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Abstract. We prove certain new inequalities for special means of two arguments, includ-
ing the identric, arithmetic, and geometric means.
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1. Introduction. The logarithmic and the identric mean of two positive real num-
bers x and y are defined by

L= L(x,y) := y−x
logy− logx

, if x ≠y, L(x,x)= x,

I = I(x,y) := 1
e

(
yy

xx

)1/(y−x)
, if x ≠y, I(x,x)= x,

(1.1)

respectively.
Let A = A(x,y) := (x+y)/2 and G = G(x,y) := √xy denote the arithmetic and

geometric means of x and y , respectively. Many interesting results are known involv-
ing inequalities between these means. For a survey of results (cf. [1, 3, 4, 11, 13, 14]).
Certain improvements are proved in [5, 7], while connections to other means are dis-
cussed, (cf. [6, 8, 9, 10, 15]). For identities involving variousmeans we quote the papers
[6, 12].

In [5, 8], the first author proved, among other relations, that

(
A2G

)1/3 < I, (1.2)

(
U3G

)1/4 < I < U2

A
, (1.3)

where

U =U(x,y) :=
(
8A2+G2

9

)1/2
. (1.4)

We note that a stronger inequality than (1.2) is (cf. [5])

2A+G
3

< I, (1.5)

but the interesting proof of (1.2), as well as the left-hand side of (1.3), is based on
certain quadrature formulas (namely Simpson’s and Newton’s quadrature formula,
respectively). As a corollary of (1.3) and (1.5), the double-inequality

4A2+5G2 < 9I2 < 8A2+G2 (1.6)
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can be derived (see [8]). Here and throughout the rest of the paper we assume that
x ≠y .

The aim of this paper is twofold. First, by applying the method of quadrature for-
mulas, we will obtain refinements of already known inequalities (e.g., of (1.2)). Second,
by using certain identities on series expansions of the considered expressions, we will
obtain the best possible inequalities in certain cases (e.g., for (1.6)).

2. Main results

Theorem 2.1. If x and y are positive real numbers, then

exp

(
(x−y)2
24s2

)
<
A
I
< exp

(
(x−y)2
24r 2

)
, (2.1)

exp

(
(x−y)2
12s2

)
<
I
G
< exp

(
(x−y)2
12r 2

)
, (2.2)

exp

(
(x−y)4
480s4

)
<

I(
A2G

)1/3 < exp

(
(x−y)4
480r 4

)
, (2.3)

exp

(
(x−y)2
96s2

)
<
√
3A2+G2

2I
< exp

(
(x−y)2
96r 2

)
, (2.4)

where r =min{x,y} and s =max{x,y}.
Proof. Let f : [0,1]→R be the function defined by f(t)= log(tx+(1−t)y). Since

f ′′(t)=− (x−y)2(
tx+(1−t)y)2 , (2.5)

we have

m2 :=min
{−f ′′(t) | 0≤ t ≤ 1

}= (x−y)2
s2

,

M2 :=max
{−f ′′(t) | 0≤ t ≤ 1

}= (x−y)2
r 2

.
(2.6)

Applying the “composite midpoint rule” (cf. [2]) we get

∫ 1

0
f(t)dt = 1

n

n∑
i=1
f
(
2i−1
2n

)
+ 1

24n2
f ′′
(
ξn
)
,
(
0< ξn < 1

)
. (2.7)

Remarking that I = exp
(∫ 1

0 log(tx+(1−t)y)dt), relation (2.7) via (2.6) gives

exp
(
m2

24n2

)
<

exp
(
1/n

∑n
i=1f

(
(2i−1)/2n

))
I

< exp
(
M2

24n2

)
. (2.8)

Letting n= 1, we get the double-inequality (2.1). For n= 2, after a simple computation
we deduce (2.4).

In order to prove (2.2), we apply the “composite trapezoidal rule” (see [2]):∫ 1

0
f(t)dt = 1

2

[
f(0)+f(1)]− 1

12
f ′′(η), (0< η< 1). (2.9)

As above, taking into account (2.6), relation (2.9) yields (2.2).
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Finally, (2.3) follows as application of the “composite Simpson rule” (see [2, 5]):

∫ 1

0
f(t)dt = 1

6
f(0)+ 2

3
f
(
1
2

)
+ 1

6
f(1)− 1

2880
f (4)(ζ), (0< ζ < 1). (2.10)

We omit the details.

Remarks. Inequality (2.8) is a common generalization of (2.1) and (2.4). The left-
hand side of (2.3) is a refinement of (1.2), while the left-hand side of (2.4) implies the
inequality

4I2 < 3A2+G2, (2.11)

which slightly improves the right-side of (1.6). However, the best inequality of this
type will be obtained by other methods.

In [6] the following identities are proved:

log
I
G
=

∞∑
k=1

1
2k+1

z2k, (2.12)

log
A
G
=

∞∑
k=1

1
2k
z2k, (2.13)

log
I
G
= A
L
−1, (2.14)

where z = (x−y)/(x+y).
Relation (2.14) is due to H.-J. Seiffert [11]. With the aid of these and similar identities,

strong inequalities can be deduced. We first state the following.

Theorem 2.2. The following inequalities are satisfied:

exp

(
1
6

(
x−y
x+y

)2
)
<
A
I
< exp

(
(x−y)2
24xy

)
, (2.15)

exp

(
1
3

(
x−y
x+y

)2
)
<
I
G
< exp

(
(x−y)2
12xy

)
, (2.16)

exp

(
1
30

(
x−y
x+y

)4
)
<

I(
A2G

)1/3 < exp

(
(x−y)4

120xy(x+y)2
)
. (2.17)

Proof. We note that (2.16) appears in [6], while the left-hand side of (2.15) has
been considered in [12]. We give here a unitary proof for (2.15), (2.16), and (2.17),
which in fact shows that much stronger approximations may be deduced, if we want.

We assume that x >y , that is, 0< z < 1. Taking into account that

z2

3
<

∞∑
k=1

1
2k+1

z2k <
z2

3

(
1+z2+z4+···)= z2

3
(
1−z2

) , (2.18)

from (2.12) we obtain the double-inequality (2.16).
On the other hand, (2.12) and (2.13) yield

log
A
I
=

∞∑
k=1

1
2k(2k+1)

z2k. (2.19)
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Since
z2

6
<

∞∑
k=1

1
2k(2k+1)

z2k <
z2

6

(
1+z2+z4+···)= z2

6
(
1−z2

) , (2.20)

via (2.19) we get at once (2.15).
To prove (2.17), let us remark that from (2.12) and (2.19) we have

I
A2/3G1/3 = exp


 ∞∑
k=2

k−1
3k(2k+1)

z2k


. (2.21)

Since
k−1

3k(2k+1)
≤ 1

30
for all integers k≥ 2, (2.22)

from (2.21) we get as above (2.17).

Remarks. Inequalities (2.15), (2.16), and (2.17) improve (2.1), (2.2), and (2.3). From
(2.14), taking account of (2.16), one can deduce that

4
(
x2+xy+y2

)
3(x+y)2 <

A
L
<
x2+10xy+y2

12xy
. (2.23)

In [4] it is proved that

log
I
L
> 1− G

L
. (2.24)

Inequality (2.24) enabled the first author to obtain many refinements of known results
(see [7]).

If one uses the estimations

z2

6
+ z

4

20
<

∞∑
k=1

1
2k(2k+1)

z2k <
z2

6
+ z

4

20

(
1+z2+z4+···)= z2

6
+ z4

20
(
1−z2

) , (2.25)

as well as

z2

3
+ z

4

5
<

∞∑
k=1

1
2k+1

z2k <
z2

3
+ z

4

5

(
1+z2+z4+···)= z2

3
+ z4

5
(
1−z2

) , (2.26)

one could deduce the following inequalities:

exp

(
1
6

(
x−y
x+y

)2

+ 1
20

(
x−y
x+y

)4
)
<
A
I
< exp

(
1
6

(
x−y
x+y

)2

+ (x−y)4
80xy(x+y)2

)
,

exp

(
1
3

(
x−y
x+y

)2

+ 1
5

(
x−y
x+y

)4
)
<
I
G
< exp

(
1
3

(
x−y
x+y

)2

+ (x−y)4
20xy(x+y)2

)
.

(2.27)

The next theorem provides a generalization of (2.17).

Theorem 2.3. If p and q are positive real numbers with 2q ≥ p, then

exp

(
2q−p

6

(
x−y
x+y

)2

+4q−p
20

(
x−y
x+y

)4
)

<
Ip+q

ApGq
<exp

(
2q−p

6

(
x−y
x+y

)2

+4q−p
80

(x−y)4
xy(x+y)2

)
.

(2.28)
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Proof. We assume that x > y , that is, 0 < z < 1. From (2.12) and (2.19) we can
deduce the following generalization of (2.21):

Ip+q

ApGq
= exp


 ∞∑
k=1

2kq−p
2k(2k+1)

z2k


. (2.29)

Since
2kq−p

2k(2k+1)
≤ 4q−p

20
for all integers k≥ 2, (2.30)

we have

2q−p
6

z2+ 4q−p
20

z4 <
∞∑
k=1

2kq−p
2k(2k+1)

z2k <
2q−p

6
z2+ 4q−p

20
z4

1−z2
. (2.31)

The above estimation together with (2.29) yields (2.28).

Remark 2.4. For p = 2/3 and q = 1/3, (2.28) gives (2.17), while for p = q = 1/2 we
get

exp

(
1
12

(
x−y
x+y

)2

+ 3
40

(
x−y
x+y

)4
)

<
I√
AG

< exp

(
1
12

(
x−y
x+y

)2

+ 3
160

(x−y)4
xy(x+y)2

)
.

(2.32)

Theorem 2.5. If x and y are positive real numbers, then

exp

(
1
45

(
x−y
x+y

)4
)
<
√
2A2+G2√

3I
< exp

(
1

180
(x−y)4

xy(x+y)2
)
. (2.33)

Proof. Assume that x >y , that is, 0< z < 1. We prove first the following identity:

log

√
αA2+G2√
α+1I

=
∞∑
k=1

1
2k

(
1

2k+1
− 1
(α+1)k

)
z2k, (2.34)

for all positive real numbers α. Indeed, since

log
√
αA2+G2 = log

√
xy+ log

√√√√1+ α
4

(√
x
y
+
√
y
x

)2

, (2.35)

letting z = (x−y)/(x+y) we obtain

log
√
αA2+G2 = logG+ 1

2
log

(
1+ α

1−z2

)

= logG+ 1
2
log

(
1+α−z2)− 1

2
log

(
1−z2).

(2.36)

By the well-known formula

log(1−u)=−
∞∑
k=1

uk

k
, 0<u< 1, (2.37)
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we can deduce

log
(
1+α−z2)= log(1+α)−

∞∑
k=1

z2k

k(α+1)k
, log

(
1−z2)=− ∞∑

k=1

z2k

k
. (2.38)

Thus

log

√
αA2+G2√
α+1G

=
∞∑
k=1

1
2k

(
1− 1

(α+1)k

)
z2k. (2.39)

This identity combined with (2.12) ensures the validity of (2.34).
For α= 2, (2.34) yields

log

√
2A2+G2√

3I
=

∞∑
k=2

1
2k

(
1

2k+1
− 1

3k

)
z2k. (2.40)

Since
1
2k

(
1

2k+1
− 1

3k

)
≤ 1

45
for all integers k≥ 2, (2.41)

we have
z4

45
<

∞∑
k=2

1
2k

(
1

2k+1
− 1

3k

)
z2k <

z4

45
(
1−z2

) . (2.42)

This estimation together with (2.40) gives (2.33).

Remarks. From (2.33) it follows that

3I2 < 2A2+G2. (2.43)

This inequality refines (2.11) and it is the best inequality of the type

I2 <
α

α+1
A2+ 1

α+1
G2. (2.44)

Indeed, the function f :]0,∞[→R defined by f(α)= (α/(α+1))A2+(1/(α+1))G2 is
increasing because A>G. Taking into account (2.43) we get

I2 <
2
3
A2+ 1

3
G2 <

α
α+1

A2+ 1
α+1

G2 (2.45)

whenever α > 2. On the other hand, if 0 < α < 2, from (2.34) it follows that (2.44)
cannot be true for all positive real numbers x ≠y .

The fact that (2.43) is the best inequality of the type (2.44) can be proved also by
elementary methods, without resorting to series expansion (2.12). Indeed, letting t =
(1/2)(x/y−1), and assuming that x >y , it is easily seen that (2.44) is equivalent to

0< 2t−(1+2t) log(1+2t)+t log
(
1+2t+ α

α+1
t2
)

(2.46)

whenever t > 0. Let gα :]0,∞[→R be the function defined by

gα(t)= 2t−(1+2t) log(1+2t)+t log
(
1+2t+ α

α+1
t2
)
. (2.47)
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We set, for convenience, g2 := g. Easy computations give

g′(t)= 2t+(4/3)t2
1+2t+(2/3)t2 + log

(
1+2t+ 2

3
t2
)
−2log(1+2t),

g′′(t)= 8t3

9(1+2t)
(
1+2t+(2/3)t2)2 .

(2.48)

Since g′′(t) > 0 for all t > 0, g′ must be increasing. Therefore, g′(t) > 0 for t > 0,
because g′(0)= 0. Consequently g is increasing, too. Hence g(t) > 0 whenever t > 0,
because g(0)= 0. This guarantees the validity of (2.46) forα= 2. Thus (2.43) is proved.

On the other hand, since

log(1+2t)= 2t−2t2+ 8t3

3
+o(t3),

log
(
1+2t+ α

α+1
t2
)
= 2t+ α

α+1
t2− 1

2

(
2t+ α

α+1
t2
)
+o(t2),

(2.49)

it follows that

gα(t)=
(

α
α+1

− 2
3

)
t3+o(t3). (2.50)

Therefore (2.46) cannot be true for all positive real numbers t if 0<α< 2.
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