SOME INEQUALITIES IN B(H)

C. DUYAR and H. SEFEROGLU

(Received 1 December 1998 and in revised form 15 November 1999)

ABSTRACT. Let H denote a separable Hilbert space and let B(H) be the space of bounded and linear operators from H to H. We define a subspace $\Delta(A,B)$ of B(H), and prove two inequalities between the distance to $\Delta(A,B)$ of each operator T in B(H), and the value $\sup\{\|A^nTB^n-T\|: n=1,2,\ldots\}$.

2000 Mathematics Subject Classification. Primary 43-XX.

1. Notations. Throughout this paper H denotes a separable Hilbert space and $\{e_n\}_{n=1}^{\infty}$ an orthonormal basis. Let L_A and R_B be left and right translation operators on B(H) for $A,B \in B(H)$, satisfying $||A|| \le 1$ and $||B|| \le 1$. Then the set $\Delta(A,B)$ is defined by

$$\Delta(A,B) = \{ T \in B(H) : ATB = T \} = \{ T \in B(H) : ST = T \}, \tag{1.1}$$

where $S = L_A R_B$.

An operator $C \in B(H)$ is called positive, if $\langle Cx,x \rangle \geq 0$ for all $x \in H$. Then for any positive operator $C \in B(H)$ we define $\operatorname{tr} C = \sum_{n=1}^{\infty} \langle e_n, Ce_n \rangle$. The number $\operatorname{tr} C$ is called the trace of C and is independent of the orthonormal basis chosen. An operator $C \in B(H)$ is called trace class if and only if $\operatorname{tr} |C| < \infty$ for $|C| = (C^*C)^{1/2}$, where C^* is adjoint of C. The family of all trace class operators is denoted by $L_1(H)$. The basic properties of $L_1(H)$ and the functional $\operatorname{tr}(\cdot)$ are the following:

- (i) Let $\|\cdot\|_1$ be defined in $L_1(H)$ by $\|C\|_1 = \operatorname{tr}|C|$. Then $L_1(H)$ is a Banach space with the norm $\|\cdot\|_1$ and $\|C\| \le \|C\|_1$.
 - (ii) $L_1(H)$ is *- ideal, that is,
 - (a) $L_1(H)$ is a linear space,
 - (b) if $C \in L_1(H)$ and $D \in B(H)$, then $CD \in L_1(H)$ and $DC \in L_1(H)$,
 - (c) if $C \in L_1(H)$, then $C^* \in L_1(H)$.
 - (iii) $tr(\cdot)$ is linear.
 - (iv) tr(CD) = tr(DC) if $C \in L_1(H)$ and $D \in B(H)$.
- (v) $B(H) = L_1(H)^*$, that is, the map $T \to \operatorname{tr}(T)$ is an isometric isomorphism of B(H) onto $L_1(H)^*$, (see [3]).

Let *X* be a Banach space. If $M \subset X$, then

$$M^{\perp} = \{ x^* \in X^* : \langle x, x^* \rangle = 0, \ x \in M \}$$
 (1.2)

is called the annihilator of M. If $N \subset X^*$, then

$${}^{\perp}N = \{ x \in X : \langle x, x^* \rangle = 0, \ x^* \in N \}$$
 (1.3)

is called the preannihilator of N. Rudin [4] proved for these subspaces:

- (i) $^{\perp}(M^{\perp})$ is the norm closure of M in X.
- (ii) $({}^{\perp}N)^{\perp}$ is the weak-* closure of N in X^* .

2. Main results

LEMMA 2.1. Let X be a Banach space. If P is a continuous operator in the weak-* topology on the dual space X^* , then there exists an operator T on X such that $P = T^*$.

PROOF. If $P: X^* \to X^*$, then $P^*: X^{**} \to X^{**}$. We know that the continuous functionals in the weak-* topology on X^* are simply elements of X, (see [4]). Then we must show that P^*x is continuous in the weak-* topology on X^* for all $x \in X$. Let (x'_n) be a sequence in X^* such that $x'_n \to x'$, $x' \in X^*$. Then we have

$$\langle P^*x, x_n' \rangle = \langle x, Px_n' \rangle \longrightarrow \langle x, Px' \rangle = \langle P^*x, x' \rangle. \tag{2.1}$$

Hence P^*x is continuous in the weak-* topology on X^* for all $x \in X$, so $P^*x \in X$. If T is the restriction to X of P^* , then we have

$$\langle x, T^*x' \rangle = \langle Tx, x' \rangle = \langle P^*x, x' \rangle = \langle x, Px' \rangle$$
 (2.2)

П

for all $x \in X$ and $x' \in X^*$. Hence $P = T^*$.

DEFINITION 2.2. If P_* is the operator T in Lemma 2.1, then P_* is called the preadjoint operator of P.

The operator $x \otimes y \in B(H)$ for each $x, y \in H$ is defined by $(x \otimes y)z = \langle z, y \rangle x$ for all $z \in H$. It is easy to see that this operator has the following properties:

- (i) $T(x \otimes y) = Tx \otimes y$.
- (ii) $(x \otimes y)T = x \otimes T^*y$.
- (iii) $\operatorname{tr}(x \otimes y) = \langle y, x \rangle$.

The following lemma is an easy application of some properties of the operator $x \otimes y$ $(x, y \in H)$ and the functional $\operatorname{tr}(\cdot)$.

LEMMA 2.3. (i) Suppose K is a closed subset in the weak-* topology of B(H). Then K is closed in the weak-* topology of B(H).

(ii) $S = L_A R_B$ is continuous in the weak-* topology of B(H) for all $A, B \in B(H)$, satisfying $||A|| \le 1$ and $||B|| \le 1$.

LEMMA 2.4. There exists a linear subspace M of $L_1(H)$ such that $\Delta(H) = M^{\perp}$ and M is closed linear span of $\{S_*X - X : X \in L_1(H)\}$, where S_* is the preadjoint operator of S.

PROOF. Note that

$$^{\perp}\Delta(A,B) = \{ U \in L_1(H) : \langle U, U^* \rangle = 0, \ U^* \in \Delta(A,B) \}.$$
 (2.3)

It is known that $(^{\perp}\Delta(A,B)^{\perp})$ is the weak-* closure of $\Delta(A,B)$ (see [4]). Then we can write $(^{\perp}\Delta(A,B))^{\perp} = \Delta(A,B)$, since $\Delta(A,B)$ is a closed set in the weak-* topology of B(H). We say $^{\perp}\Delta(A,B) = M$. Now we show that M is the closed linear span of $\{S_*U - U : U \in L_1(H)\}$. For this, it is sufficient to prove that $\langle S_*U - U, T \rangle = 0$ for all $T \in \Delta(A,B)$.

Indeed since ST = T, we have

$$\langle S_*X - X, T \rangle = \langle (S_* - I)X, T \rangle = \langle X, (S_* - I)^*T \rangle = \langle X, (S - I)T \rangle = 0.$$
 (2.4)

LEMMA 2.5. Let K(T) be the closed convex hull of $\{S^nT : n = 1, 2, ...\}$ in the weak operator topology, for a fixed $T \in B(H)$. Then we have

$$K(T) \cap \Delta(A, B) \neq 0. \tag{2.5}$$

PROOF. Assume $K(T) \cap \Delta(A,B) = 0$. By Lemma 2.3, K(T) is closed in the weak-* topology. It is easy to see that K(T) is bounded. Then K(T) is compact in the weak-* topology by Alaoglu, [1]. Since S is continuous in the weak-* topology, if $U_{\alpha} \to U$ for $(U_{\alpha})_{\alpha \in I} \subset \Delta(A,B)$, then $SU_{\alpha} = U_{\alpha} \to SU$. Hence $\Delta(A,B)$ is closed in the weak-* topology. This shows that $U \in \Delta(A, B)$.

Since K(T) is compact and convex in the weak-* topology, and $\Delta(A,B)$ is closed in the weak-* topology, and $K(T) \cap \Delta(A,B) = 0$, there exist some $U_0 \in M$ and $\sigma > 0$ such that

$$|\operatorname{tr}(TU_0)| \ge \sigma \tag{2.6}$$

for all $T \in \Delta(A, B)$, (see [2]). Now we define the operators $T_n \sum_{k=1}^n S^k T$ for all positive integer n. These operators are clearly in K(T). It is easy to show that the operators T_n is bounded. Also by Lemma 2.4, there is a $U \in L_1(H)$ such that $U_0 = S_*U - U$. Then we have

$$\left| \left\langle T_{n}, U_{0} \right\rangle \right| = \left| \left\langle T_{n}, S_{*}U - U \right\rangle \right| = \left| \left\langle ST_{n}, U \right\rangle - \left\langle T_{n}, U \right\rangle \right|$$

$$= \left| \left\langle S\left(\frac{1}{n} \sum_{k=1}^{n} A^{k} T B^{k}\right), U \right\rangle - \left\langle \frac{1}{n} \sum_{k=1}^{n} A^{k} T B^{k}, U \right\rangle \right|$$

$$= \left| \left\langle \frac{1}{n} \sum_{k=1}^{n} A^{k+1} T B^{k+1}, U \right\rangle - \left\langle \frac{1}{n} \sum_{k=1}^{n} A^{k} T B^{k}, U \right\rangle \right|$$

$$= \frac{1}{n} \left| \left\langle A^{n+1} T B^{n+1} - A T B, U \right\rangle \right|$$

$$\leq \frac{1}{n} 2 \|T\| \cdot \|U\|.$$
(2.7)

This implies that $|\langle T_n, X_0 \rangle| \to 0$, which is a glaring contradiction to (2.6).

THEOREM 2.6. Let H be separable Hilbert space and $T \in B(H)$. Then we have

- (i) $d(T, \Delta(A, B)) \ge (1/2) \sup_n ||S^n T T||$,
- (ii) $d(T, \Delta(A, B)) \leq \sup_{n} ||S^n T T||$.

PROOF. (i) We can write

$$S^{n}T - T = S^{n}(T - T_{0}) - (T - T_{0}) + S^{n}T_{0} - T_{0}$$
(2.8)

for each $T_0 \in \Delta(A, B)$. Hence we have

$$||S^n T - T|| \le ||S^n|| ||T - T_0|| + ||T - T_0|| \le 2||T - T_0||. \tag{2.9}$$

This shows that

$$\frac{1}{2}\sup_{n}||S^{n}T - T|| \le \inf_{T_{0} \in \Delta(A,B)}||T - T_{0}||. \tag{2.10}$$

The inequality (2.10) gives that

$$d(T, \Delta(A, B)) \ge \frac{1}{2} \sup_{n} ||S^{n}T - T||.$$
 (2.11)

(ii) Let K(T) be as Lemma 2.5. Then we can write

$$K(T) = \cos\{S^n T : n = 1, 2, ...\}.$$
 (2.12)

Now take any element $U = \sum_{k=1}^{n} \lambda_k S^k T$ in the set $\operatorname{co}\{S^n T : n = 1, 2, \ldots\}$, where $\sum_{k=1}^{n} \lambda_k = 1, \lambda_k \geq 0$. Then

$$||U-T|| = \left| \left| \sum_{k=1}^{n} \lambda_k S^k T - T \right| \right| \le \left| \left| \sum_{k=1}^{n} \lambda_k S^k T - \sum_{k=1}^{n} \lambda_k T \right| \right|$$

$$\le \sum_{k=1}^{n} \lambda_k ||S^k T - T|| \le \sum_{k=1}^{n} \lambda_k \sigma(T) = \sigma(T),$$

$$(2.13)$$

where $\sigma(T) = \sup_n ||S^n T - T||$. That is, for all $U \in \operatorname{co}\{S^n T : n = 1, 2, ...\}$ is

$$||U - T|| \le \sup_{n} ||S^{n}T - T||.$$
 (2.14)

Since there is a sequence (U_n) in $co\{S^nT: n=1,2,...\}$ such that $U_n \to V$ for all $V \in K(T)$, then we write

$$||V - T|| \le ||V - T_n|| + ||T_n - T||. \tag{2.15}$$

If we use the inequalities (2.14) and (2.15), we easily see that

$$||V - T|| \le \sup_{n} ||S^n T - T||.$$
 (2.16)

Also since $K(T) \cap \Delta(A,B) \neq 0$ by Lemma 2.5, then we obtain

$$||T - T_0|| \le \sup_n ||S^n T - T||$$
 (2.17)

for a $T_0 \in K(T) \cap \Delta(A, B)$. Hence we can write

$$d(T, \Delta(A, B)) = \inf_{U \in \Delta(A, B)} ||T - U|| \le ||T - T_0|| \le \sup_{n} ||S^n T - T||.$$
 (2.18)

This completes the proof.

REFERENCES

- [1] R. Larsen, An Introduction to the Theory of Multipliers, Die Grundlehren der mathematischen Wissenschaften, vol. 175, Springer-Verlag, New York, Heidelberg, 1971. MR 55#8695. Zbl 213.13301.
- [2] _____, Functional Analysis: an Introduction, Pure and Applied Mathematics, vol. 15, Marcel Dekker, Inc., New York, 1973. MR 57#1055. Zbl 261.46001.

- [3] M. Reed and B. Simon, *Methods of Modern Mathematical Physics. I. Functional Analysis*, Academic Press, New York, London, 1972. MR 58#12429a. Zbl 242.46001.
- [4] W. Rudin, *Functional Analysis*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, D sseldorf, Johannesburg, 1973. MR 51#1315. Zbl 253.46001.

C. Duyar: University of Ondokuz Mayis, Faculty of Art and Sciences, Department of Mathematics, Samsun, Turkey.

E-mail address: bduyar@samslin.omu.edu.tr

H. SEFEROGLU: 100. YIL UNIVERSITY, FACULTY OF EDUCATION, DEPARTMENT OF MATHEMATICS, VAN, TURKEY