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Abstract. We present a short and simple proof of the well-known Cauchy interlace theo-
rem. We use the theorem to improve some lower bound estimates for the spectral radius
of a real symmetric matrix.
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1. Cauchy’s interlace theorem. We begin by presenting a short and simple proof of
the Cauchy interlace theorem, which we believe to be new. See [1, 3, 4, 5], for example,
for several other proofs. The theorem states that if a row-column pair is deleted from
a real symmetric matrix, then the eigenvalues of the resulting matrix interlace those
of the original one.
Let A be a real symmetric n×n matrix with eigenvalues (assumed distinct for now)

λ1 < λ2 < ···< λn (1.1)

and normalized eigenvectors

v1,v2, . . . ,vn. (1.2)

Let A1 be the matrix obtained from A by deleting the first row and column. We list
the eigenvalues of A1 via µ1 ≤ µ2 ≤ ··· ≤ µn−1. Set

D(λ) := det(A−λI), D1(λ) := det(A1−λI), (1.3)

e := [1,0,0, . . . ,0]T , x := [x1,x2, . . . ,xn]T . (1.4)

Applying Cramer’s rule to the set of equations (A−λI)x= e yields

x1 = D1(λ)D(λ)
. (1.5)

If we write

e=
∑
ckvk, (1.6)

then the solution of the above set of equations reads

x=
∑ ck
λk−λvk. (1.7)
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On one hand,

x·e= x1, (1.8)

while on the other hand,

x·e=
∑ c2k
λk−λ. (1.9)

Therefore

D1(λ)
D(λ)

= x1 = x·e=
∑ c2k
λk−λ. (1.10)

Now if none of the ck’s is zero—i.e., if e is in general position with respect to {v1,v2,
. . . ,vn}—then it follows that the zeros of D1(λ) lie strictly between the zeros of D(λ).
That is, µk ∈ (λk,λk+1) (k= 1,2, . . . ,n−1). If e is not in general position, then one may
choose a sequence {uj} of vectors which are in general position, and which tend to e;
passage to the limit yields µk ∈ [λk,λk+1]. This is the Cauchy interlace theorem for
the case in which A has distinct eigenvalues.
Little change in the proof is needed to deal with the case of multiple eigenvalues.

We find, in particular, that if λ is an m-fold eigenvalue of A, then it is at least an
(m−1)-fold eigenvalue of A1 (m≥ 2).

2. Lower bounds for the spectral radius. For any square matrix A we denote by
ρ(A) its spectral radius

ρ(A)=max [|λ| : λ is an eigenvalue for A]. (2.1)

In [2], the following result is proved.

Theorem 2.1. Let A be a real matrix withm= rank(A)≥ 2.

If tr(A2)≤ (tr(A))2/m, then ρ(A)≥
√
(tr(A))2−tr(A2)/(m(m−1)). (2.2a)

If tr(A2)≥ (tr(A))2/m, then
ρ(A)≥ |tr(A)|/m+

√
1/(m(m−1))[tr(A2)−(1/m)(tr(A))2].

(2.2b)

Here we consider real symmetric matrices, in which case (2.2b) holds. We obtain a
lower bound for ρ(A) which is “usually” sharper than (2.2b), and which requires no
knowledge of the rank. As in [2], we consider certain submatrices associated with A,
but we employ Cauchy’s interlace theorem instead of Lucas’ theorem.

Theorem 2.2. Let A= [ajk] be a real symmetric n×n matrix, with n≥ 3. Then

ρ(A)≥ 1
2
max

1≤j<k≤n

[
|ajj+akk|+

√(
ajj−akk

)2+4a2jk
]
. (2.3)
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Proof. Delete from A any n−2 row-column pairs, leaving a 2×2 submatrix B.
It has characteristic polynomial, say, p(λ) = λ2+bλ+c, where b = −tr(B) and 2c =
(tr(B))2−tr(B2). As B is also symmetric it has real roots, the larger of their magnitudes
being

1
2

[
|tr(B)|+

√
2tr(B2)−(tr(B))2], where B =

[
ajj ajk
ajk akk

]
. (2.4)

By the Cauchy Interlace Theorem, each of the roots of p is no larger in magnitude
than ρ(A), and so a little manipulation gives us the desired result.

Remarks. (1) Deleting n−1 row-column pairs gives ρ(A)≥max |akk|. This result
is already sharper than Theorem 2 of [2].
(2) Wemay delete (whenever possible)n−3 orn−4 row-column pairs to obtain char-

acteristic polynomials of degree 3 or 4, then proceed as above to obtain increasingly
sharper but less manageable estimates.
(3) Analogous results can be obtained for skew-symmetric matrices, which involve

maximums of off-diagonal entries. We leave the interested reader to fill in the details.
(4) As was done in [2], we generated 1000 random (but symmetric) n×n matrices

with integer entries in [−10,10], for n = 4, n = 8, and n = 12. We calculated the
average ratios of each of the bounds obtained in Theorems 2.1 and 2.2 to the actual
spectral radius. We used Mathematica, and our results are summarized in Table 2.1.

Table 2.1.

Theorem 2.1 Theorem 2.2

n= 4 0.517802 0.802070

n= 8 0.285717 0.739505

n= 12 0.208946 0.694311

We add that our ratios also compare favorably with those arising from all of the
results quoted in [2]—see Table 2.1.
(5) As the numerical evidence suggests, Theorem 2.2 is “usually” sharper than

Theorem 2.1 (in the symmetric case). If A is n×n, and rank(A)=n, then Theorem 2.2
is at least as sharp as Theorem 2.1: the (n2 ) numbers whose maximum is taken in
Theorem 2.2 are the roots of larger magnitude of (n2 ) quadratics, whose sum is the
quadratic with the estimate in Theorem 2.1 as its root of larger magnitude. If
rank(A) < n, then there is no simple relationship: the matrices (each with eigenvalue
λ= 0)

A=



1 0 0

0 1 0

0 0 0


 , B =



−1 0 2

0 1 2

2 2 0


 , C =




0 −1 0 0

−1 2 0 0

0 0 2 0

0 0 0 0




(2.5)

provide all three possibilities. For A, the estimates are equal. For B, Theorem 2.1 is
sharper. For C , Theorem 2.2 is sharper.
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