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ON n-NORMED SPACES
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(Received 6 August 2000 and in revised form 12 October 2000)

Abstract. Given ann-normed space withn≥ 2, we offer a simple way to derive an (n−1)-
norm from the n-norm and realize that any n-normed space is an (n−1)-normed space.
We also show that, in certain cases, the (n−1)-norm can be derived from the n-norm in
such a way that the convergence and completeness in the n-norm is equivalent to those
in the derived (n− 1)-norm. Using this fact, we prove a fixed point theorem for some
n-Banach spaces.
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1. Introduction. Let n∈N and X be a real vector space of dimension d≥n. (Here

we allow d to be infinite.) A real-valued function ‖·, . . . ,·‖ on Xn satisfying the follow-

ing four properties

(1) ‖x1, . . . ,xn‖ = 0 if and only if x1, . . . ,xn are linearly dependent;

(2) ‖x1, . . . ,xn‖ is invariant under permutation;

(3) ‖x1, . . . ,xn−1,αxn‖ = |α|‖x1, . . . ,xn−1,xn‖ for any α∈R;

(4) ‖x1, . . . ,xn−1,y+z‖ ≤ ‖x1, . . . ,xn−1,y‖+‖x1, . . . ,xn−1,z‖,
is called an n-norm on X and the pair (X,‖·, . . . ,·‖) is called an n-normed space.

A trivial example of an n-normed space is X = Rn equipped with the following

n-norm:

∥∥x1, . . . ,xn
∥∥
E := abs




∣∣∣∣∣∣∣∣∣

x11 ··· x1n
...

. . .
...

xn1 . . . xnn

∣∣∣∣∣∣∣∣∣


 , (1.1)

where xi = (xi1, . . . ,xin)∈Rn for each i= 1, . . . ,n. (The subscript E is for Euclidean.)

Note that in ann-normed space (X,‖·, . . . ,·‖), we have, for instance, ‖x1, . . . ,xn‖ ≥ 0

and ‖x1, . . . ,xn−1,xn‖ = ‖x1, . . . ,xn−1,xn+α1x1+···+αn−1xn−1‖ for all x1, . . . ,xn ∈
X and α1, . . . ,αn−1 ∈R.

The theory of 2-normed spaces was first developed by Gähler [3] in the mid 1960’s,

while that of n-normed spaces can be found in [11]. Recent results can be found, for

example, in [9, 10]. Related works on n-metric spaces and n-inner product spaces may

be found, for example, in [1, 2, 4, 5, 7, 6, 12].

In this note, we will show that everyn-normed space withn≥ 2 is an (n−1)-normed

space and hence, by induction, an (n− r)-normed space for all r = 1, . . . ,n− 1. In

particular, given an n-normed space, we offer a simple way to derive an (n−1)-norm

from the n-norm, different from that in [5].
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We will also apply our result to study convergence and completeness in n-normed

spaces, which will be defined later. This enables us to prove a fixed point theorem for

some n-normed spaces.

The case n= 2 was previously studied in [8].

2. Preliminary results. Suppose hereafter that n ≥ 2 and (X,‖·, . . . ,·‖) is an n-

normed space of dimension d ≥ n. Take a linearly independent set {a1, . . . ,an} in X.

With respect to {a1, . . . ,an}, define the following function ‖·, . . . ,·‖∞ on Xn−1 by

∥∥x1, . . . ,xn−1

∥∥∞ :=max
{∥∥x1, . . . ,xn−1,ai

∥∥ : i= 1, . . . ,n
}
. (2.1)

Then we have the following result.

Theorem 2.1. The function ‖·, . . . ,·‖∞ defines an (n−1)-norm on X.

Proof. We will verify that ‖·, . . . ,·‖∞ satisfies the four properties of an (n−1)-
norm.

(1) If x1, . . . ,xn−1 are linearly dependent, then ‖x1, . . . ,xn−1‖ = 0 for each i= 1, . . . ,n,

and hence ‖x1, . . . ,xn−1‖∞=0. Conversely, if ‖x1, . . . ,xn−1‖∞=0, then ‖x1, . . . ,xn−1,ai‖
= 0 and accordingly x1, . . . ,xn−1, ai are linearly dependent for each i = 1, . . . ,n. But

this can only happen when x1, . . . ,xn−1 are linearly dependent.

(2) Since ‖x1, . . . ,xn−1,ai‖ is invariant under any permutation of {x1, . . . ,xn−1}, we

find that ‖x1, . . . ,xn−1‖∞ is also invariant under any permutation.

(3) Observe that

∥∥x1, . . . ,xn−2,αxn−1

∥∥∞ =max
{∥∥x1, . . . ,xn−2,αxn−1,ai

∥∥ : i= 1, . . . ,n
}

= |α|max
{∥∥x1, . . . ,xn−2,xn−1,ai

∥∥ : i= 1, . . . ,n
}

= |α|
∥∥x1, . . . ,xn−2,xn−1

∥∥∞.
(2.2)

(4) Observe that

∥∥x1, . . . ,xn−2,y+z
∥∥∞ =max

{∥∥x1, . . . ,xn−2,y+z,ai
∥∥ : i= 1, . . . ,n

}

≤max
{∥∥x1, . . . ,xn−2,y,ai

∥∥ : i= 1, . . . ,n
}

+max{
∥∥x1, . . . ,xn−2,z,ai

∥∥ : i= 1, . . . ,n
}

=
∥∥x1, . . . ,xn−2,y

∥∥∞+
∥∥x1, . . . ,xn−2,z

∥∥∞.

(2.3)

Therefore ‖·, . . . ,·‖∞ defines an (n−1)-norm on X.

Corollary 2.2. Every n-normed space is an (n− r)-normed space for all r =
1, . . . ,n−1. In particular, every n-normed space is a normed space.

Remark 2.3. Note that in general the function ‖x1, . . . ,xn−1‖p := {∑n
i=1‖x1, . . . ,

xn−1,ai‖p}1/p , where 1 ≤ p ≤ ∞, also defines an (n−1)-norm on X. These (n−1)-
norms, however, are equivalent to ‖·, . . . ,·‖∞, as long as we use the same set of n
vectors a1, . . . ,an. In certain cases, it is possible to get equivalent (n−1)-norms even

if we use different sets of n vectors.
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2.1. The standard case. Take a look at a standard example. Let X be a real inner

product space of dimension d≥n. Equip X with the standard n-norm

∥∥x1, . . . ,xn
∥∥
S :=

∣∣∣∣∣∣∣∣∣

〈
x1,x1

〉 ··· 〈
x1,xn

〉
...

. . .
...〈

xn,x1
〉 ··· 〈

xn,xn
〉

∣∣∣∣∣∣∣∣∣

1/2

, (2.4)

where 〈·,·〉 denotes the inner product on X. (If X = Rn, then this n-norm is exactly

the same as the Euclidean n-norm ‖·, . . . ,·‖E mentioned earlier.)

Notice that forn= 1, the aboven-norm is the usual norm ‖x1‖S = 〈x1,x1〉1/2, which

gives the length of x1, while for n = 2, it defines the standard 2-norm ‖x1,x2‖S =
{‖x1‖2

S‖x2‖2
S−〈x1,x2〉2}1/2, which represents the area of the parallelogram spanned

by x1 and x2. Further, if X = R3, then ‖x1,x2,x3‖s = ‖x1,x2,x3‖E is nothing but

the volume of the parallelograms spanned by x1, x2, and x3. In general, ‖x1, . . . ,xn‖S
represents the volume of then-dimensional parallelepiped spanned by x1, . . . ,xn inX.

Now let {e1, . . . ,en} be an orthonormal set in X. Then, by Theorem 2.1, the following

function ∥∥x1, . . . ,xn−1

∥∥∞ :=max
{∥∥x1, . . . ,xn−1,ei

∥∥
S : i= 1, . . . ,n

}
(2.5)

defines an (n−1)-norm on X. Further, we have the following fact.

Fact 2.4. On a standard n-normed space X, the derived (n−1)-norm ‖·, . . . ,·‖∞,

defined with respect to {e1, . . . ,en}, is equivalent to the standard (n−1)-norm ‖·, . . . ,·‖S .

Precisely, we have

∥∥x1, . . . ,xn−1

∥∥∞ ≤
∥∥x1, . . . ,xn−1

∥∥
S ≤

√
n
∥∥x1, . . . ,xn−1

∥∥∞ (2.6)

for all x1, . . . ,xn−1 ∈X.

Proof. Assume that x1, . . . ,xn−1 are linearly independent. For each i = 1, . . . ,n,

write ei = e◦i +e⊥i where e◦i ∈ span{x1, . . . ,xn−1} and e⊥i ⊥ span{x1, . . . ,xn−1}. Then we

have
∥∥x1, . . . ,xn−1,ei

∥∥
S =

∥∥x1, . . . ,xn−1,e⊥i
∥∥
S

=

∣∣∣∣∣∣∣∣∣∣∣

〈x1,x1〉 ··· 〈x1,xn−1〉 0
...

. . .
...

...

〈xn−1,x1〉 ··· 〈xn−1,xn−1〉 0

0 ··· 0
〈
e⊥i ,e

⊥
i
〉

∣∣∣∣∣∣∣∣∣∣∣

1/2

≤

∣∣∣∣∣∣∣∣∣

〈x1,x1〉 ··· 〈x1,xn−1〉
...

. . .
...

〈xn−1,x1〉 ··· 〈xn−1,xn−1〉

∣∣∣∣∣∣∣∣∣

1/2

=
∥∥x1, . . . ,xn−1

∥∥
S .

(2.7)

Hence we get ‖x1, . . . ,xn−1‖∞ ≤ ‖x1, . . . ,xn−1‖S .
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Next, take a unit vector e=α1e1+···+αnen such that e⊥ span{x1, . . . ,xn−1}. (Here

we are still assuming that x1, . . . ,xn−1 are linearly independent.) Then, by properties

(3) and (4) of the n-norm, we have
∥∥x1, . . . ,xn−1

∥∥
S =

∥∥x1, . . . ,xn−1,e
∥∥
S

≤
∣∣α1

∣∣∥∥x1, . . . ,xn−1,e1

∥∥
S+···+

∣∣αn
∣∣∥∥x1, . . . ,xn−1,en

∥∥
S

≤ (
∣∣α1

∣∣+···+
∣∣αn

∣∣)∥∥x1, . . . ,xn−1

∥∥∞.
(2.8)

But, by the Cauchy-Schwarz inequality, we have

n∑

i=1

∣∣αi
∣∣≤




n∑

i=1

12




1/2


n∑

i=1

∣∣αi
∣∣2




1/2

=√n. (2.9)

Hence we obtain ∥∥x1, . . . ,xn−1

∥∥
S ≤

√
n
∥∥x1, . . . ,xn−1

∥∥∞, (2.10)

and this completes the proof.

2.2. The finite-dimensional case. For finite-dimensional n-normed space (X,
‖·, . . . ,·‖), we can in general derive an (n−1)-norm from the n-norm in the following

way. Take a linearly independent set {a1, . . . ,am} in X, with n≤m ≤ d. With respect

to {a1, . . . ,am}, define the following function ‖·, . . . ,·‖∞ on Xn−1 by

∥∥x1, . . . ,xn−1

∥∥∞ :=max
{∥∥x1, . . . ,xn−1,ai

∥∥ : i= 1, . . . ,m
}
. (2.11)

Then, as in Theorem 2.1, the function ‖·, . . . ,·‖∞ defines an (n−1)-norm on X.

As we will see later, we can obtain a better (n−1)-norm by using a set of d, rather

than just n, linearly independent vectors in X (that is, by using a basis for X).

3. Applications and further results. Recall that a sequence x(k) in an n-normed

space (X,‖·, . . . ,·‖) is said to converge to an x ∈X (in the n-norm) whenever

lim
k→∞

∥∥x1, . . . ,xn−1,x(k)−x
∥∥= 0 (3.1)

for every x1, . . . ,xn−1 ∈X.

The following proposition says that the convergence in the n-norm implies the con-

vergence in the derived (n−1)-norm ‖·, . . . ,·‖∞, defined with respect to an arbitrary

linearly independent set {a1, . . . ,an} in X.

Proposition 3.1. If x(k) converges to an x ∈ X in the n-norm, then x(k) also

converges to x in the derived (n−1)-norm ‖·, . . . ,·‖∞, that is,

lim
k→∞

∥∥x1, . . . ,xn−2,x(k)−x
∥∥∞ = 0 (3.2)

for every x1, . . . ,xn−2 ∈X.

Proof. If x(k) converges to an x ∈X in the n-norm, then

lim
k→∞

∥∥x1, . . . ,xn−2,x(k)−x,ai
∥∥= 0 (3.3)
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for every x1, . . . ,xn−2 ∈X and i= 1, . . . ,n, and hence

lim
k→∞

∥∥x1, . . . ,xn−2,x(k)−x
∥∥∞ = 0 (3.4)

for every x1, . . . ,xn−2 ∈ X, that is, x(k) converges to x in the derived (n−1)-norm

‖·, . . . ,·‖∞.

3.1. The standard case. In a standard n-normed space (X,‖·, . . . ,·‖S), the converse

of Proposition 3.1 is also true, especially when the derived (n−1)-norm ‖·, . . . ,·‖∞ is

defined with respect to an orthonormal set {e1, . . . ,en} in X as in Section 2.1.

Fact 3.2. A sequence in a standard n-normed space X is convergent in the n-norm

if and only if it is convergent in the derived (n−1)-norm ‖·, . . . ,·‖∞.

Proof. Suppose that x(k) converges to an x ∈ X in the derived (n− 1)-norm

‖·, . . . ,·‖∞. We want to show that x(k) also converges to x in the n-norm. Take

x1, . . . ,xn−1 ∈X. Then one may observe that

∥∥x1, . . . ,xn−2,xn−1,x(k)−x
∥∥
S ≤

∥∥x1, . . . ,xn−2,x(k)−x
∥∥
S
∥∥xn−1

∥∥
S , (3.5)

where ‖·, . . . ,·‖S and ‖·‖S on the right-hand side denote the standard (n−1)-norm

and the usual norm on X, respectively. By Fact 2.4, we have

∥∥x1, . . . ,xn−2,xn−1,x(k)−x
∥∥
S ≤

√
n
∥∥x1, . . . ,xn−2,x(k)−x

∥∥∞
∥∥xn−1

∥∥
S . (3.6)

But limk→∞‖x1, . . . ,xn−2,x(k)−x‖∞ = 0, and so we conclude that

lim
k→∞

∥∥x1, . . . ,xn−1,x(k)−x
∥∥
S = 0, (3.7)

that is, x(k) converges to x in the n-norm.

Corollary 3.3. A sequence in a standard n-normed space is convergent in the n-

norm if and only if it is convergent in the standard (n−1)-norm and, by induction, in

the standard (n−r)-norm for all r = 1, . . . ,n−1. In particular, a sequence in a standard

n-normed space is convergent in the n-norm if and only if it is convergent in the usual

norm ‖·‖S := 〈·,·〉1/2.

3.2. The finite-dimensional case. We also have a similar result for finite-

dimensional n-normed space (X,‖·, . . . ,·‖). Let {b1, . . . ,bd} be a basis for X. With

respect to {b1, . . . ,bd}, define the following function ‖·, . . . ,·‖� on Xn−1 by

∥∥x1, . . . ,xn−1

∥∥
� :=max

{∥∥x1, . . . ,xn−1,bi
∥∥ : i= 1, . . . ,d

}
. (3.8)

Then, as mentioned before, the function ‖·, . . . ,·‖� defines an (n−1)-norm on X.

With this derived (n−1)-norm, we have the following result.

Proposition 3.4. A sequence in the finite-dimensional n-normed space X is conver-

gent in the n-norm if and only if it is convergent in the derived (n−1)-norm ‖·, . . . ,·‖�.
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Proof. If a sequence in X is convergent in the n-norm, then it will certainly be

convergent in the (n−1)-norm ‖·, . . . ,·‖�. Conversely, suppose that x(k) converges

to an x ∈ X in ‖·, . . . ,·‖�. Take x1, . . . ,xn−1 ∈ X. Writing xn−1 = α1b1+···+αdbd,

we get

∥∥x1, . . . ,xn−2,xn−1,x(k)−x
∥∥≤

∣∣α1

∣∣∥∥x1, . . . ,xn−2,x(k)−x,b1

∥∥

+···+
∣∣αd

∣∣∥∥x1, . . . ,xn−2,x(k)−x,bd
∥∥

≤ (
∣∣α1

∣∣+···+
∣∣αd

∣∣)∥∥x1, . . . ,xn−2,x(k)−x
∥∥
�.

(3.9)

But limk→∞‖x1, . . . ,xn−2,x(k)−x‖� = 0, and so we obtain

lim
k→∞

∥∥x1, . . . ,xn−1,x(k)−x
∥∥= 0, (3.10)

that is, x(k) converges to x in the n-norm.

3.3. The standard, separable case. We go back to the standard case, where X is

a real inner product space of dimension d ≥ n equipped with the standard n-norm

‖·, . . . ,·‖S as in Section 2.1. But suppose now that X is separable and that {ei : i∈ Id},
where Id := {1, . . . ,d} (if d < ∞) or N (if d = ∞), is an orthonormal basis for X. For

every x1, . . . ,xn−1 ∈X and every basis vector ei (i∈ Id), we have

∥∥x1, . . . ,xn−1,ei
∥∥
S ≤

∥∥x1, . . . ,xn−1

∥∥
S , (3.11)

where ‖·, . . . ,·‖S on the right-hand side denotes the standard (n− 1)-norm on X.

Hence, with respect to {ei : i ∈ Id}, we may define the function ‖·, . . . ,·‖� on Xn−1

by
∥∥x1, . . . ,xn−1

∥∥
� := sup

{∥∥x1, . . . ,xn−1,ei
∥∥
S : i∈ Id

}
(3.12)

and check that it also defines an (n−1)-norm on X. Moreover, we have the following

relation between the two derived (n−1)-norms ‖·, . . . ,·‖� and ‖·, . . . ,·‖∞ (the latter

being defined with respect to {e1, . . . ,en} only):

∥∥x1, . . . ,xn−1

∥∥∞ ≤
∥∥x1, . . . ,xn−1

∥∥
� ≤

∥∥x1, . . . ,xn−1

∥∥
S ≤

√
n
∥∥x1, . . . ,xn−1

∥∥∞ (3.13)

for every x1, . . . ,xn−1 ∈X. Hence we conclude the following fact.

Fact 3.5. On a standardn-normed spaceX, the two derived (n−1)-norms ‖·, . . . ,·‖∞
and ‖·, . . . ,·‖� and the standard (n−1)-norm ‖·, . . . ,·‖S are equivalent. Accordingly,

a sequence in a standard n-normed space X is convergent in the n-norm if and only if

it is convergent in one of the three (n−1)-norms.

3.4. Cauchy sequences, completeness and fixed point theorem. Recall that a se-

quence x(k) in an n-normed space (X,‖·, . . . ,·‖) is called Cauchy (with respect to the

n-norm) if

lim
k,l→∞

∥∥x1, . . . ,xn−1,x(k)−x(l)
∥∥= 0 (3.14)
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for every x1, . . . ,xn−1 ∈X. If every Cauchy sequence in X converges to an x ∈X, then

X is said to be complete (with respect to the n-norm). A complete n-normed space is

then called an n-Banach space.

By replacing the phrases “x(k) converges tox” with “x(k) is Cauchy” and “x(k)−x”

with “x(k)−x(l),” we see that the analogues of Proposition 3.1, Fact 3.2, Corollary 3.3,

Proposition 3.4, and Fact 3.5 hold for Cauchy sequences.

Hence, for the standard or finite-dimensional case, we have the following result.

Proposition 3.6. (a) A standard n-normed space is complete if and only if it is com-

plete with respect to one of the three (n−1)-norms ‖·, . . . ,·‖∞, ‖·, . . . ,·‖�, or ‖·, . . . ,·‖S .

By induction, a standard n-normed space is complete if and only if it is complete with

respect to the usual norm ‖·‖S := 〈·,·〉1/2.

(b) A finite-dimensional n-normed space is complete if and only if it is complete with

respect to the derived (n−1)-norm ‖·, . . . ,·‖�.

Consequently, we have the following result.

Corollary 3.7 (fixed point theorem). Let (X,‖·, . . . ,·‖) be a standard or finite-

dimensional n-Banach space, and T a contractive mapping of X into itself, that is,

there exists a constant C ∈ (0,1) such that

∥∥x1, . . . ,xn−1,Ty−Tz
∥∥≤ C

∥∥x1, . . . ,xn−1,y−z
∥∥ (3.15)

for all x1, . . . ,xn−1,y,z in X. Then T has a unique fixed point in X.

Proof. First consider the case n= 2 (see [8]). By Proposition 3.6, we know that X
is a Banach space with respect to the derived norm ‖·‖∞ (for standard case) or ‖·‖�
(for finite-dimensional case). Since the mapping T is also contractive with respect to

‖·‖∞ or ‖·‖�, we conclude by the fixed point theorem for Banach spaces that T has

a unique fixed point in X. For n> 2, the result follows by induction.

Remark 3.8. In the finite-dimensional case, it is actually enough to assume that X
is an n-normed space because we know that all finite-dimensional normed spaces are

complete and, by Proposition 3.6(b), so are all finite-dimensional n-normed spaces.

4. Concluding remark. We have shown that an n-normed space with n ≥ 2 is

an (n− 1)-normed space and that, for the standard or finite-dimensional case, the

(n−1)-norm can be derived from the n-norm in such a way that the convergence and

completeness in the n-norm is equivalent to those in the derived (n−1)-norm.

Below is an example of a non-standard, infinite-dimensional 2-normed space for

which we can derive a norm from the 2-norm such that the convergence and com-

pleteness in the 2-norm is equivalent to those in the derived norm.

Let X = l∞, the space of bounded sequences of real numbers. Equip X with the

following 2-norm
∥∥x,y

∥∥ := sup
i∈N

sup
j∈N

∣∣xiyj−xjyi
∣∣, (4.1)

wherex=(x1,x2,x3, . . .) andy=(y1,y2,y3, . . .). Leta1=(1,0,0, . . .) anda2=(0,1,0, . . .).
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With respect to {a1,a2}, we derive the norm ‖·‖∞ via

∥∥x
∥∥∞ :=max

{∥∥x,a1

∥∥,
∥∥x,a2

∥∥}. (4.2)

But ‖x,a1‖ = supi∈N\{1} |xi| and ‖x,a2‖ = supi∈N\{2} |xi|, and so we obtain

∥∥x
∥∥∞ = sup

i∈N

∣∣xi
∣∣, (4.3)

the usual norm on l∞.

Now suppose that x(k) is a sequence in X that converges to x in the derived norm

‖·‖∞. For every y ∈X, we have

‖x(k)−x,y‖ = sup
i∈N

sup
j∈N

∣∣(xi(k)−xi
)
yj−

(
xj(k)−xj

)
yi
∣∣

≤ sup
i∈N

sup
j∈N

∣∣xi(k)−xi
∣∣∣∣yj

∣∣+
∣∣xj(k)−xj

∣∣∣∣yi
∣∣

≤ 2
∥∥x(k)−x

∥∥∞
∥∥y
∥∥∞,

(4.4)

whence limk→∞‖x(k)−x,y‖ = 0. Hence x(k) converges to x in the 2-norm ‖·,·‖.
Thus, for this particular example, we see that the convergence in the 2-norm is

equivalent to that in the derived norm. By similar arguments, we can also verify that

the completeness in the 2-norm is equivalent to that in the derived norm.

For general non-standard, infinite-dimensional n-normed spaces, however, it is

unknown whether we can always derive an (n−1)-norm from the n-norm such that

the convergence and completeness in the n-norm is equivalent to those in the derived

(n−1)-norm.
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