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Abstract. In archimedean analysis Tauberian operators and operators having property
N were defined by Kalton and Wilansky (1976). We give several characterizations of p-adic
Tauberian operators and operators having property N in terms of basic sequences. And,
as its applications, we give some equivalent relations between these operators and p-adic
semi-Fredholm operators.
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1. Introduction. Throughout this paper, K is a non-archimedean non-trivially val-
ued complete field with a valuation | |. Let E and F be infinite-dimensional Banach
spaces over K. Let L(E,F) stand for the set of all continuous linear operators from E
into F .
In this paper, we say that T ∈ L(E,F) is semi-Fredholm if its range space, R(T),

is closed in F and its kernel, N(T), is finite-dimensional. Further we recall that T ∈
L(E,F) is Tauberian if x′′ ∈ E′′, T ′′x′′ ∈ E imply x′′ ∈ E. And T ∈ L(E,F) has a prop-
erty N if x′′ ∈ E′′, T ′′x′′ = 0 imply x′′ ∈ E. If K is spherically complete, then E is
a strongly polar (of course a polar) space, so the natural map JE : E → E′′ is a linear
homeomorphism into E′′ (see [14]). Let A be a subset of E. If E is a polar space and if
A is bounded and closed in E, then A is also bounded and closed in E′′, respectively.
We denote the closure of A in E or E′′ by Ā, the weak closure of A in E by Āw and
the weak∗ closure A in E′′ by Āw∗

. If B is a subset of E′, then we denote the weak∗

closure of B by B̄w∗
.

A subset X = {x1,x2, . . . ,xn, . . .} of E is said to be a basis for E if every x ∈ E has a
unique representation in the form x =∑∞

n=1αnxn (αn ∈ K). And the subset X of E
is said to be t-orthogonal if there exists a real number t, 0< t 
 1, such that for any
integer n and for any αi ∈K (i= 1,2, . . . ,n),

∥∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥∥� tmax
{‖α1x1‖, . . . ,‖αnxn‖

}
. (1.1)

It is known that if X is a basis for E, then there exists a real number t, 0< t 
 1, such
that X is t-orthogonal (see [16, page 62]).
A sequence {xn}n�1 in E is said to be a basic sequence if {xn}n�1 is a basis for its

closed linear span [{xi : i = 1,2, . . . ,n, . . .}]. And a basic sequence {xn}n�1 is said to
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be of type l+ if it is bounded and there exist a real number ε > 0 and x′ ∈ E′ such that
|x′(xn)| � ε for all n.
A point x in E is said to be a weak (weak∗) limit point of a sequence {xn}n�1 if every

weak (weak∗) neighborhood of x contains an element of {xn}n�1 different from x. Of
course a weak (weak∗) limit point of the sequence is in the weak (weak∗) closure of
{xi : i= 1,2, . . . ,n, . . .}.
Let π denote an arbitrary fixed element of K with 0 < |π| < 1. Other terms and

symbols will be used in [16].
In archimedean analysis, many characterizations of Tauberian, semi-Fredholm op-

erators and operators having the property N are given (e.g., [3, 4, 9]). Some of them
are presented in terms of sequences. In this paper, we give the analogous results
to them. Further, as applications of them, we give that equivalent relations among
those operators.

2. Basic sequences. In this section, we give some results on basic sequences. Before
proceeding our discussions, we first recall the following two theorems.

Theorem 2.1 (see [8]). If K is spherically complete, then every weakly convergent
sequence in E is norm-convergent.

Theorem 2.2 (see [19]). Let K be locally compact. If A is a bounded subset of E′′,
then Ā= Āw∗

and Āw∗
is weak∗ compact in E′′.

Now we need the following proposition.

Proposition 2.3. Let {xn}n�1 be a sequence in E such that for each n|π| 

‖xn‖ 
 1. Then {xn}n�1 is a basic sequence if and only if there exists a constant c � 1
so that for any αi ∈K and for any integers m,n, m<n,∥∥∥∥∥∥

m∑
i=1

αixi

∥∥∥∥∥∥
 c

∥∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥∥ . (2.1)

Proof. Suppose that {xn}n�1 is a basic sequence for its closed linear span [{xi :
i= 1,2, . . . ,n, . . .}]. Then there exists a real number t, 0< t 
 1, such that the sequence
{xn}n�1 is t-orthogonal. Hence we have∥∥∥∥∥∥

m∑
i=1

αixi

∥∥∥∥∥∥
max
(‖α1x1‖, . . . ,‖αmxm‖

)


max(‖α1x1‖, . . . ,‖αnxn‖
)


 1
t

∥∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥∥ .
(2.2)

Conversely, suppose that there exists a constant c � 1 such that for any αi ∈ K and
for any integersm,n, m<n, ∥∥∥∥∥∥

m∑
i=1

αixi

∥∥∥∥∥∥
 c

∥∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥∥ . (2.3)
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If we have
∑∞

i=1αixi = 0, then for any ε > 0 there exists an integer n0 such that for
every integer n�n0‖

∑n
i=1αixi‖< ε. Hence we have

|α1|‖x1‖ 
 c

∥∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥∥< cε. (2.4)

This implies that α1 = 0 and we have
∑n

i=2αixi = 0. Proceeding with this way, we
can conclude that for every integer n, αn = 0. It follows that if a vector x ∈ E has
a representation in the form x =∑∞

i=1αixi, then this representation is unique. Next,
we show that every x ∈ [{xi : i = 1,2, . . . ,n, . . .}] has a representation in the form∑∞

i=1αixi (αi ∈ K). Let L({xn}) denote the linear span of {xn : n = 1,2, . . .} and for
eachm let Pm denote a linear operator from L({xn}) into itself defined by

Pm
(∑

αjxj

)
=

m∑
i=1

αixi, (2.5)

where
∑
αjxj denotes a finite linear combination of {xn : n = 1,2, . . .}. Then it holds

that ‖Pm‖ 
 c, so Pm is continuous. It follows that Pm has a continuous linear exten-
sion to [{xn :n= 1,2, . . .}], still called Pm. Further, let x′k (k= 1,2, . . .) be a coordinate
functional defined on L({xn}) by x′k

(∑
αjxj

) = αk. Let x =
∑
αjxj ∈ L({xn}). Then

for integer k� 2, we have
∥∥x′k∥∥= sup |αk|

‖x‖ 

1
|π| sup

‖αkxk‖
‖x‖ = 1

π
sup

∥∥(Pk−Pk−1)(x)∥∥
‖x‖ 
 c

|π| . (2.6)

Obviously,

∥∥x′1∥∥
 1
|π|‖P1‖ 


c
|π| . (2.7)

Hence for every integer k, x′k ∈ (L({xn}))′. It follows that x′k has a unique continuous
linear extension to all of [{xn : n = 1,2, . . .}], still also called x′k. By the continuity of
x′k, Pk and their definitions on L({xn}), it is easy to see that for every x ∈ [{xn : n=
1,2, . . .}]x′1(x)x1 = P1(x) and x′k(x)xk = Pk(x)−Pk−1(x) (k � 2). Let x ∈ [{xn : n =
1,2, . . .}] and ε′ > 0 be given. Thus

Pn(x)= P1(x)+
(
P2(x)−P1(x)

)+···+(Pn(x)−Pn−1(x))

=
n∑

k=1
x′k(x)xk.

(2.8)

Then there exist an integer n1 and an element y in the linear span of {x1,x2, . . . ,xn1}
such that ‖x−y‖< ε′. If n�n1, then we have

‖x−Pn(x)‖ 
max
(‖x−y‖,‖y−Pn(y)‖,‖Pn(y−x)‖)


max (ε′,cε′)= cε′.
(2.9)

This implies that

x = lim
n→∞Pn(x)= limn→∞

n∑
k=1

x′k(x)xk, (2.10)

which completes the proof.
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Corollary 2.4. Every t-orthogonal sequence (0 < t 
 1) in a Banach space is a
basic sequence.

Proof. t-orthogonal sequences satisfy the condition of Proposition 2.3 as shown
in the proof.

Proposition 2.5. Let E be a strongly polar space and {xn}n�1 be a basic sequence
in E. If x ∈ E is a weak limit point of {xn}n�1, then x = 0.

Proof. Since {xn}n�1 is a basic for [{xn : n = 1,2, . . .}], there exists a real num-
ber t, 0< t 
 1, such that {xn}n�1 is t-orthogonal. For every k define a linear operator

gk :
[{
xn :n= 1,2, . . .

}]
�������������������→K (2.11)

by gk
(∑∞

i=1αixi
)= αk (αi ∈ K, i= 1,2, . . .). Then it holds that ‖gk‖ 
 1/t. Therefore

gk ∈ [{xn :n= 1,2, . . .}]′. Since E is a strongly polar space, by [12, Theorem 4.2], gk
has an extension linear operator to all of E. Hence we may assume that gk ∈ E′ and
gk(xj)= δkj . Since x is a weak limit point of the sequence {xn}n�1, we have

gk(x)= lim
i→∞

gk
(
xkni

)
(k= 1,2, . . .), (2.12)

where
{
xkni

}
i�1 is some subsequence of {xn}n�1. But as gk

(
xkni

) = 0 for kni > k,
gk(x)= 0 for all k. By [12, Corollary 4.9], [{xn :n= 1,2, . . .}] is weakly closed. Hence
x ∈ [{xn : n = 1,2, . . .}]. It follows that x has a unique expansion of the form x =∑∞

i=1βixi (βi ∈K, i= 1,2, . . .). Hence we have x =∑∞
i=1gi(x)xi = 0, which completes

the proof.

Theorem 2.6. Let E be a strongly polar space and let A be a subset of E. Suppose
that Ā≠ Āw and let x0 ∈ Āw\Ā. Then there exist a sequence {xn}n�1 in A and x′0 ∈ E′

which satisfy the following conditions.
(1) limn→∞x′0(xn)= x′0(x0) and |x′0(x0)| � ‖x0‖/2.
(2) {xn−x0}n�1 is a basic sequence.
(3) If x0 ≠ 0, then x0 ∉ [{xn−x0 :n= 1,2, . . .}].
Proof. Choose three sequences {rn}n�0, {sn}n�0, and {tn}n�0 in R (the set of real

numbers) with the following properties:
(i) 0< rn < 1 for all n� 0,
(ii) whenever 1
 p < q <∞, ∏q−1

i=p (1−ri) > 1−r0,
(iii) 0< sn < rn for all n� 0,
(iv) tn = (1−rn)/(1−sn) for all n� 0.

Take any x′0 ∈ E′ such that |x′0(x0)| � ‖x0‖/2. Since x0 ∉ Ā, there exists a real number
δ > 0 such that for every z ∈ A,‖z−x0‖ � δ. By hypothesis, there is a y1 ∈ A such
that

∣∣x′0(y1)−x′0(x0)∣∣< 1. (2.13)

Set E1 = [{y1−x0}]= [{a}], where a is an element of [{y1−x0}] with |π| 
 ‖a‖ 
 1
for π referred to in the introduction. For every x ∈ E1, x = λa (λ∈K), let x′1(x)= λ.
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Then we have

∥∥x′1∥∥= 1
‖a‖ . (2.14)

Hence x′1 ∈ E′1. Since E is a strongly polar space, for every ε > 0, x
′
1 has an extension

x′1 ∈ E′ such that

∥∥x′1∥∥
 1+ε‖a‖ . (2.15)

By hypothesis, there is a y2 ∈A such that

∣∣x′0(y2)−x′0(x0)∣∣< 12 ,
∣∣x′1(y2)−x′1(x0)∣∣< δs1|π|. (2.16)

Now, we show that for every x ∈ E1 and for every α∈K,

∥∥x+α(y2−x0)∥∥> t1
(
1−s1

)‖x‖. (2.17)

Towards this end it is sufficient to show that

∥∥a+α(y2−x0)∥∥> t1
(
1−s1

)‖a‖. (2.18)

If |α| 
 1/δ, then we have
∥∥a+α(y2−x0)∥∥�

∣∣x′1(a+α(y2−x0))∣∣∥∥x′1∥∥
� 1∥∥x′1∥∥

{∣∣x′1(a)∣∣−|α|∣∣x′1(y2−x0)∣∣}

>
‖a‖
1+ε

(
1−s1|π|

)� 1
1+ε

(
1−s1

)‖a‖.
(2.19)

Since ε is arbitrary, we have

∥∥a+α(y2−x0)∥∥> (1−s1)‖a‖ � t1
(
1−s1

)‖a‖. (2.20)

If |α|> 1/δ, then |α|‖y2−x0‖> 1. Since ‖a‖ 
 1, we have
∥∥a+α(y2−x0)∥∥= |α|∥∥y2−x0∥∥> ‖a‖ � t1

(
1−s1

)‖a‖. (2.21)

Thus, for every α∈K, (2.18) is proved.
Next, set E2 = [{y1−x0, y2−x0}]. Then E2 is two dimensional. Hence there exist

b1,b2 ∈ E2 such that E2 = [{b1,b2}], |π| 
 ‖bi‖ 
 1 (i= 1,2) and for every λ,µ ∈K,

∥∥λb1+µb2∥∥� t2max
(‖λb1‖,‖µb2‖) (2.22)

(see [16, page 66]).
For every x ∈ E2, x = λb1+µb2, let y ′1(x)= λ and y ′2(x)= µ. Then we have

∥∥y ′1∥∥
 1
t2
∥∥b1∥∥ ,

∥∥y ′2∥∥
 1
t2
∥∥b2∥∥ . (2.23)
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This means that y ′1,y
′
2 ∈ E′2. Hence, for every ε > 0, y

′
1 and y

′
2 have extensions y

′
1 and

y ′2, respectively, such that

∥∥y ′1∥∥
 1+ε
t2
∥∥b1∥∥ ,

∥∥y ′2∥∥
 1+ε
t2
∥∥b2∥∥ . (2.24)

By hypothesis, there is a y3 ∈A such that

∣∣x′0(y3)−x′0(x0)∣∣< 13 , (2.25)

and

∣∣y ′1(y3)−y ′1(x0)∣∣< δs2|π|,
∣∣y ′2(y3)−y ′2(x0)∣∣< δs2|π|. (2.26)

We wish to show that for every x ∈ E2 and for every α∈K,
∥∥x+α(y3−x0)∥∥> t2

(
1−s2

)‖x‖. (2.27)

We may assume that |π| 
 ‖x‖ 
 1. Let x = λb1 + µb2 (λ,µ ∈ K). Suppose that
max(‖λb1‖,‖µb2‖)= ‖λb1‖. Then t2‖λb1‖ 
 ‖x‖ 
 ‖λb1‖. If |α| 
 1/δ, then we have

∥∥x+α(y3−x0)∥∥�
∣∣y ′1(x)+αy ′1(y3−x0)∣∣∥∥y ′1∥∥

≥
∣∣y ′1(x)∣∣−|α|∣∣y ′1(y3−x0)∣∣∥∥y ′1∥∥

>
t2‖b1‖
1+ε

(|λ|−s2|π|)

= t2
1+ε

(‖λb1‖−s2|π|‖b1‖)

� t2
1+ε

(
1−s2

)‖x‖.

(2.28)

Since ε is arbitrary, we have
∥∥x+α(y3−x0)∥∥� t2

(
1−s2

)‖x‖. (2.29)

If |α|> 1/δ, then |α|‖y3−x0‖> 1. Since ‖x‖ 
 1, we have∥∥x+α(y3−x0)∥∥= |α|‖y3−x0‖> 1> t2
(
1−s2

)‖x‖. (2.30)

Hence, in the case max(‖λb1‖,‖µb2‖) = ‖λb1‖, we showed the inequality (2.27). If
max(‖λb1‖,‖µb2‖)= ‖µb2‖, then in a similar fashion, we can also show the inequality
(2.27). Thus, for every λ1,λ2,λ3 ∈K we have∥∥λ1(y1−x0)+λ2(y2−x0)+λ3(y3−x0)∥∥� t2

(
1−s2

)∥∥λ1(y1−x0)+λ2(y2−x0)∥∥
� t2

(
1−s2

)
t1
(
1−s1

)∥∥λ1(y1−x0)∥∥.
(2.31)

Proceeding thusly, we find a sequence {yn}n�1 in A such that all n� 1
∣∣x′0(yn

)−x′0(x0)∣∣< 1
n

(2.32)
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and for which given 1
 p < q <∞ and α1,α2, . . . ,αq ∈K,
∥∥∥∥∥∥

q∑
i=1

αi
(
yi−x0

)∥∥∥∥∥∥� tq−1
(
1−sq−1

)∥∥∥∥∥∥
q−1∑
i=1

αi
(
yi−x0

)∥∥∥∥∥∥� ···

� tq−1tq−2 ···tp
(
1−sq−1

)(
1−sq−2

)···(1−sp)
∥∥∥∥∥∥

p∑
i=1

αi
(
yi−x0

)∥∥∥∥∥∥
= (1−rq−1)(1−rq−2)···(1−rp)

∥∥∥∥∥∥
p∑
i=1

αi
(
yi−x0

)∥∥∥∥∥∥
>
(
1−r0

)∥∥∥∥∥∥
p∑
i=1

αi
(
yi−x0

)∥∥∥∥∥∥ .
(2.33)

By Proposition 2.3, the sequence {yn−x0}n�1 is basic. Now, we wish to show that
∞⋂
k=1

[{
yk−x0,yk+1−x0, . . .

}]= {0}. (2.34)

To this end, suppose that there exists a non-zero element x in
⋂∞

k=1[{yk−x0,yk+1−
x0, . . .}]. Take a real number ε1 such that 0< ε1 < ‖x‖. Then there exist α1,α2, . . . ,αn,
αn+1, . . . ,αj ∈K such that

∥∥x−α1(y1−x0)−α2(y2−x0)−···−αn
(
yn−x0

)∥∥< 1−r0
2

ε1,

∥∥x−αn+1
(
yn+1−x0

)−αn+2
(
yn+2−x0

)−···−αj
(
yj−x0

)∥∥< 1−r0
2

ε1.
(2.35)

Hence, we have

1−r0
2

ε1 >
∥∥α1(y1−x0)+···+αn

(
yn−x0

)+αn+1
(
yn+1−x0

)+···+αj
(
yj−x0

)∥∥
>
(
1−r0

)∥∥α1(y1−x0)+α2(y2−x0)+···+αn
(
yn−x0

)∥∥
= (1−r0)‖x‖> (1−r0)ε1.

(2.36)

This is a contradiction and we showed that

∞⋂
k=1

[{
yk−x0,yk+1−x0, . . .

}]= {0}. (2.37)

Hence there existsm such that

x0 ∉
[{
ym−x0,ym+1−x0, . . .

}]
. (2.38)

Thus, for every positive integer n we put xn = ym+n, then the sequence {xn}n�1 is
the required sequence, which completes the proof.

From now on we assume that K is locally compact. Then we recall that every Banach
space is strongly polar.
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Theorem 2.7. Let B be a subset of the dual E′ of E. Suppose that B̄ ≠ B̄w∗
and let

x′0 ∈ B̄w∗\B̄. Then there exist a sequence {x′n}n�1 in B and x0 ∈ E which satisfy the
following conditions:
(1) limn→∞x′n(x0)= x′0(x0) and |x′0(x0)| � ‖x′0‖/2.
(2) {x′n−x′0}n�1 is a basic sequence.
(3) If x′0 ≠ 0, then x′0 ∉ [{x′n−x′0 :n= 1,2, . . .}].
Proof. The proof is similar to the archimedean case (e.g., [1]). Choose a sequence

{rn}n�1 in R with the following properties:
(i) 0< rn < 1 for all n� 1.
(ii) Whenever 1
 p < q <∞, ∏q−1

i=p (1−ri) > 1−r0.
Take any x0 ∈ E such that |x′0(x0)| � ‖x′0‖/2. Since x′0 ∉ B̄, there exists a real number
δ > 0 such that for every z′ ∈ B‖z′ −x′0‖ � δ. By hypothesis, there is a y ′1 ∈ B such
that

∣∣y ′1(x0)−x′0(x0)∣∣< 1. (2.39)

Set F1 = [{y ′1−x′0}]. Then F1 is the one-dimensional subspace of E′. Since K is locally
compact, the subset

B1 =
{
x′ ∈ F1 : |π| 
 ‖x′‖ 
 1

}
(2.40)

is compact, so we can pick a r1|π|/3 net a′1,a′2, . . . ,a′N(1) for B1. Take x1,x2, . . . ,xN(1)

in E such that for all i |π| 
 ‖xi‖ 
 1 and
∣∣a′i(xi

)∣∣
‖xi‖ �

(
1− r1

3

)∥∥a′i∥∥ (
i= 1,2, . . . ,N(1)). (2.41)

By hypothesis, there is a y ′2 ∈ B such that

∣∣y ′2(x0)−x′0(x0)∣∣< 12 ,∣∣y ′2(x1)−x′0(x1)∣∣< δr1|π|2
3

, . . . ,
∣∣y ′2(xN(1)

)−x′0(xN(1)
)∣∣< δr1|π|2

3
.

(2.42)

We wish to show that for every x′ ∈ E′ and for every α∈K,

∥∥x′ +α(y ′2−x′0)∥∥> (1−r1)∥∥x′∥∥. (2.43)

We may assume that |π| 
 ‖x′‖ 
 1. Suppose that |α| 
 1/δ. There exists an a′i such
that

∥∥x′ −a′i∥∥< r1|π|
3

. (2.44)
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This means that ‖x′‖ = ‖a′i‖. We have
∥∥x′ +α(y ′2−x′0)∥∥� 1∥∥xi

∥∥∣∣(x′ +α(y ′2−x′0))(xi
)∣∣

� 1∥∥xi
∥∥{∣∣a′i(xi

)∣∣−∣∣α(y ′2−x′0)(xi
)∣∣−∥∥xi

∥∥∥∥x′ −a′i∥∥}

>
1∥∥xi
∥∥
{(
1− r1

3

)∥∥a′i∥∥∥∥xi
∥∥− 1

δ
δr1|π|2
3

− r1|π|
3

∥∥xi
∥∥}

�
(
1− r1

3

)∥∥a′i∥∥− r1|π|
3

− r1|π|
3

� (1−r1)∥∥a′i∥∥= (1−r1)∥∥x′∥∥.
(2.45)

If |α|> 1/δ, then |α|‖y ′2−x′0‖> 1. Since ‖x′‖ 
 1, we have∥∥x′ +α(y ′2−x′0)∥∥= |α|∥∥y ′2−x′0∥∥> ∥∥x′∥∥> (1−r1)∥∥x′∥∥. (2.46)

Hence for every x′ ∈ E′ and for every α∈K the inequality (2.43) holds. Set

F2 =
[{
y ′1−x′0,y ′2−x′0

}]
(2.47)

and

B2 =
{
x′ ∈ F2 : |π| 


∥∥x′∥∥
 1} . (2.48)

Then B2 is compact. Hence we can pick a r2|π|/3 net b′1,b′2, . . . ,b′N(2) for B2. Take
y1,y2, . . . ,yN(2) in E such that |π| 
 ‖yi‖ 
 1 and

r2|π|
3

∣∣b′1(yi)
∣∣∥∥yi

∥∥ �
(
1− r2

3

)∥∥b′i∥∥ (
i= 1,2, . . . ,N(2)). (2.49)

By hypothesis, there is a y ′3 ∈ B such that

∣∣y ′3(x0)−x′0(x0)∣∣< 13 ,∣∣y ′3(y1)−x′0(y1)∣∣< δr2|π|2
3

, . . . ,
∣∣y ′3(yN(2)

)−x′0(yN(2)
)∣∣< δr2|π|2

3
.

(2.50)

In a similar fashion to the above proof, for every x′ ∈ E′ and for every α ∈ K we can
obtain the following inequality:

∥∥x′ +α(y ′3−x′0)∥∥> (1−r2)∥∥x′∥∥. (2.51)

Thus, proceeding this way, we find a sequence {y ′n}n�1 in B such that for all n� 1,
∣∣y ′n(x0)−x′0(x0)∣∣< 1

n
(2.52)

and for which given 1
 p < q <∞ and α1,α2, . . . ,αq in K,∥∥∥∥∥∥
p∑
i=1

αi
(
y ′i −x′0

)∥∥∥∥∥∥<
1

1−r0

∥∥∥∥∥∥
q∑
i=1

αi
(
y ′i −x′0

)∥∥∥∥∥∥ . (2.53)

In a similar argument to the proof of Theorem 2.6, we can conclude that there exists
a sequence {x′n}n�1 in B which satisfies the given conditions.
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The next corollary follows immediately from Theorem 2.7.

Corollary 2.8. Let A be a subset of E. If x′′0 ∈ E′′ is a point of Āw∗
in E′′ such

that x′′0 ∉ Ā, then there exists a sequence {xn}n�1 in A and x′0 ∈ E′ which satisfy the
following conditions:
(1) limn→∞x′0(xn)= x′′0 (x

′
0) and |x′′0 (x′0)| � ‖x′′0 ‖/2.

(2) {xn−x′′0 }n�1 is a basic sequence in E′′.
(3) If x′′0 ≠ 0, then x′′0 ∉ [{xn−x′′0 :n= 1,2, . . .}].
Further we have the following corollary.

Corollary 2.9. Let {xn}n�1 be a sequence in E such that

0< inf
n
‖xn‖ 
 sup

n
‖xn‖<∞. (2.54)

Then the following statements are equivalent.
(1) {xn}n�1 contains a basic subsequence.
(2) {xn}n�1 contains a basic subsequence of type l+.
(3) {xn}wn�1 is not weakly compact.

Proof. (1)⇒(3). Let {xni}i�1 be a basic subsequence of {xn}n�1. Since 0< infn‖xn‖,
{xni}i�1 does not contain a norm-convergent subsequence, so does not contain a
weakly convergent subsequence. Hence by [5], {xni}

w
i�1 is not weakly compact, so

{xn}wn�1 is not. The implication (2)⇒(1) is trivial.
(3)⇒(2). Since {JE(xn) :n=1,2, . . .} is a bounded subset in E′′, {JE(xn) :n=1,2, . . .}w

∗

is weak∗ compact. Hence by hypothesis, there exists a weak∗ limit pointp0 of {JE(xn) :
n= 1,2, . . .} such that p0 ∈ E′′\JE(E)⊂ E′′\[{JE(xn) : n= 1,2, . . .}]. Hence by Corol-
lary 2.8, there exist a subsequence {JE(xnk)}k�1 of {JE(xn)}n�1 and x′0 ∈ E′ with the
following conditions:
(i) limk→∞ JE(xnk)(x

′
0)= p0(x′0) and |p0(x′0)| � ‖p0‖/2.

(ii) {JE(xnk)−p0}k�1 is a basic sequence.
(iii) p0 ∉ [{JE(xnk)−p0 : k= 1,2, . . .}].
Put

Z = [{p0,JE(xn1
)
,JE
(
xn2

)
, . . .

}]
,

Z1 =
[{
JE
(
xnk

)
: k= 1,2, . . .}],

Z2 =
[{
JE
(
xnk

)−p0 : k= 1,2, . . .}].
(2.55)

Then

Z = Z1⊕
[
p0
]= Z2⊕

[
p0
]
. (2.56)

Let P and Q be projections from Z onto Z1 and Z2, respectively. Then P |z2 is an
isomorphism from Z2 onto Z1, so it is homeomorphic. By virtue of P(JE(xnk)−p0)=
JE(xnk) (k= 1,2, . . .), {JE(xnk) : k= 1,2, . . .} is a basis for Z1. Since it holds that

∣∣p0(x′0)∣∣=
∣∣∣∣ lim
k→∞

x′0
(
xnk

)∣∣∣∣�
∥∥p0∥∥
2

, (2.57)

{xnk}k�1 contains a basic sequence of type l+. Thus we complete the proof.
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3. Tauberian operators. Nowwe give characterizations of Tauberian operators and
related operators by using a basic sequence. Let BE = B1(0) and BE′′ = {x′′ ∈ E′′ :
‖x′′‖ 
 1}. Before we proceed to our main results, we show the following proposition.

Proposition 3.1. Let T ∈ L(E,F). Let {xn}n�1 be a bounded basic sequence such
that {Txn}n�1 is basic. If {Txn}n�1 converges, then so does {xn}n�1.

Proof. At first we note that if a basic sequence converges, then its convergent
point is zero. Suppose that {xn}n�1 does not converge. Then we may assume that
there exists a real number δ > 0 such that for every n (n = 1,2, . . .) ‖xn‖ � δ. Since
{xn}n�1 does not converge weakly to zero, there exist a real number ε > 0, x′0 ∈ E′

and a subsequence {xnk}k�1 of {xn}n�1 such that |x′0(xnk)| � ε > 0 (k= 1,2, . . .). Set

yk =
(
x′0
(
xnk

))−1xnk (k= 1,2, . . .). (3.1)

Then {yk}k�1 is a basic sequence and

δ∥∥x′0∥∥ 
 ‖yk‖ 
 1ε (k= 1,2, . . .). (3.2)

Hence {Tyk}k�1 is a bounded basic sequence in F . Put E1 = [{yk : k = 1,2, . . .}]. Let
{fk : k = 1,2, . . .} ⊂ E′1 be a biorthogonal functional sequence to {yk}k�1. Since there
exists a real number t, 0< t 
 1 such that {yk}k�1 is t-orthogonal, it holds that

∥∥fk∥∥

∥∥x′0∥∥
tδ

(k= 1,2, . . .). (3.3)

Therefore, {fk : k = 1,2, . . .} is bounded. Put T1 = T |E1 , zk = T1(yk) (k = 1,2, . . .)
and F1 = [{zk : k = 1,2, . . .}]. Then {zk}k�1 is a basis for F1. Let {gk : k = 1,2, . . .} ⊂
F ′1 be a biorthogonal functional sequence to {zk}k�1 and let gk (k = 1,2, . . .) denote
an extension of gk to F . Then it follows that T ′1gk = fk. Let x′ be any element of
E′1. Put x′(yk) = βk (k = 1,2, . . .) and x′n =

∑n
k=1βkfk. Then x′ = w∗ − limnx′n. Set

z′n =
∑n

k=1fk. Since x
′
0(yk)= 1 (k= 1,2, . . .), {z′n}n�1 is weak∗ convergent to x′0 in E1.

Hence x′0 is weak∗ limit point of {T ′1(
∑n

k=1gk)}n�1. Let C be a closed absolutely convex
hull subset of {fk : k = 1,2, . . .} in E′1. Then C is a bounded closed subset such that
x′0 ∈ C̄w∗

. Hence C̄w∗ = C̄ ⊂ T ′1(F ′) ⊂ E′. Now take g0 ∈ F ′ with ‖T ′1(g0)−x0‖ < ε/2.
Then

sup
k

∣∣(T ′1g0)(yk
)−x′0(yk

)∣∣∥∥yk
∥∥ <

ε
2
. (3.4)

Therefore

sup
k

∣∣g0(zk)−1∣∣∥∥yk
∥∥ <

ε
2
. (3.5)

Since for all k (k= 1,2, . . .),
1∥∥yk
∥∥ > ε, (3.6)
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it holds that

∣∣g0(zk)−1∣∣< 12 . (3.7)

While, it holds that

lim
k→∞

∣∣g0(zk)∣∣
 lim
k→∞

∥∥g0∥∥∥∥Tyk
∥∥

= ∥∥g0∥∥ lim
k→∞

∣∣x′0(xnk
)∣∣−1∥∥Txnk

∥∥

 ε−1

∥∥g0∥∥ lim
k→∞

∥∥Txnk

∥∥= 0.
(3.8)

This is a contradiction to the above, and so {xn}n�1 converges to zero.
Corollary 3.2. Let T ∈ L(E,F). Let {xn}n�1 be a basic sequence such that 0 <

infn‖xn‖ 
 supn‖xn‖ < ∞. If {Txn}n�1 is basic, then {Txn}n�1 does not contain a
convergent subsequence.

The next proposition is obtained by [4] in the case of archimedean analysis.

Proposition 3.3. Let T ∈ L(E,F). The following statements are equivalent.
(1) T is Tauberian.
(2) T has property N and T(BE) is closed.
(3) T has property N and T(BE)⊂ R(T).

Proof. (1)⇒(2). Let y ∈ T(BE). Then there exists a sequence {xn}n�1 in BE such
that {Txn}n�1 converges to y . Since BEw

∗
is weak∗ compact subset, {xn}n�1 contains

a weak∗ convergent subsequence, call it {xn}n�1 again. Let x =w∗− limnxn. Then

T ′′x =w∗− lim
n→∞T

′′xn =w∗− lim
n→∞Txn. (3.9)

Hence T ′′x = y ∈ E. By hypothesis, we have x ∈ E. It follows that Tx = y . And
by Theorem 2.1,

x =w− lim
n→∞xn = limn→∞xn. (3.10)

Hence ‖x‖ 
 1. This means that y ∈ T(BE), so T(BE) is closed. Obviously (2)⇒(3). We
now show that (3)⇒(1). Suppose that T ′′z ∈ F and z ∈ E′′. We may assume ‖z‖ 
 1.
Then there exists a net S ⊂ BE such that S is weak∗ convergent to z. Then a net
{T ′′(S)}, equal to {T(S)}, is weak∗ convergent to T ′′z. Hence z ∈ T(BE)

w∗
. Since

T(BE)
w∗
= T(BE) in F ′′ and T ′′z ∈ F , z ∈ T(BE) in F . So by hypothesis, it follows that

T ′′z ∈ T(E). Hence there exists aw in E such that T ′′(z−w)= 0. Since T has property
N , it follows that z ∈ E, and so T is Tauberian.

Combing [6, Theorem 6] and Proposition 3.3, we obtain the following corollary.

Corollary 3.4. Let T ∈ L(E,F). The following statements are equivalent.
(1) T is Tauberian.
(2) T has property N and R(T) is closed.
(3) T is semi-Fredholm.

And combing Proposition 3.3 with Corollary 3.4, we obtain the following corollary.
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Corollary 3.5. If T ∈ L(E,F) has property N , then T(BE) is closed if and only if
R(T) is closed.

Theorem 3.6. Let T ∈ L(E,F). Then the following statements are equivalent.
(1) T has property N .
(2) Let {xn}n�1 be a bounded sequence in E. If {Txn}n�1 converges to zero, then

{xn}n�1 contains a convergent subsequence.

Proof. Suppose that T has propertyN . If z ∈ E′′ is a weak∗ limit point of {xn}n�1,
then

T ′′z = lim
n→∞T

′′xn = limn→∞Txn = 0. (3.11)

Hence z ∈ E. This implies that {xn :n= 1,2, . . .}w
∗
⊂ E. Therefore, {xn :n= 1,2, . . .} is

weakly relatively compact in E, so, by [5], it is weakly relatively sequentially compact
in E. Thus {xn}n�1 obtains a convergent subsequence. Conversely, let z ∈ E′′, T ′′z =
0. We may assume that ‖z‖ 
 1. Since K is locally compact, by the same argument
used in archimedean analysis (see [1] and [19]), we have BE′′ = BE

w∗
in E′′, where

BE′′ = {x′′ ∈ E′′ : ‖x′′‖ 
 1}. By Theorem 2.2, it holds that BE′′ = BE in E′′. Hence there
exists a sequence {xn}n�1 in BE such that z = limnxn in E′′. Hence we have in F ′′

0= T ′′z = lim
n→∞T

′′xn = limn→∞Txn, (3.12)

so 0 = w − limnTxn in F . By Theorem 2.1, {Txn}n�1 converges to zero. Therefore,
by assumption, {xn}n�1 contains a convergent subsequence, say it {xnk}k�1. Let a=
limkxnk . Then we have a= z, and so z is in E. Hence T has property N .

Corollary 3.7. Let T ∈ L(E,F). The following properties are equivalent.
(1) T has property N .
(2) For every basic sequence {xn}n�1 with 0< infn‖xn‖ 
 supn‖xn‖<∞, {Txn}n�1

does not converge to zero.

Proof. (1)⇒(2). If {Txn}n�1 converges to zero, then by Theorem 3.6, {xn}n�1 con-
tains a convergent subsequence. Since {xn}n�1 is basic, so is the subsequence. Hence
it converges to zero, but this contradicts to the condition 0< infn‖xn‖.
(2)⇒(1). Let {zn}n�1 be a bounded sequence for which {Tzn}n�1 converges to zero.

Suppose that all subsequences of {zn}n�1 do not converge, so they do not converge
weakly and we can assume that 0 < infn‖zn‖ 
 supn‖zn‖ < ∞. Hence by [5, The-
orem 2.3], {zn :n= 1,2, . . .}w is not weakly compact. From Corollary 2.9, it follows
that {zn}n�1 contains a basic subsequence {znk}k�1 of type l+. Hence by hypothe-
sis, {Tznk}k�1 does not converge to zero. But this is a contradiction to our assump-
tion. Thus we conclude that {zn}n�1 contains a convergent subsequence. By virtue
of Theorem 3.6, T has property N .

Finally, by using Corollary 3.4 and [7], we can obtain a characterization of Tauberian
operators in terms of basic sequences and precompact subsets. (We recall that for
locally compact K, a compactoid subset means the same as a precompact subset.)
This corollary is analogous to Corollary 3.7 which is a characterization of operators
having property N .
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Corollary 3.8. Let T ∈ L(E,F). The following statements are equivalent.
(1) T is Tauberian.
(2) For every basic sequence {xn}n�1 with 0< infn‖xn‖,{Txn}n�1 does not converge

to zero.
(3) LetD be a bounded subset of E. T(D) is precompact if and only ifD is precompact.
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