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Abstract. Up-down permutations are counted by tangent (respectively, secant) numbers.
Considering words instead, where the letters are produced by independent geometric dis-
tributions, there are several ways of introducing this concept; in the limit they all coincide
with the classical version. In this way, we get some new q-tangent and q-secant functions.
Some of them also have nice continued fraction expansions; in one particular case, we could
not find a proof for it. Divisibility results à la Andrews, Foata, Gessel are also discussed.
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1. Introduction. Permutations π = π1π2 ···πn are called up-down permutations
if π1 < π2 > π3 < π4 > π5 ··· . For odd n, their number is given by n![zn]tanz, and
for even n by n![zn]secz (cf. [8, 9]).
Instead of speaking about exponential generating functions, we prefer to think of

the coefficients of tanz and secz as probabilities.
This paper introduces several q-analogues of the functions tanz and secz. Some are

classical (cf. [8, 12]), but the others seem to be new.
If we consider words a1a2 ···an with letters in {1,2, . . .}with probabilities (weights)

p,pq,pq2, . . . ,wherep+q=1 (independent geometric probabilities), then there are sev-
eral ways to introduce this concept. We can use < or ≤ for “up,” > or ≥ for “down,”
which gives four possibilities. Also, itmakes a difference to consider “up-down” versus
“down-up.” That gives in principle eight versions for q-tangent and q-secant numbers.
However, reading the word from right to left, the instance “≤>≤> ···” coincides with
“<≥<≥< ··· ,” and similarly for “≥<≥< ···” and “>≤>≤ ··· ,” which gives us six q-
tangent numbers (probabilities, to be more precise). In the instance of even length (se-
cant numbers), there are more symmetries, and we have only four q-secant numbers.
By general principles, the limit q → 1 reduces all the instances to the classical

quantities.
Originally, the idea to use geometric probabilities for words came from some com-

binatorial problems in computer science (cf. [14]).
This paper aims by no means to offer a complete theory of these new numbers.

Some results are given, others conjectured, and it is hoped that the papers stimulates
other people to do more related research.
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A few definitions from q-analysis are needed; see [1, 2]:

[n]q := 1−qn
1−q , [n]q! := [1]q[2]q ···[n]q,

(x;q)n := (1−x)(1−xq)
(
1−xq2)···(1−xqn−1).

(1.1)

2. Recursions. The classical book [8] offers a general framework to deal with words
and pattern (“pattern algebra”). However, we have decided to use a different approach
that works particularly well in the present context, and is completely elementary. It
is called the “adding a new slice” technique. In doing so, recursions are obtained; by
iterating them, the generating functions of interest come out almost effortlessly.
We introduce the functions

T≤≥n (u), (2.1)

where the coefficient of ui in it is the probability that a word of length n satisfies the
≤≥≤≥ ··· condition and ends with the letter i. Also, we define

τ≤≥n = T≤≥n (1), (2.2)

which drops the technical condition about the last letter.
Furthermore, we introduce the generating functions

F≤≥(z,u)=
∑
n≥0

T≤≥n (u)zn, f≤≥(z)= F≤≥(z,1). (2.3)

Quantities like F≤>(z,u) etc. are defined in an obvious way.
For the instance of secant numbers, similar quantities will be defined, but the letters

S,σ ,G,g are used instead of T ,τ,F,f .
Obviously, there are only nonzero contributions for odd n in the tangent case and

for even n in the secant case.
The reason to operate with a variable u that controls the last letter is the technique

of “adding a new slice,” that was applied with success in [6] and, more recently, in [13].

Theorem 2.1. The functions T∇�2n+1(u) satisfy the following recurrences:

T≥≤2n+1(u)=
p2u

(1−qu)(1−q2u)T
≥≤
2n−1(1)−

p2u
(1−qu)(1−q2u)T

≥≤
2n−1

(
q2u

)
,

T≥≤1 (u)= pu
1−qu,

(2.4)

T≥<2n+1(u)=
p2qu2

(1−qu)(1−q2u)T
≥<
2n−1(1)−

p2qu2

(1−qu)(1−q2u)T
≥<
2n−1

(
q2u

)
,

T≥<1 (u)= pu
1−qu,

(2.5)

T><2n+1(u)=
p2qu2

(1−qu)(1−q2u)T
><
2n−1(1)−

p2u
q(1−qu)(1−q2u)T

><
2n−1

(
q2u

)
,

T><1 (u)= pu
1−qu,

(2.6)

T≤≥2n+1(u)=
pu

q(1−qu)T
≤≥
2n−1(q)−

p2u
q(1−qu)(1−q2u)T

≤≥
2n−1

(
q2u

)
,

T≤≥1 (u)= pu
1−qu,

(2.7)
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T≤>2n+1(u)=
pu

q(1−qu)T
≤>
2n−1(q)−

p2

q2(1−qu)(1−q2u)T
≤>
2n−1

(
q2u

)
,

T≤>1 (u)= pu
1−qu,

(2.8)

T<>2n+1(u)=
pu

1−quT
<>
2n−1(q)−

p2u
(1−qu)(1−q2u)T

<>
2n−1

(
q2u

)
,

T<>1 (u)= pu
1−qu.

(2.9)

Proof. Since the technique is the same for all the instances, it is enough to discuss,
for example, the “≥≤” case. Adding a new slice means adding a pair (k,j) with 1 ≤
k≤ i, j ≥ k, replacing ui by 1 and providing the factor uj . But

i∑
k=1

pqk−1
∑
j≥k

pqj−1uj = p2u
(1−qu)(1−q2u) −

p2u
(1−qu)(1−q2u)

(
q2u

)i, (2.10)

which explains the recursion. The starting value is just

∑
j≥1

pqj−1uj = pu
1−qu. (2.11)

(Readers who feel uncomfortable with this technique can write down a recursion for
P2n+1,j , the probability that a down-up composition of length 2n+1 endswith j, namely,

P2n+1,j = pqj−1
(
1−qj)∑

j≥1
P2n−1,j−

j−1∑
k=1

pqj−k−1
(
1−qj−k)q2kP2n−1,k, (2.12)

and translate it afterwards into (2.4).)

Theorem 2.2. The numbers τ∇�2n+1 have the generating functions f∇�(z)= tanq(z)
= sinq(z)/cosq(z):

f≥≤(z)=
∑
n≥0

(
(−1)nz2n+1/[2n+1]q!

)
qn(n+1)∑

n≥0
(
(−1)nz2n/[2n]q!

)
qn(n−1)

,

f≥<(z)=
∑
n≥0

(
(−1)nz2n+1/[2n+1]q!

)
∑
n≥0

(
(−1)nz2n/[2n]q!

) ,

f><(z)=
∑
n≥0

(
(−1)nz2n+1/[2n+1]q!

)
qn2∑

n≥0
(
(−1)nz2n/[2n]q!

)
qn2

,

f≤≥(z)=
∑
n≥0

(
(−1)nz2n+1/[2n+1]q!

)
qn2∑

n≥0
(
(−1)nz2n/[2n]q!

)
qn(n−1)

,

f≤>(z)=
∑
n≥0

(
(−1)nz2n+1/[2n+1]q!

)
∑
n≥0

(
(−1)nz2n/[2n]q!

) ,

f<>(z)=
∑
n≥0

(
(−1)nz2n+1/[2n+1]q!

)
qn(n+1)∑

n≥0
(
(−1)nz2n/[2n]q!

)
qn2

.

(2.13)
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Proof. The proofs of the first three relations are very similar, and we only sketch
the first instance. Summing up we find

F≥≤(z,u)= puz
1−qu +

p2uz2

(1−qu)(1−q2u)F
≥≤(z,1)− p2uz2

(1−qu)(1−q2u)F
≥≤(z,q2u).

(2.14)

Iterating that we find for f(z)= f≥≤(z):

f(z)= pz
1−q +

p2z2

(1−q)(1−q2)f(z)−
p2q2z3

(1−q)(1−q2)(1−q3)

− p4q2z4

(1−q)(1−q2)(1−q3)(1−q4)f(z)+···
(2.15)

from which the announced formula follows by solving for f(z).
The three others are trickier, because of a term T∇∆2n−1(q). Again, one case is dis-

cussed. Observe that

T≤≥2n−1(q)= q−1S≤≥2n (1), (2.16)

because one more “up” step should replace ui by
∑
k≥i pqk−1 = qi−1. Now the gener-

ating function g≤≥(z) of the quantities S≤≥2n (1) (upcoming) is obtained independently,
whence we get

F≤≥(z,u)= puz
q2(1−qz)g

≤≥(z)− p2uz2

q(1−qu)(1−q2u)F
≤≥(z,q2u). (2.17)

Now iteration as usual derives the desired result.

Theorem 2.3. The functions S∇�2n (u) satisfy the following recurrences:

S≤≥2n+2(u)=
p2u

(1−qu)(1−q2u)S
≤≥
2n (1)−

p2u
(1−qu)(1−q2u)S

≤≥
2n
(
q2u

)
,

S≤≥2 (u)= p2u
(1−qu)(1−q2u) ,

(2.18)

S≤>2n+2(u)=
p2u

(1−qu)(1−q2u)S
≤>
2n (1)−

p2

q2(1−qu)(1−q2u)S
≤>
2n
(
q2u

)
,

S≤>2 (u)= p2u
(1−qu)(1−q2u) ,

(2.19)

S<≥2n+2(u)=
p2qu2

(1−qu)(1−q2u)S
<≥
2n (1)−

p2qu2

(1−qu)(1−q2u)S
<≥
2n
(
q2u

)
,

S<≥2 (u)= p2qu2

(1−qu)(1−q2u) ,
(2.20)
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S<>2n+2(u)=
p2qu2

(1−qu)(1−q2u)S
<>
2n (1)−

p2u
q(1−qu)(1−q2u)S

<>
2n
(
q2u

)
,

S<>2 (u)= p2qu2

(1−qu)(1−q2u) .
(2.21)

Proof. The proof works as in the easy cases of the tangent recursions and is
omitted. For the starting value, the first pair of numbers must be considered.

Theorem 2.4. The numbersσ∇�2n have the generating functions g∇�(z)=1/cosq(z):

g≤≥(z)= 1∑
n≥0

(
(−1)nz2n/[2n]q!

)
qn(n−1)

,

g≤>(z)= 1∑
n≥0

(
(−1)nz2n/[2n]q!

) ,

g<≥(z)= 1∑
n≥0

(
(−1)nz2n/[2n]q!

)
qn(2n−1)

,

g<>(z)= 1∑
n≥0

(
(−1)nz2n/[2n]q!

)
qn2

.

(2.22)

Proof. The proofs are quite similar as before; however, iteration must be done for
the function G∇∆(z,u)−1, and 1 must be added at the end.

3. Jackson’s q-sine and q-cosine functions. In this section, we are considering a
general class of q-sine and q-cosine functions and sort out those that satisfy a natu-
ral condition. This condition is even more natural, as all the previously encountered
q-sine and q-cosine functions satisfy them.
Jackson in [12] has introduced the functions

sinq(z)=
∑
n≥0

(−1)nz2n+1
[2n+1]q! , cosq(z)=

∑
n≥0

(−1)nz2n
[2n]q!

(3.1)

and proved the relation

sinq(z)sin1/q(z)+cosq(z)cos1/q(z)= 1. (3.2)

Since we have here several q-sine and q-cosine functions, we call them a q-sine-cosine
pair, if relation (3.2) holds.

Theorem 3.1. For the functions

sinq(z) :=
∑
n≥0

(−1)nz2n+1
[2n+1]q! q

An2+Bn, cosq(z) :=
∑
n≥0

(−1)nz2n
[2n]q!

qCn
2+Dn (3.3)

exactly the twelve pairs in Table 3.1 are q-sine-cosine pairs:
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Table 3.1.

A B C D

0 0 0 0

2 1 0 0

0 0 2 −1
2 1 2 −1
0 1 0 1

2 0 0 1

1 0 1 0

1 1 1 0

0 1 2 −2
2 0 2 −2
1 0 1 −1
1 1 1 −1

Proof. The desired relation gives more and more restrictions for the (complex)
numbers A,B,C,D when we look at the coefficients of z2n for n = 0,1,2, . . . . By a
tedious search that will not be reported here we find these twelve possibilities, and
all others can be excluded. The proof that this indeed works is very similar for all of
them, so we give just one, namely the instance (1,0,1,0).
Note the following expansions:

sin1/q z =
∑
n≥0

(−1)nz2n+1
[2n+1]q! q

(
2n+1
2

)
−n2 , cos1/q z =

∑
n≥0

(−1)nz2n
[2n]q!

q
(
2n
2

)
−n2 . (3.4)

So we must prove that, for n≥ 1,

n∑
k=0


2n
2k



q

q
(
2k
2

)
−k2+(n−k)2 =

n−1∑
k=0


 2n

2k+1



q

q
(
2k+1
2

)
−k2+(n−k−1)2 (3.5)

or, reversing the order of summation in the second sum,

n∑
k=0


2n
2k



q

q2k
2−k−2nk =

n−1∑
k=0


 2n

2k+1



q

q2k
2+k−n−2nk. (3.6)

We rewrite this again as

∑
k even


2n
k



q

q−nk+
(
k
2

)
=
∑
k odd


2n
k



q

q−nk+
(
k
2

)
. (3.7)

Therefore, we have to prove that

2n∑
k=0


2n
k



q

(−1)kq−nk+
(
k
2

)
= 0. (3.8)
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We use the formula (10.0.9) in [2], see also [1],

n∑
k=0


n
k



q

zkq
(
k
2

)
=

n−1∏
j=0

(
1+qjz). (3.9)

The desired result now follows by replacing n by 2n and plugging in z =−q−n.
Theorem 3.2. The six tanq(z) functions in Theorem 2.2 all involve q-sine-cosine

pairs.

Remark 3.3. Replacing q by 1/q in the q-sine-cosine pairs and rewriting everything
again in the q-notation means replacing the vector (A,B,C,D) of exponents by (2−A,
1−B,2−C,−1−D). This will be called “duality.”

Table 3.2.

A B C D A′ B′ C′ D′

0 0 0 0 2 1 2 −1
2 1 0 0 0 0 2 −1
0 1 0 1 2 0 2 −2
2 0 0 1 0 1 2 −2
1 0 1 0 1 1 1 −1
1 1 1 0 1 0 1 −1

This reduces the twelve pairs to six pairs.

4. Continued fractions. Experimenting with Maple, it was found that some of the
twelve tangent functions have nice continued fraction expansions. Some could be
proved, others not (yet).
A lot of work still needs to be done concerning a combinatorial theory of these

continued fractions, perhaps in the style of [5].

Theorem 4.1. For (A,B,C,D)= (0,0,0,0) and (A,B,C,D)= (2,1,2,−1) we have

tanq(z)=
z

[1]qq−0−
z2

[3]qq−1−
z2

[5]qq−2−
z2

[7]qq−3−
z2

. . .

. (4.1)

The two tangent functions coincide, which is classical, since Jackson [12] has shown that
for his functions

sinq zcos1/q z−sin1/q zcosq z = 0 (4.2)

holds.
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Proof. For the proof by inductionwemust do the following: setan=[2n−1]qq1−n
and

pn(z)= anpn−1(z)−z2pn−2(z), p0(z)= 0, p1(z)= z,
qn(z)= anqn−1(z)−z2qn−2(z), q0(z)= 1, q1(z)= a1.

(4.3)

We must show that

[
zk
](
pn(z)cosq z−qn(z)sinq z

)= 0 for k≤ 2n. (4.4)

Now look at

[
zk
]((

anpn−1(z)−z2pn−2(z)
)
cosq z−

(
anqn−1(z)−z2qn−2(z)

)
sinq z

)
. (4.5)

By the induction hypothesis we only have to show that

[
z2n−1

](
pn(z)cosq z−qn(z)sinq z

)= 0. (4.6)

However, we can easily show by induction that

pn(z)=
∑
k
z2k+1(−1)k [2n−2k−1]q!qk(2k+1)−

(n
2

)

[n−2k−1]q![2k+1]q!
∏n−1−2k

i=1
(
1+qi) ,

qn(z)=
∑
k
z2k(−1)k [2n−2k]q!qk(2k−1)−

(n
2

)

[n−2k]q![2k]q!
∏n−2k

i=1
(
1+qi) ,

(4.7)

holds (the hard part is to find these formulae). We have to prove that

∑
k≥0

[
z2k+1

]
pn(z)

[
z2n−2k−2

]
cosq z =

∑
k≥0

[
z2k
]
qn(z)

[
z2n−2k−1

]
sinq z (4.8)

or


(n−1)/2�∑
k=0

[2n−2k−1]q!qk(2k+1)
[n−2k−1]q![2k+1]q!

∏n−1−2k
i=1

(
1+qi)[2n−2k−2]q!

=

n/2�∑
k=0

[2n−2k]q!qk(2k−1)
[n−2k]q![2k]q!

∏n−2k
i=1

(
1+qi)[2n−2k−1]q! .

(4.9)

Thus we must prove


(n−1)/2�∑
k=0

(
1−q2n−2k−1)qk(2k+1)

[n−2k−1]q![2k+1]q!
∏n−1−2k

i=1
(
1+qi) =


n/2�∑
k=0

(
1−q2n−2k)qk(2k−1)

[n−2k]q![2k]q!
∏n−2k

i=1
(
1+qi)
(4.10)

or

n∑
k=0

(
1−q2n−k)q

(
k
2

)
(−1)k

[n−k]q![k]q!
∏n−k

i=1
(
1+qi) = 0, (4.11)



q-TANGENT AND q-SECANT NUMBERS 833

or
n∑
k=0

1
(q;q)k

(
q2;q2

)
n−k

(
1−q2n−k)q

(
k
2

)
(−1)k = 0. (4.12)

Now

n∑
k=0

1
(q;q)k

(
q2;q2

)
n−k

q
(
k
2

)
(−1)k = [zn] ∑

k≥0

q
(
k
2

)
(−1)kzk

(q;q)k

∑
k≥0

zk(
q2;q2

)
k

=
[
zn
]∏

k≥0
(
1−zqk)∏

k≥0
(
1−zq2k) = [zn]∏

k≥0

(
1−zq2k+1)

= qn[zn]∏
k≥0

(
1−zq2k)= qnq2

(n
2

)
(−1)n(

q2;q2
)
n

= (−1)
nqn2(

q2;q2
)
n
.

(4.13)

Similarly,

n∑
k=0

q2n−k

(q;q)k
(
q2;q2

)
n−k

q
(
k
2

)
(−1)k = q2n[zn] ∑

k≥0

q
(
k
2

)
(−1)k(z/q)k
(q;q)k

∑
k≥0

zk(
q2;q2

)
k

= q2n[zn]
∏

k≥0
(
1−zqk−1)∏

k≥0
(
1−zq2k) = q2n[zn]∏

k≥0

(
1−zq2k−1)

= q2nq−n[zn]∏
k≥0

(
1−zq2k)=qnq

2
(n
2

)
(−1)n(

q2;q2
)
n

= (−1)
nqn2(

q2;q2
)
n
.

(4.14)

This finishes the proof.
The continued fraction for (2,1,2,−1) follows by replacing q by 1/q.

Theorem 4.2. For (A,B,C,D)= (0,1,0,1) we have

tanq(z)=
z

[1]qq−0−
z2

[3]qq−2−
z2

[5]qq−2−
z2

[7]qq−4−
z2

. . .

. (4.15)

The negative powers of q go like 0,2,2,4,4,6,6,8,8, . . . .

Proof. The proof follows the same lines; this time the polynomials (continuants)
are

pn(z)=
∑
k
z2k+1(−1)k [2n−2k−1]q!q2k(k+1)−

(n
2

)
−[n/2]

[n−2k−1]q![2k+1]q!
∏n−1−2k

i=1
(
1+qi) ,

qn(z)=
∑
k
z2k(−1)k [2n−2k]q!q2k2−

(n
2

)
−[n/2]

[n−2k]q![2k]q!
∏n−2k

i=1
(
1+qi) .

(4.16)
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Hence we have to prove that

[(n−1)/2]∑
k=0

(
1−q2n−2k−1)q2k(k+1)−k

[n−2k−1]q![2k+1]q!
∏n−1−2k

i=1
(
1+qi) =

[n/2]∑
k=0

(
1−q2n−2k)q2k2−k

[n−2k]q![2k]q!
∏n−2k

i=1
(
1+qi) ;
(4.17)

from here on we can use the previous proof.
An alternative proof is by noting that

tan(0,1,0,1)q (z)= 1√q tan
(0,0,0,0)
q

(
z
√
q
)

(4.18)

and using the previous result.

Theorem 4.3. For (A,B,C,D)= (2,0,2,−2) we have

tanq(z)=
z

[1]qq−0−
z2

[3]qq−0−
z2

[5]qq−2−
z2

[7]qq−2−
z2

. . .

. (4.19)

The negative powers of q go like 0,0,2,2,4,4,6,6,8,8, . . . .

Proof. This follows from the previous theorem by replacing q by 1/q.

Conjecture 4.4. For (A,B,C,D)= (1,0,1,0) we have

tanq(z)=
z

[1]qq0−
z2

[3]qq−2−
z2

[5]qq1−
z2

[7]qq−9−
z2

. . .

. (4.20)

The positive powers of q go like 0,1,6,15, . . . (k(2k−1)).
The negative powers of q go like 2,9,20,35, . . . ((k+1)(2k−1)).
Comment. It might be useful to rewrite the continued fraction as

z

1− z2b1

1− z2b2

1− z2b3

1− z
2b4
. . .

(4.21)



q-TANGENT AND q-SECANT NUMBERS 835

with

bk = 1
[k]q[k+1]q q

−k+(−1)k(2k−1)

= 1
[k]q[k+1]q

[
1
2
q−3k+1

(
1+q4k−2)− (−1)k

2
q−3k+1

(
1−q4k−2)

]
.

(4.22)

The recursions for the continuants are now

pn(z)= pn−1(z)−bn−1z2pn−2(z), p0(z)= 0, p1(z)= z,
qn(z)= qn−1(z)−bn−1z2qn−2(z), q0(z)= 1, q1(z)= 1.

(4.23)

Unfortunately, even with this form, I am currently unable to guess the coefficients of
these polynomials, whence I must leave this expansion as an open problem.

Note. Added in proof (September 2000): Markus Fulmek has established that
recently.

Conjecture 4.5. For (A,B,C,D)= (1,1,1,−1) we have

tanq(z)=
z

[1]qq−0−
z2

[3]qq0−
z2

[5]qq−5−
z2

[7]qq3−
z2

. . .

. (4.24)

The positive powers of q go like 0,3,10,21, . . . ((k−1)(2k−1)).
The negative powers of q go like 0,5,14,27, . . . ((k−1)(2k+1)).
Comment. This would be a corollary of the previous expansion.

Remark 4.6. Normally, as for example in [5, 10], the continued fraction expansions
of the ordinary generating function of the tangent and secant numbers are considered,
whereas we stick here to the exponential (or probability) generating functions.

5. Divisibility

Theorem 5.1. The coefficient

[2n+1]q
[
z2n+1

]
tanq(z) (5.1)

is divisible by

(1+q)(1+q2)···(1+qn) (5.2)

for the vectors of exponents (0,0,0,0), (2,1,2,−1), (0,1,0,1), (2,0,2,−2), (1,0,1,0),
and (1,1,1,−1).

Proof. The proof of [4] covers the first four instances, since we note that

tan(0,1,0,1)q (z)= 1√q tan
(0,0,0,0)
q

(
z
√
q
)
. (5.3)
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The only open case is thus (1,0,1,0), as the remaining one would follow from duality.
Thus, let us now consider

sinq z =
∑
n≥0

(−1)nz2n+1
[2n+1]q! q

n2 , cosq z =
∑
n≥0

(−1)nz2n
[2n]q!

qn
2
, (5.4)

and tanq z = sinq z/cosq z.
We need the following computation that is akin to the one in Theorem 3.1,

[
z2n+1

]
sin1/q zcosq z =

n∑
k=0

(−1)kqk(k+1)
[2k+1]q!

(−1)n−kq(n−k)2
[2n−2k]q!

= qn2(−1)n
[2n+1]q!

n∑
k=0


2n+1
2k+1



q

q2k
2+k−2nk

= qn(n+1)(−1)n
[2n+1]q!

∑
k odd


2n+1

k



q

q
(
k
2

)
−nk

= qn(n+1)(−1)n
[2n+1]q!

1
2

2n+1∑
k=0


2n+1

k



q

q
(
k
2

)
−nk

= qn(n+1)(−1)n
[2n+1]q!

1
2

2n∏
j=0

(
1+qjz)

∣∣∣
z=q−n

= q
(
n+1
2

)
(−1)n

[2n+1]q!
n∏
i=1

(
1+qi)2.

(5.5)

We also mention the dual formula

[
z2n+1

]
sinq zcos1/q z = q

(n
2

)
(−1)n

[2n+1]q!
n∏
i=1

(
1+qi)2. (5.6)

A similar computation gives the result (n≥ 1),

[
z2n

]
cosq zcos1/q z =−

[
z2n

]
sinq zsin1/q z = q

(n
2

)
(−1)n

[2n]q!

n−1∏
i=1

(
1+qi)2(1+qn). (5.7)

Now we write tanq z = sinq zcos1/q z/cosq zcos1/q z and thus

cosq zcos1/q z
∑
n≥0

T2n+1(q)
[2n+1]q!z

2n+1 = sinq zcos1/q z. (5.8)

Comparing coefficients, we find

T2n+1(q)+
n∑
k=1


2n+1

2k



q

q
(
k
2

)
(−1)k

k−1∏
i=1

(
1+qi)2(1+qk)T2n+1−2k(q)=q

(n
2

)
(−1)n

n∏
i=1

(
1+qi)2.

(5.9)



q-TANGENT AND q-SECANT NUMBERS 837

The induction argument is as in [4]; T2n+1−2k(q) has a factor
∏n−k

i=1 (1+qi) and, ac-
cording again to [4],


2n+1

2k



q

∏k
i=1
(
1+qi)∏n

i=n−k+1
(
1+qi) (5.10)

is still a polynomial.
The two factors

∏n
i=n−k+1(1+qi) and

∏n−k
i=1 (1+qi) mean that everything in (5.9)

must be divisible by
∏n

i=1(1+qi), and this finishes the proof.
It is likely that stronger results as in [7] hold, but we have not investigated that.

The new q-secant numbers do not enjoy any divisibility results that are worthwhile
to report; for the classical ones (see [3]).

Remark 5.2. The paper [11] has a q-exponential function

�q :=
∑
n≥0

qn2/4zn

(q;q)n
. (5.11)

Plugging in iz(1−q) for z and taking real parts would result in the q-cosine with factor
qn2 . To get the corresponding q-sine, replace z by izq(1−q), take the imaginary part
andmultiply by q1/4. We consider that merely to be a curiosity, not being ofmuch help.
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