented digraphs. At the same time,
Jun, Roh, and Kim [6] introduced a new notion, called a BH-algebra, that is, (I) x * x = e;
(I x*e=x; (VI) x*y =e and y *x x = e imply x = y, which is a generalization of
BCH/BCI/BCK-algebras, and they showed that there is a maximal ideal in bounded
BH-algebras. We introduce a new notion, called a Q-algebra, which is a generalization
of BCH/BCI/BCK-algebras and generalize some theorems from the theory of BCI-
algebras. Moreover, we introduce the notion of “quadratic” Q-algebra, and obtain the
result that every quadratic Q-algebra (X;*,e), e € X, is of the form xxy =x—y +e,
where x,y € X and X is a field with |X| > 3, that is, the product is linear in a spe-
cial way.

2. Q-algebras. A Q-algebra is a nonempty set X with a constant 0 and a binary

operation “x” satisfying axioms:
) x*xx=0,

(I x*0=x,

() (x*xy)kz=(x*z)*xy forall x,y,z e X.

For brevity we also call X a Q-algebra. In X we can define a binary relation < by
x < y if and only if x * y = 0. Recently, Ahn and Kim [1] introduced the notion
of QS-algebras. A Q-algebra X is said to be a QS-algebra if it satisfies the additional
relation:

(IV) (x*xy)*(x*xz)=2zx*xy, foranyx,y,z e X.
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EXAMPLE 2.1. Let Z be the set of all integers and let nZ := {nz | z € Z} where
n € Z. Then (Z;—,0) and (nZ;—,0) are Q-algebras, where “—” is the usual subtraction
of integers.

EXAMPLE 2.2. Let X :={0,1,2,3} be a set with the following table:

w N = O ¥
w N = OO
w o O O+
w o o o
S O O Oo|w

Then (X;*,0) is a Q-algebra, which is not a BCH/BCI/BCK-algebra.

Neggers and Kim [7] introduced the related notion of B-algebra, that is, algebras
(X;*,0) which satisfy (I) x xx =0; II) x x0 = x; (V) (x*xy)*kz=x%(z* (0% y)), for
any x,V,z € X. Itis easy to see that B-algebras and Q-algebras are different notions.
For example, Example 2.2 is a Q-algebra, but not a B-algebra, since (3x2) *x1 =0 #
3 =3%(1%(0%2)). Consider the following example. Let X := {0,1,2,3,4,5} be a set
with the following table:

Ul R W N R O ¥
(S IO SR e N N
W Ul = O N
B w ol O NN =N
N = O Ul Wb W Ww
— O N W Ul o
S N = b w u|un

Then (X;*,0) is a B-algebra (see [7]), but not a Q-algebra, since (5% 3)*4 =3 #4 =
(5%4)%3.

PROPOSITION 2.3. If (X;*,0) is a Q-algebra, then
(VID) (xx (x*y))*xy =0, forany x,y € X.

PROOF. By (I) and (I), (x * (x*xy))*y =(x*xy)*k (x*xy)=0. O

We now investigate some relations between Q-algebras and BCH-algebras (also
BCK/BCI-algebras). The following theorems are easily proven, and we omit their
proofs.

THEOREM 2.4. Every BCH-algebra X is a Q-algebra. Every Q-algebra X satisfying
condition (VI) is a BCH-algebra.

THEOREM 2.5. Every Q-algebra satisfying condition (IV) and (VI) is a BCI-algebra.
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THEOREM 2.6. Every Q-algebra X satisfying conditions (V), (VI), and
(VIII) (x xy)*xx =0 for any x,y € X, is a BCK-algebra.

THEOREM 2.7. Every Q-algebra X satisfying x x (x xy) =x*xy forall x,y,z € X,
is a trivial algebra.

PROOF. Putting x = y in the equation x * (x * ) = x * , we obtain x % 0 = 0. By
(I) x = 0. Hence X is a trivial algebra. O

The following example shows that a Q-algebra may not satisfy the associative law.

EXAMPLE 2.8. (a) Let X := {0,1,2} with the table as follows:

N = O | %
N o= OO

—_ O N |-
S N =N

Then X is a Q-algebra, but associativity does not hold, since (0% 1) x2 =0+ 1 =
0% (1%2).

(b) Let Z and R be the set of all integers and real numbers, respectively. Then (Z;—,0)
and (R;+,1) are nonassociative Q-algebras where “—” is the usual subtraction and “+”
is the usual division.

THEOREM 2.9. Every Q-algebra (X;*,0) satisfying the associative law is a group
under the operation “x”.

PROOF. Putting x = v = z in the associative law (x x y) *x z = x * (¥ * z) and using
(I) and (II), we obtain 0 * x = x % 0 = x. This means that O is the zero element of X.
By (I), every element x of X has as its inverse the element x itself. Therefore (X;x) is
a group. O

3. The G-part of Q-algebras. In this section, we investigate the properties of the
G-part in Q-algebras.
LEMMA 3.1. If (X;*,0) isa Q-algebraanda*b = a*c,a,b,c € X, then0Oxb = 0x*c.

PROOF. By(I)and (I) (axb)*ka=(a*xa)*xb=0xband (a*xc)*xa=(axa)*xc=
Oxc.Sinceaxb=a*xc,0%xb=0%c. O

DEFINITION 3.2. Let (X;*,0) be a Q-algebra. For any nonempty subset S of X,
we define

G(S):={xeS|0xx=x}. (3.1)
In particular, if S = X then we say that G(X) is the G-part of X.
COROLLARY 3.3. A left cancellation law holds in G (X).

PROOF. let a,b,c € G(X) with a* b = a * c. By Lemma 3.1, 0 b = 0 % c. Since
b,c € G(X), we obtain b = c. O
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PROPOSITION 3.4. Let (X;*,0) be a Q-algebra. Then x € G(X) if and only if 0% x €
G(X).

PROOF. If x € G(X),then O%xx =x and 0% (0% x) = 0% x. Hence 0 * x € G(X).
Conversely, if 0 x € G(x), then 0% (0 * x) = 0 % x. By applying Corollary 3.3, we
obtain 0 * x = x. Therefore x € G(X). O

For any Q-algebra (X;*,0), the set
B(X):={xeX|0xx=0} 3.2)

is called the p-radical of X. If B(X) = {0}, then we say that X is a p-semisimple
Q-algebra. The following property is obvious.
(IX) G(X)NB(X) = {0}.

PROPOSITION 3.5. If (X;*,0) is a Q-algebra and x,y € X, then
yeBX) = (x*xy)*xx=0. (3.3)
PROOF. By (I) and (II) (x *x ¥)*x = (x*kx)*y =0% 7y = 0if and only if v € B(X[D

DEFINITION 3.6. Let (X;*,0) be a Q-algebra and I(+ @) < X. The set I is called an
ideal of X if for any x,y,z € X,

(1) 0€el,

(2) xkyelandyelimply x el.

Obviously, {0} and X are ideals of X. We call {0} and X the zero ideal and the trivial
ideal of X, respectively. An ideal I is said to be proper if I + X.

In Example 2.2 the set I := {0,1,2} is an ideal of X.
PROPOSITION 3.7. Let (X;*,0) be a Q-algebra. Then B(X) is an ideal of X.

PROOF. Since (0* 0) % 0 = 0, by Proposition 3.5, 0 € B(X). Let x x y € B(X) and
v € B(X). Then by Proposition 3.5, ((x * ) %k x) % (x x y) = 0. By (II), ((x * ) * (x *
¥v)) *x =0%x =0. Hence x € B(X). Therefore B(X) is an ideal of X. O

PROPOSITION 3.8. If'S is a subalgebra of a Q -algebra (X; *,0), then G(X)NS = G(S).

PROOF. Itis obvious that G(X)NS < G(S).If x e G(S),thenOxx =xandx €S c
X. Then x € G(X) and so x € G(X) NS, which proves the proposition. O

THEOREM 3.9. Let (X;*,0) be a Q-algebra. If G(X) = X, then X is p-semisimple.

PROOF. Assume that G(X) = X. By (X), {0} = G(X) nB(X) = X nB(X) = B(X).
Hence X is p-semisimple. O

THEOREM 3.10. If (X;*,0) is a Q-algebra of order 3, then |G(X)| = 3, that is,
G(X) + X.

PROOF. For the sake of convenience, let X = {0,a,b} be a Q-algebra. Assume that
|G(X)| =3, thatis, G(X)=X.Then0x0=0,0xka=a,and Oxb =b. From x*xx =0
and x * 0 = x, it follows that axa =0, bxb =0, a*0 =a, and b * 0 = b. Now
let ax b = 0. Then 0, a, and b are candidates of the computation. If b x a = 0, then
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axb=0=bxaandso (axb)*xa=(bxa)xa.By(ll), (axa)*b = (b*xa)*a. Hence
0% b = 0% a. By the cancellation law in G(X), b = a, a contradiction. If b x a = a, then
a=bxa=0xb)xa=(0%xa)*xb=axb=0,acontradiction. For the case bxa = b,
wehave b=bxa=(0xb)*xa=(0xa)*b=axb =0, which is also a contradiction.
Next,if asxb =a, then (ax(a*xb))*b=(axa)*b=0%xb =D>b 0. This leads to the
conclusion that Proposition 2.3 does not hold, a contradiction. Finally, let a x b = b.
Ifbxa=0,thenb=axb=(0%xa)xb=(0x%xb)*xa=>bx*xa=0,a contradiction. If
bxa=a,b=axb=0xa)*xb=(0%xb)*xa=D>bxa =0, acontradiction. For the case
bxa=b,wehavea=0%xa=(bxb)*xa=(b*xa)*xb=D>bxb =0, which is again a
contradiction. This completes the proof. O

PROPOSITION 3.11. If (X;*,0) is a Q-algebra of order 2, then in every case the
G-part G(X) of X is an ideal of X.

PROOF. Let |X| = 2.Then either G(X) = {0} or G(X) = X. In either case, G(X) is an
ideal of X. O

THEOREM 3.12. Let (X;*,0) be a Q-algebra of order 3. Then G(X) is an ideal of X
if and only if |G(X)| = 1.

PROOF. Let X := {0,a,b} be a Q-algebra. If |G(X)| = 1, then G(X) = {0} is the
trivial ideal of X.

Conversely, assume that G(X) is an ideal of X. By Theorem 3.10, we know that
either |G(X)| =1 or |G(X)| = 2. Suppose that |G(X)| = 2. Then either G(X) = {0,a}
or G(X) =1{0,b}. If G(X) = {0,a}, then b *xa ¢ G(X) because G(X) is an ideal of X.
Hence bsxa =b. Thena=0%xa = (bxb)xa=(bxa)*xb =D>bxb =0, which is a
contradiction. Similarly, G(X) = {0,b} leads to a contradiction. Therefore |G(X)| # 2
and so |G(X)| = 1. O

DEFINITION 3.13. An ideal I of a Q-algebra (X;*,0) is said to be implicative if
(xky)kzeland y*xzel, then x*z el forany x,y,z € X.

THEOREM 3.14. Let (X;*,0) be a Q-algebra and let I be an implicative ideal of X.
Then I contains the G-part G(X) of X.

PROOF. If x € G(X),then (0xx)*x =x*xx=0€and x*x =0 € I. Since I is
implicative, it follows that x = 0% x € I. Hence G(X) < I. O

DEFINITION 3.15. Let X and Y be Q-algebras. A mapping f : X — Y is called a
homomorphism if

Sfxxy)=f(x)xf(y), Vx,yeX. (3.4)

A homomorphism f is called a monomorphism (resp., epimorphism) if it is injec-
tive (resp., surjective). A bijective homomorphism is called an isomorphism. Two Q-
algebras X and Y are said to be isomorphic, written by X = Y, if there exists an iso-
morphism f : X — Y. For any homomorphism f : X — Y, the set {x € X | f(x) =0}
is called the kernel of f, denoted by Ker(f) and the set {f(x) | x € X} is called the
image of f, denoted by Im(f). We denote by Hom(X, Y) the set of all homomorphisms
of Q-algebras from X to Y.
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PROPOSITION 3.16. Suppose that f : X — X' is a homomorphism of Q -algebras. Then
1) f()=0,
(2) f isisotone, thatis, if xxy =0, x,y € X, then f(x)* f(y) =0".

PROOF. Since f(0) = f(0x0) = f(0) % f(0) =0’, (1) holds. If x,y € X and x < 1,
thatis, x xy =0, thenby (1), f(x)*x f(y) = f(x*xy) = f(0) =0".Hence f(x) < f(y),
proving (2). O

THEOREM 3.17. Let (X;*,0) and (X;*',0") be Q-algebras and let B be an ideal of
Y. Then for any f € Hom(X,Y), f~1(B) is an ideal of X.

PROOF. By Proposition 3.16(1), 0 € f~1(B). Assume that x xy € f~1(B) and y €
f71(B). Then f(x) * f(v) = f(x %) € B. It follows from the fact that B is an ideal
of Y that f(x) € B, that is, x € f~1(B). This means that f~1(B) is an ideal of X. The
proof is complete. O

Since {0’} is an ideal of X', Ker(f) = f~1({0’}) for any f € Hom(X,Y). Hence we
obtain the following corollary.

COROLLARY 3.18. The kernel Ker(f) is an ideal of X.

4. The quadratic Q-algebras. Let X be a field with | X| > 3. An algebra (X; %) is said
to be guadratic if x * y is defined by x * y := a;x% + axy + azy? + asx + asy + ae,
where ay,...,a¢ € X, forany x,y € X. A quadratic algebra (X; *) is said to be quadratic
Q-algebra (resp., QS-algebra) if it satisfies conditions (I), (II), and (III) (resp., (IV)).

THEOREM 4.1. Let X be a field with | X| = 3. Then every quadratic Q -algebra (X; *x,e),
ec€ X, has the formxxy =x—7y+e wherex,y € X.

PROOF. Define
X%y :=Ax>+Bxy +Cy?>+Dx+Ey +F. 4.1)

Consider (I).
e=x*xx=(A+B+C)x%*+(D+E)x+F. (4.2)

Let x := 0 in (4.2). Then we obtain F = e. Hence (4.1) turns out to be

X%y =Ax>+Bxy+Cy?+Dx+Ey+e. 4.3)
If v := x in (4.3), then

e=x*%x=(A+B+C)x*+(D+E)x+e, (4.4)

for any x € X, and hence we obtain A+ B+ C=0=D +E, thatis, E=-D and B =
—A—C. Hence (4.3) turns out to be

x*xy=(x-y)(Ax—-Cy+D) +e. (4.5)
Let y := e in (4.5). Then by (II) we have

x=xxe=(x—-e)(Ax—-Ce+D)+e, (4.6)
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that is, (Ax —Ce+D —1)(x —e) = 0. Since X is a field, either x —e = 0 or Ax — Ce +
D -1 =0. Since | X| > 3, we have Ax —Ce+D -1 = 0, for any x # e in X. This means
that A=0,1-D+ Ce = 0. Thus (4.5) turns out to be

xxy=(x-y)+C(x-y)(e-y)+e. 4.7)
To satisfy condition (III) we consider (x * ) * z and (x * z) * .
(xxy)kz=(x*xky—-2z)+C(x*ky—-2z)(e—z)+e
=(x—-y-2z)+C(x—-y)(e—2z)+2e
+C[(x-y)+C(x—-y)(e—y)+(e—2)](e—2) (4.8)
=(x—-y—-2)+C(x—y)_Re—y—z)+2e
+C%(x-y)(e-y)(e—z)+C(e—2)%

Interchange y with z in (4.8). Then

(xxz)*xy=(x—-z-y)+C(x—-2z)(2e—z—-y)+2e

) ) 4.9)
+C(x—-2z)(e—2z)(e—y)+C(e—y)-.

By (4.8) and (4.9) we obtain
0=(x*xy)*kz—(x*x2)xy=C>(e-y)(e—2)(z—-V). (4.10)

Since X is a field with |X]| > 3, we obtain C = 0. This means that every quadratic
Q-algebra (X;*,e), has the form x x y = x — y + e where x,y € X, completing the
proof. O

EXAMPLE 4.2. Let R be the set of all real numbers. Define x * v := x —y + /2. Then
(R; *,+/2) is a quadratic Q-algebra.

EXAMPLE 4.3. Let i := GF(p™) be a Galois field. Define x x y :=x—y +e, e € A.
Then (3; %,e) is a quadratic Q-algebra.

THEOREM 4.4. Let X be a field with |X| > 3. Then every quadratic Q-algebra on X
is a (quadratic) QS -algebra.

PROOF. let (X;*,e) be a quadratic Q-algebra. Then x x y = x — y + e for any
x,y € X, and hence

(xxy)x(x*xz)=(x—y+e)x(x—z+e)
=(x—-y+e)—(x—z+e)+e (4.11)
=z-y+e=z%xYy,

completing the proof. O

REMARK 4.5. Usually a nonquadratic Q-algebra need not be a QS-algebra. See the
following example.
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EXAMPLE 4.6. Consider the Q-algebra (X;*,0) in Example 2.2. This algebra is not
a QS-algebra, since (3x1)*x(3%2)=3#0=2x%1.

COROLLARY 4.7. Let X be a field with | X| > 3. Then every quadratic Q-algebra on
X is a BCI-algebra.

PROOF. It is an immediate consequences of Theorems 2.5 and 4.4. O

THEOREM 4.8. Let X be a field with | X| > 3. Then every quadratic Q-algebra (X; x,e)
is p-semisimple. Furthermore, if char(X) # 2, then G(X) = B(X).

PROOF. Notice that B(X) = {x e X |exx =¢e}={xeX|e—-x+e=¢e}={x¢€
X | e—x =0} = {e}, that is, (X;*,e) is p-semisimple. Also, if char(X) # 2, then 2 is
invertiblein X and G(X) = {x e X |exx=x}={xeX|e-x+e=x}={x e X|
2e =2x} ={x e X |e=x}={e}. Of course, if char(X) = 2, then 2e = 2x = 0 for all
x € X, whence G(X) = X. O

This shows that there is a large class of examples of p-semisimple QS-algebras
obtained as quadratic Q-algebras.

THEOREM 4.9. Let X be a field with |X| > 3. Then every quadratic Q-algebra on X
is isomorphic to every other such algebra defined on X.

PROOF. let x xy:=x—y+e; and x %'y := x — Y + e, where e;,e> € X. Let
m(x):=x+(ex—ey), forall x € X. Then m(x *xy) = [(x —y) +e1]+ (e2—e1) =
(x—y)+ex=(x+(e2—e1))+(y+(e2—e1)) +er = (x) *" (), whence the fact that
1(x) = x + (e; —e») yields the conclusion that 7 is an isomorphism of Q-algebras.

O

THEOREM 4.10. Let X be a field with |X| > 3. Then every quadratic Q-algebra
(X; *,e) determines the abelian group (X,+) via the definition x +y = x * (e— ).

PROOF. Notethatx*x(e—y)=x—(e—y)+e = x+yreturns the additive operation
of the field X, which is an abelian group. O

Not every quadratic Q-algebra (X;*,e), e € X, on a field X with |X| > 3 need be a
BCK-algebra, since ((x*y)* (x*z))* (z*y) =e+(y—z) # e in general.

PROBLEM 4.11. Construct a cubic Q-algebra which is not quadratic. Verify that
among such cubic Q-algebras there are examples which are not QS-algebras. Fur-
thermore, the question whether there are non-p-semisimple cubic Q-algebras is also
of interest.
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