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Abstract. Themain purpose of this paper is to prove that if X= {Xa,pab,A} is a usual ℵ1-
directed inverse system of continuous images of arcs with monotone bonding mappings,
then X = limX is a continuous image of an arc (Theorem 2.4). Some applications of this
statement are also given.
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1. Introduction. By an approximate inverse system in this paper we will mean
an approximate inverse system in the sense of Mardešíc [11]. See the appendix,
Definition 5.1.
An arc is a continuum with precisely two nonseparating points.
A space X is said to be a continuous image of an arc if there exists an arc L and a

continuous surjection f : L→X.
Inverse sequence of continuous images of arcs with monotone bonding mappings

was studied in [16], where was proved that the limit of a usual inverse sequence of
continuous images of arcs and monotone bonding mappings is the continuous image
of an arc.
The well-ordered and σ -directed usual inverse system of continuous images of arcs

with monotone bonding mappings were studied in [7].
In this paper, we shall study the ℵ1-directed inverse systems of continuous im-

ages of arcs. The main theorem of this paper states that if X = {Xa,pab,A} is a
usual ℵ1-directed inverse system of continuous images of arcs and monotone bond-
ing mappings, then X = limX is the continuous image of an arc (Theorem 2.4). Using
Theorem 2.10 we shall obtain a characterization of continuous image of an arc by
its images Y with w(Y) = ℵ1 (Theorem 3.3). Finally, we shall use this characteriza-
tion to produce some new theorems concerning the approximate inverse system of
continuous images of arcs (Theorems 4.3 and 4.6).

2. ℵ1-directed inverse systems. We start with some lemmas.
Lemma 2.1. Let � = {Mµ : µ ∈M} be an ℵ1-directed (partially ordered by inclusion)

family of compact metric subspaces Mµ of a space X. Then N = ⋃{Mµ : µ ∈ M} is a
compact metrizable subspace of X.

Proof. Suppose that w(N) ≥ ℵ1. By virtue of [5] (or [17, Theorem 1.1] if X is a
T3-space), for λ = ℵ1, there exists a subspace Nλ of N such that card(Nλ) ≤ ℵ1 and
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w(Nλ) ≥ ℵ1. For each x ∈ Nλ there exists a Mµ(x) ∈ � such that x ∈ Mµ(x). The
family �1 = {Mµ(x) : x ∈ Nλ} has the cardinality ≤ ℵ1. By the ℵ1-directedness of �

there exists aMν ∈� such thatMν ⊇Mµ(x) for eachx ∈Nλ. Thismeans thatNλ ⊆Mν .
We infer that w(Nλ) ≤ ℵ0 since Mν is a metric subspace of X. This contradicts the
assumption w(Nλ) ≥ ℵ1. Hence, w(N) ≤ ℵ0. There exists a countable dense subset
Z = {zn : N ∈ N} of N . For each zn there is a Mµ(n) ∈� such that zn ∈Mµ(n). It is
clear that W =⋃{Mµ(n) : n∈N} is dense in N . By virtue of the ℵ1-directedness of �

there exists a Mν ∈ � such that Mν ⊇ Mµ(n) for each Mµ(n). We infer that Mµ ⊇ W
and, consequently, Mµ is dense in N . From the compactness of Mµ it follows that
N =Mµ . Hence, N is a compact metrizable subspace of X.

Let τ be an infinite cardinal. We say that X = {Xa,pab,A} is τ-directed if for each
b ⊆A with card(B)≤ card(A) there is an a∈A such that a≥ b for each b ∈ B. We say
that X is σ -directed if X is ℵ0-directed.

Lemma 2.2. Let X = {Xa,pab,A} be an approximate τ-directed inverse system of
compact spaces with surjective bonding mappings and limit X. Let Y be a compact
space with w(Y)≤ τ and let Z be a closed subspace of X. For each surjective mapping
f : Z → Y there exists an a ∈ A such that for each b ≥ a there exists a mapping gb :
pb(Z)→ Y such that f = gb ◦(pb | Z). Moreover, if f is a monotone surjection, then gb
is a monotone surjection.

Proof. Let Za = pa(Z) and qa = pa | Z, a ∈ A. The proof is broken into several
steps.

Step 1. For each normal covering � of Z there exists an a(�) ∈ A such that for
each b ≥ a(�) there is a normal covering �b of Zb such that q−1b (�b) is a refinement
of �.
For each normal covering � of Z there exists a normal covering � of X such that

� | Z = {V⋂Z : V ∈�} is a refinement of � [1, Theorem 15.14]. By virtue of (B1) (see
[13, Theorems 2.8 and 4.2]), [11, Lemma 4] there exists an a(�)∈A such that for each
b ≥ a(�) there is a normal cover �b of Xb with p−1b (�b) ≺ �. Consider the covering
�b =�b | Zb. It is clear that q−1b (�b) is a refinement of �.

Step 2. For each family of normal coverings � of Z with card(�)≤ τ there exists
an a ∈ A such that for each b ≥ a there is a family of normal coverings �b of Zb,
card(�b)≤ τ such that q−1b (�b) is a refinement of �.
This follows from Step 1 and from the τ-directedness of A.
Step 3. For each basis � = {�n : n < τ} of normal coverings of Y there exists an

a ∈ A such that for each b ≥ a there is a family of normal coverings �nb of Zb such
that q−1b (�nb) is a refinement of �n, �n ∈�.
Now, each basis of normal coverings of Y has the cardinality≤ τ (Lemma 5.2). Apply

Step 2.
Step 4. If Zb is as in Step 3, then for each xb ∈ Zb the set f(q−1b (xb)) is degenerate.
Suppose that there exists a pair u,v of distinct points of Y such that u,v ∈ f(q−1b

(xb)). Then there exists a pair x,y of distinct points of q−1b (xb) such that f(x) = u
and f(y)= v . Let U,V be a pair of disjoint open sets of Y such that u∈U and v ∈ V .
Consider the covering {U,V,Y \{u,v}} of Y . There exists a normal covering �n ∈ �



ℵ1-DIRECTED INVERSE SYSTEMS OF CONTINUOUS . . . 111

such that �n ≺ {U,V,X \{u,v}}. We infer that there is a normal covering �nb of Zb
such that q−1b (�nb)≺ f−1(�n). It follows that qb(x)≠ qb(y) since x and y lie in the
disjoint members of the covering f−1(�n). This is impossible since x,y ∈ q−1b (xb).
Thus, f(q−1b (xb)) is degenerate.

Step 5. There exists a mapping gb : Zb → Y .
Now we define gb by gb(xb)= f(q−1b (xb)). It is clear that gbqb = f .
Let us prove that gb is continuous. Let U be open in Y . Then g−1b (U) is open since

(qb)−1(g−1b (U))= f−1(U) is open and qb is quotient (as a closed mapping).
Step 6. If the mapping f is monotone, then gb is monotone.
This follows from the relation gbqb = f .
Lemma 2.3. Let X = {Xa,pab,A} be a usual ℵ1-directed inverse system of compact

metric spacesXa and surjective bondingmappings. ThenX = limX is a compact metriz-
able space.

Proof. Let us prove that if f :X → Y is a continuous surjection, then Y is a metriz-
able space. We shall use transfinite induction onw(Y). Ifw(Y)≤ ℵ1, then there exists
an a ∈ A and a surjective mapping ga : Xa → Y such that f = gapa (Lemma 2.2).
It follows that Y is a metrizable space. Suppose that this is true for each space Y
with w(Y) < ℵβ. Let us prove that this is true for the spaces Y with w(Y) = ℵβ.
By virtue of Theorem 5.9 there exists a well-ordered inverse system Y = {Yµ,ρµν ,M}
such that Y = limY andw(Yµ) < ℵβ. Moreover, by inductive hypothesis it follows that
w(Yµ)= ℵ0 since there exists a mapping ρµf :X → Yµ . By [17, Theorem 2.2] it follows
that w(Y) ≤ ℵ1. Now, there exists an a ∈ A and a surjective mapping ga : Xa → Y
such that f = gapa. This means that Y is a metrizable space. Finally, we shall prove
that w(X) = ℵ0. By virtue of Theorem 5.9 there exists a well-ordered inverse system
Y = {Yµ,ρµν ,M} such that X = limY and w(Yµ) < ℵβ. Moreover, w(Yµ) = ℵ0. By [17,
Theorem 2.2] it follows that w(Y) ≤ ℵ1. There exists an a ∈ A and a surjective map-
ping ga :Xa→ Y such that f = gapa. This means that X is a metrizable space.
Let X be a non-degenerate locally connected continuum. A subset Y of X is said

to be a cyclic element of X if Y is connected and maximal with respect to the prop-
erty of containing no separating point of itself. A cyclic element of locally connected
continuum is again locally connected continuum. We let

LX =
{
Y ⊂X : Y is a non-degenerate cyclic element of X}. (2.1)

For other details see [2, 16].
Now we shall prove the main theorem of this paper.

Theorem 2.4. Let X= {Xa,pab,A} be a usual ℵ1-directed inverse system of continu-
ous images of arcs and monotone bonding mappings. Then X = limX is the continuous
image of an arc.

Proof. By [2, Theorem 1] it suffices to prove that each cyclic element Z of X is a
continuous image of arc. From [16, Theorem 2.7] it follows that there exists a usual
inverse system (Zγ,gγγ′ ,Γ) of cyclic elements of Xγ such that Z = lim inv(Zγ,gγγ′ ,Γ).
It is clear that each Zγ is a continuous image of an arc. Let x, y , and z be distinct
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points of Z . There exists an a ∈ A such that for each b ≥ a gb(x), gb(y), gb(y) are
different points of Zb. Moreover there exists a minimal metrizable T -set Tb which
contains gb(x), gb(y) and gb(y). For each b ≥ a the family {pbc(Tc) : c ≥ b} satisfies
the assumptions of Lemma 2.1. This means that Nb =

⋃{gbc(Tc) : c ≥ b} is a compact
metric subspace of Zb. Moreover, gbc(Nc) =Nb. We have a usual inverse system N =
{Nb,gbc |Nc, a≤ b ≤ c} which satisfies the assumptions of Lemma 2.3. It follows that
N = limN is compact and metrizable. Moreover, by [7, Lemma 2.15] it follows that N
is a T -set in X which contains x,y , and z. From [16, Theorem 4.4] it follows that Z is
a continuous image of an arc.

Remark 2.5. Let us observe that Theorem 2.4 is not true for σ -directed inverse
system. This is shown by an example of Nikiel [14, Example 4.3]. The sufficient and
necessary condition for the limit of σ -directed inverse system to be the continuous
image of an arc are given in [7, Theorem 2.21].

Lemma 2.6. Let B be an infinite subset of directed setA. There exists a directed subset
F∞(B) of A such that B ⊆ F∞(B) and card(F∞(B))= card(B).

Proof. Let ν be any finite subset of A. There exists a δ(ν)∈A such that δ≤ δ(ν)
for each δ∈ ν . For each B ⊆A there exists a set F1(B)= B

⋃{δ(ν) : ν ∈ B}, where ν is
a finite subset of B. Put

Fn+1 = F1
(
Fn(B)

)
, F∞(B)=

⋃{
Fn(B) :n∈N

}
. (2.2)

It is clear that

F1(B)⊆ F2(B)⊆ ··· ⊆ Fn(B)⊆ ··· . (2.3)

The set F∞(B) is directed since each finite subset ν of F∞(B) is contained in some
Fn(B) and, consequently, δ(ν) is contained in F∞(B). From card(B) ≥ ℵ0, it follows
card({δ(ν) : ν ∈ B}) ≤ card(B)ℵ0. We infer that card(F1(B)) ≤ card(B)ℵ0. Similarly,
card(Fn(B))≤ card(B)ℵ0. This means that card(F∞(B))≤ card(B)ℵ0. Thus

card
(
F∞(B)

)≤ card(B)ℵ0. (2.4)

We infer that card(F∞(B))= card(B).
Let X= {Xa,pab,A} be a usual inverse system of compact spaces and let τ < card(A)

be an infinite cardinal. Consider the set Aτ of all F∞(B), B ⊆ A, card(B) = τ , or-
dered by inclusion. It is clear that Aτ is τ-directed. Each element α of Aτ is some
F∞(B). We define Xα as the limit of {Xa,pab,F∞(B)}. Let α= F∞(B) and β= F∞(C). If
α ⊆ β, then there exists the natural projection qαβ : Xβ = lim{Xa,pab,F∞(C)} → Xα =
lim{Xa,pab,F∞(B)}. It is clear that qαγ = qαβqβγ if α≤ β≤ γ. It follows that {Xα,qαβ,
Aω1} is a usual inverse system.

Theorem 2.7. LetX= {Xa,pab,A} be a usual inverse system of compact spaces with
limit X. For each infinite cardinal τ < card(A) there exists a τ-directed usual inverse
system {Xα,qαβ,Aτ} such that X is homeomorphic to lim{Xα,qαβ,Aτ}.

Proof. The proof is the same as the proof of [16, Theorem 9.4].
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Corollary 2.8. Let X = {Xa,pab,A} be a usual inverse system of compact spaces
with limit X. If ℵ1 < card(A), then there exists an ℵ1-directed usual inverse system
{Xα,qαβ,Aℵ1} such that X is homeomorphic to lim{Xα,qαβ,Aℵ1}.

Corollary 2.9. Let X = {Xa,pab,A} be a usual inverse system of compact spaces
with limitX. Ifℵ0<card(A), then there exists aσ -directed usual inverse system {Xα,qαβ,
Aℵ0} such that X is homeomorphic to lim{Xα,qαβ,Aℵ0}.
At the end of this section, we shall prove the following theorem.

Theorem 2.10. Let X = {Xa,pab,A} be a usual inverse system of continuous im-
ages of arcs with limit X and cf(card(A)) ≠ ℵ1. If the mappings pab are monotone
surjections, then the following are equivalent:
(a) X is the continuous image of an arc.
(b) Each proper subsystem Y = {Xb,pbc,B} of X with card(B) = ℵ1 has the limit Y

which is the continuous image of an arc.

Proof. (a)⇒(b). Obvious since there exists the natural projection fq : limX→ limY.
(b)⇒(a). Inverse system {Xα,qαβ,Aℵ1} is ℵ1-directed. Apply Theorem 2.4.

3. Characterizing spaces by images of the weight less than or equal to ℵ1. In this
section, we shall characterize a compact locally connected space by its images of the
weight ≤ ℵ1.
A continuum X is said to be hereditarily locally connected if each subcontinuum of

X is locally connected.
We start with the following theorem.

Theorem 3.1. Let X be a compact space. The following are equivalent:
(a) X is locally connected.
(b) If f :X → Y is a surjection and Y is a metric space, then Y is locally connected.

Proof. (a)⇒(b). If X is locally connected, then from [19, Theorem 1.6, page 70] it
follows that Y is locally connected.
(b)⇒(a). By Theorem 5.3 there exists a σ -directed usual inverse system X={Xa,pab,

A} of compact metric spaces Xa and surjective bonding mappings pab such that X is
homeomorphic to limX. By (b) each Xa is locally connected. Finally, by Theorem 5.6
we infer that X is locally connected.

Theorem 3.2. LetX be a locally connected continuum. The following are equivalent:
(a) X is hereditarily locally connected.
(b) If Z is a subcontinuum of X and if f : Z → Y is a surjection onto a metric space Y ,

then Y is locally connected.

Proof. (a)⇒(b). If X is hereditarily locally connected, then each subcontinuum
Z ⊆ X is locally connected. By [19, Theorem 1.6, page 70] it follows that Y is locally
connected.
(b)⇒(a). By Theorem 5.4 there exists a σ -directed usual inverse system X={Xa,pab,

A} of compact metric spaces Xa and surjective monotone bonding mappings pab
such that X is homeomorphic to limX. Now, each Xa is hereditarily locally connected.
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Namely, for each subcontinuum K of Xa we have a subcontinuum Z = p−1a (K) and a
mapping pa | Z : pa | Z : Z →K. By (b) K is locally connected. Hence, each Xa is hered-
itarily locally connected. From Theorem 5.7 it follows that X is hereditarily locally
connected.

From Theorem 2.4 it follows the following characterization of continuous images of
arcs.

Theorem 3.3. Let X be a locally connected continuum X with cf(w(X))≠ω1. The
following are equivalent:
(a) X is a continuous image of an arc.
(b) If f : X → Y is a continuous surjection and w(Y) = ℵ1, then Y is a continuous

image of an arc.

Proof. (a)⇒(b). Obvious.
(b)⇒(a). By [3, Theorem 2.3.23] the space X is embeddable in Iw(X). Since Iw(X) is

an inverse limits of finite cube In, we infer that there exists a usual inverse system
X= {Xa,pab,A} of metric spaces Xa such that X is homeomorphic to limX. It is clear
that there exists no a subset B which is cofinal in A and card(B) = ℵ1. This means
that there exists an ℵ1-directed usual inverse system {Xα,qαβ,Aℵ1} such that X is
homeomorphic to lim{Xα,qαβ,Aℵ1} and w(Xa)≤ ℵ1. By (b) each Xa is the continuous
image of an arc. The system {Xα,qαβ,Aℵ1} satisfies the conditions of Theorem 2.10.
Hence, X is the continuous image of an arc.

Theorem 3.4. Let X be a locally connected nonmetrizable continuum such that
cf(w(Z)) ≠ ω1 for each cyclic element Z of X. The following statements are equiv-
alent:
(a) X is a continuous image of an arc.
(b) If Z is a non-degenerate cyclic element of X or Z = X, f : Z → Y is a surjection

onto a space Y with w(Y)=ω1, then Y is a continuous image of an arc.

Proof. (a)⇒(b). Let Z be a cyclic element of X. By [2, Theorem 1] Z is a continuous
image of an arc. It is clear that if f : Z → Y is a surjection, then Y is a Y is a continuous
image of an arc.
(b)⇒(a). Repeat the proof of the implication (b)⇒(a) of Theorem 3.3 replacing X by Z .

Corollary 3.5. Let X be a locally connected nonmetrizable continuum of regu-
lar weight w(Z) > ω1 for each cyclic element Z of X. The following statements are
equivalent:
(a) X is a continuous image of an arc.
(b) If Z is a non-degenerate cyclic element of X or Z = X, f : Z → Y is a surjection

onto a space Y with w(Y)=ω1, then Y is a continuous image of an arc.

4. ℵ1-directed approximate inverse systems. In this section, we will apply theo-
rems from the last section to obtain some theorems for approximate limits. At the
begin we shall prove the following theorem.

Theorem 4.1. Let X = {Xa,pab,A} be a σ -directed approximate inverse system of
locally connected compact spaces. Then X = limX is locally connected.
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Proof. By Theorem 3.1 it suffices to prove that if f : X → Y is a surjection and
Y is a metric continuum, then Y is locally connected. From Lemma 2.2 (for Z = X) it
follows that there exists an a ∈ A such that for each b ≥ a there exists a mapping
gb :Xb → Y . We infer that Y is locally connected since Xa is locally connected. Hence,
X is locally connected.

Theorem 4.2. Let X = {Xa,pab,A} be a σ -directed approximate inverse system of
hereditarily locally connected continua. ThenX = limX is hereditarily locally connected.

Proof. By Theorem 3.2 it suffices to prove that if f : X → Y is a surjection and Y
is a metric continuum, then Y is locally connected. By virtue of Theorem 4.1 it fol-
lows that X is locally connected. From Lemma 2.2 it follows that there exists an a∈A
such that for each b ≥ a there exists a mapping gb : pb(Z) → Y . Now, pb(Z) is lo-
cally connected since Xb is hereditarily locally connected. We infer that Y is locally
connected since pb(Z) is locally connected. Thus, X is hereditarily locally connected.

Theorem 4.3. Let X= {Xa,pab,A} be an approximate inverse system of continuous
images of arcs Xa with the limit X. If X is ℵ1-directed and cf(w(X))≠ω1, then X is a
continuous image of an arc.

Proof. By virtue of Theorem 4.1 X is locally connected. From Theorem 3.3 it fol-
lows that it suffices to prove that if f :X → Y is a continuous surjection andw(Y)= ℵ1,
then Y is a continuous image of an arc. Now, using Lemma 2.2 we infer that there ex-
ists a b ∈ A and a surjective mapping gb : Xb → Y . It follows that Y is a continuous
image of an arc since Xb is a continuous image of an arc.

Remark 4.4. Let us observe that the bonding mappings in Theorem 4.3 are not
assumed to be monotone.

Corollary 4.5. Let X = {Xa,pab,A} be an approximate inverse system of contin-
uous images of arcs Xa with the limit X. If X is ℵ1-directed and if w(X) is a regular
cardinal >ω1, then X is a continuous image of an arc.

Theorem 4.6. Let X= {Xa,pab,A} be an approximate inverse system of continuous
images of arcs Xa with the limit X. If X is ℵ1-directed and cf(w(Z))≠ω1 for each cyclic
element Z of X, then X is a continuous image of an arc.

Proof. The proof is broken into several steps.
Step 1. Let X= {Xa,pab,A} be an approximate inverse system of continua and let

Y be a subcontinuum of X = limX. If r(pa(Y))≤ k for all a∈A and some fixed integer
k≥ 0, then r(Y)≤ k.
Let C,D be a pair of subcontinua of Y . First, we prove that for each pair K,L of

different components of C
⋂
D there is an a ∈ A such that pb(K), pb(L) are sub-

sets of different components of pb(C)
⋂
pb(D), for each b ≥ a. Suppose, on the con-

trary, that there is a set B, cofinal in A, such that pb(K) and pb(L), b ∈ B, lie in the
same component Cb of pb(C)

⋂
pb(D). We have a net {hb(Cb) : b ∈ B} which has a

nonempty Li{hb(Cb) : b ∈ B} =K
⋃
L. By virtue of [8, Lemma 2.10] Ls{hb(Cb) : b ∈ B}

is a nonempty subcontinuum of C
⋂
D which contains K

⋃
L. This is impossible since
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K and L are all the components of C
⋂
D. Second, we prove that C

⋂
D has ≤ k+1

components. Suppose that C
⋂
D has ≥ k+2 components K1, . . . ,Kk+2, . . . . Consider

the family {K1, . . . ,Kk+1,Kk+2}. For each pair Ki,Kj there exists an aij ∈ A such that
pb(Ki), pb(Kj) lie in different components of pb(C)

⋂
pb(D) for each b ≥ aij . From

the directedness of A it follows that there is an index b ∈ B, b ≥ aij, i,j = 1, . . . ,k+2.
We infer that pb(C)

⋂
pb(D) has ≥ k+2 components.This is impossible and the proof

of Step 1 is completed.
Step 2. Let X= {Xa,pab,A} be an approximate inverse system of continua and let

Y be a subcontinuum of X = limX. If pa(Y) is hereditarily unicoherent for all a ∈ A,
then Y is hereditarily unicoherent.

Step 3. Let X= {Xa,pab,A} be an approximate inverse system of locally connected
continua Xa with monotone bonding mappings and let Z be a non-degenerate cyclic
element of X = limX. There exists an a0 such that Lb(Zb)≠∅.
Suppose that LZb =∅ for each b ∈ B (i.e., all Zb are dendron), where B is cofinal in

A. By Step 2, Z is hereditarily unicoherent. This means that Z is a dendron since it is
locally connected. Thus, LZ =∅. This contradicts the assumption that Z ∈ LX .

Step 4. Let X= {Xa,pab,A} be an approximate inverse system of locally connected
continua Xa with monotone bonding mappings and let Z be a cyclic element of X =
limX. If Ya is a non-degenerate cyclic element of Za = pa(Z), then p−1a (Ya) ⊆ Z and
Ya is a cyclic element of Xa.
By virtue of [8, Corollary 5.6] the projections pa are monotone. By virtue of [16,

Lemma 2.3] there exists a cyclic element W of X such that p−1a (Ya) ⊆W . This means
that card(Z

⋂
W) ≥ 2. We infer that Z = W . Similarly, if Wa is a cyclic element in Xa

containing Ya, then p−1a (Wa)⊆ Z . Thus, Wa ⊆ Za. Hence, Ya is a cyclic element of Xa.
Step 5. Let X = {Xa,pab,A} be an approximate inverse system of continuous im-

ages of arcs Xa with monotone bonding mappings and let Z be a cyclic element of
X = limX. Then each Za = pa(Z) is a continuous image of an arc.
It suffices to prove that each cyclic elementWa of Za is a continuous image of an arc.

If Wa is degenerate, then it is a continuous image of an arc. If Wa is non-degenerate,
then by Step 4, Wa is a cyclic element of Xa. From [2, Theorem 1] it follows that Wa is
a continuous image of an arc. Hence, Za is a continuous image of an arc.

Step 6. Finally, let us prove Theorem 4.6. Let Z be any cyclic element ofX,f : Z → Y
a surjection and w(Y) = ℵ1. From Lemma 2.2 it follows that there exists an a ∈ A
and ga : Za → Y . We infer that Y is the continuous image of an arc since Za is the
continuous image of an arc (Step 5). By Corollary 3.5 we infer that X is the continuous
image of an arc.

We close this section with two questions.
In connection with [16, Theorem 5.1] it is naturally to ask the following question.

Question 4.7. Let X = {Xn,pnm,N} be an approximate inverse sequence of con-
tinuous images of arcs with monotone bonding mappings. Is it true that X = limX is
the continuous image of an arc?

Comparing Theorems 2.4 and 4.3 it is naturally to ask the following question.

Question 4.8. Suppose that X = {Xa,pab,A} is an ℵ1-directed approximate in-
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verse system of continuous image of arcs and monotone bonding mappings. Does it
follow that the approximate inverse limit space X = limX is a continuous image of an
arc?

5. Appendix. Cov(X) is the set of all normal coverings of a topological space X.
For other details see [1].

Definition 5.1. An approximate inverse system is a collection X = {Xa,pab,A},
where (A,≤) is a directed preordered set, Xa, a ∈ A, is a topological space and
pab : Xb → Xa, a ≤ b, Xa, a ≤ b, are mappings such that paa = id and the follow-
ing condition (A2) is satisfied:
(A2) For each a ∈ A and each normal cover � ∈ Cov(Xa) there is an index b ≥ a

such that (pacpcd,pad)≺�, whenever a≤ b ≤ c ≤ d.
Other basic notions, including approximatemapping and the limit of an approximate

inverse system are defined as in [11, 13].
An inverse system in the sense [3, page 135] we call a usual inverse system.
An approximate inverse system X= {Xa,pab,A} is said to be commutative [13, Def-

inition 1.4] provided it satisfies the commutativity condition:

pabpbc = pac, for a< b < c. (5.1)

Let us observe that if X = {Xa,pab,A} is a commutative approximate inverse system
of Tychonoff spaces, then the limit of X in the usual sense and the approximate limit
coincide [13, Remark 1.15].
A basis of (open) normal coverings of a space X is a collection � of normal coverings

such that every normal covering �∈ Cov(X) admits a refinement �∈�. In this case,
we write �≺�. We denote by cw(X) (covering weight ) the minimal cardinal of a basis
of a normal coverings of X [12, page 181].

Lemma 5.2 (see [12, Example 2.2]). IfX is a compact Hausdorff space, then cw(X)=
w(X).

Theorem 5.3. Let X be a compact spaces. There exists a σ -directed usual inverse
system X= {Xa,pab,A} of compact metric spaces Xa and surjective bonding mappings
pab such that X is homeomorphic to limX.

Proof. Apply [10, pages 152 and 164] and Corollary 2.9.

Theorem 5.4. If X is a locally connected compact space, then there exists a usual σ -
directed inverse system X= {Xa,pab,A} such that each Xa is a metric locally connected
compact space, each pab is a monotone surjection and X is homeomorphic to limX.
Conversely, the inverse limit of a such system is always a locally connected compact
space.

Proof. Apply [10, Theorem 2] and Corollary 2.9.

Theorem 5.5 (see [4, Theorem 5]). Let X = {Xa,pab,A} be a usual σ -directed in-
verse system of locally connected continua Xa. Then X = limX is locally connected.
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Theorem 5.6 (see [6, Theorem 5]). Let X = {Xa,pab,A} be a usual σ -directed in-
verse system of locally connected locally compact spaces Xa and perfect mappings pab.
Then X = limX is locally connected.

Theorem 5.7 (see [4, Corollary 3]). Let X= {Xa,pab,A} be aσ -directed inverse sys-
tem of hereditarily locally connected continua Xa. Then X = limX is hereditarily locally
connected.

Theorem 5.8 (see [15, Corollary 2.9]). If X is a hereditarily locally connected con-
tinuum, then there exists a σ -directed inverse system X = {Xa,pab,A} such that each
Xa is a metrizable hereditarily locally connected continuum, each pab is a monotone
surjection and X is homeomorphic to limX.

In the next theorem, we assume that w(X) is an aleph, i.e., w(X) = ℵτ(X) and that
ωτ(X) is the initial ordinal number belonging to ℵτ(X) =w(X) [9, page 279].

Theorem 5.9 (see [9, Theorem 3]). Every nonmetrizable (Hausdorff) compact space
X is homeomorphic with the inverse limit of an inverse system {Xβ,pββ′ }, where β
ranges through all the ordinals β < ωτ(X), while Xβ are (Hausdorff) compact spaces
satisfying
(1) dimXβ ≤ dimX.
(2) w(Xβ) <w(X).
Moreover,
(3) w(Xβ)≤ card(β)= card({α :α< β}), ω0 ≤ β <ωτ(X).
If β is a limit ordinal, then
(4)

Xβ = lim
{
Xα, pαα′

}
, α < β, (5.2)

pαβ :Xβ→Xα being the corresponding projections.

Corollary 5.10. Every nonmetrizable compact locally connected space X is home-
omorphic to the inverse limit of a transfinite inverse sequence X = {Xapab,w(X)},
where pab are monotone surjection, Xa are compact locally connected spaces such that
w(Xa) <w(X) and w(Xa)≤ card(a) provided ω0 ≤ a<w(X).
If c is limit and 0 < c < w(X), then Xc = lim{(Xa,pab,c)} and the corresponding

maps pab : pab :Xb →Xa are the corresponding projections for a< c.

Proof. Let (Xα,fαβ ,w(X)) be the inverse system from Theorem 5.9. Applying the
monotone-light factorization [18] to the natural projections fα :X →Xα, we get com-
pact spaces Xa, monotone surjection ma : X → Xa and light surjections la : Xa → Xα
such that fα = la ◦ma, a < w(X). By [10, Lemma 8] there exist monotone surjec-
tions pab : Xa → Xb such that pab ◦ma = mb, a ≤ b < w(X). It follows that X =
{Xa,pab,w(X)} is a transfinite inverse sequence such that X is homeomorphic to
limX. It is obvious that each Xa is locally connected. Moreover, by [10, Theorem 1] it
follows that w(Xa)=w(Xα).
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