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Abstract. We consider a Bolza problem governed by a linear time-varying Darboux-
Goursat system and a nonlinear cost functional, without the assumption of the convexity
of an integrand with respect to the state variable. We prove a theorem on the existence
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1. Introduction. Let us consider a control system described by a system of ordinary
differential equations of the form

ẋ = f(t,x,u), x(0)= x0, x(1)= x1, (1.1)

with a cost functional

I(x,u)=
∫ 1
0
f 0(t,x,u)dt, u∈M, (1.2)

where f : [0,1]×Rn×M �� Rn, f 0 : [0,1]×Rn×M �� R, M is some subset of the
space Rr .
One of the fundamental problems of optimization theory is the question of the ex-

istence of optimal processes for the system of (1.1) and (1.2). This problem was the
topic of investigations in many papers and monographs (cf. [1, 5] and the references
therein). The natural spaces in which one studies the existence of solutions for the sys-
tem (1.1) and (1.2) are the space of absolutely continuous trajectories AC([0,1],Rn)
and the space of essentially bounded controls with values in the set M . Under some
assumptions about the functions f , f 0, and the set M (the growth conditions of the
function f 0, the convexity of f 0 with respect to u as well as the convexity and the
compactness of M), it is possible to prove that the system (1.1) and (1.2) possesses a
solution in the space AC([0,1],Rn)×L∞([0,1],Rr ) (cf. [1, 5]).
In the present paper, we consider the problem of the existence of solutions for a

system with distributed parameters of the form
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∂2z
∂x∂y

=A0(x,y)z+A1(x,y) ∂z∂x +A2(x,y)
∂z
∂y

+B(x,y)u a.e. on K, (1.3)

z(·,0)≡ 0 on [0,1], z(0,·)≡ 0 on [0,1] (1.4)

with a cost functional

I(z,u)=
∫ ∫

K
f 0
(
x,y,z(x,y),u(x,y)

)
dxdy, u∈M, (1.5)

where z = (z1, . . . ,zn), u = (u1, . . . ,ur ), (x,y) ∈ K = [0,1]× [0,1], f 0 : K × Rn ×
Rr �� R, M ⊂ Rr is a convex and compact set. Control system (1.3) and (1.4) is con-
sidered in the space of trajectories which are absolutely continuous on K(z ∈AC)
(cf. [11]) and in the space�M of controlsu essentially bounded and such thatu(x,y)∈
M for (x,y)∈K a.e.
The basic result of our paper is a theorem on the existence of solutions, stating that

if the function f 0 is convex with respect to u, continuous with respect to (z,u), mea-
surable with respect to (x,y), and satisfies some growth condition, then the system
(1.3), (1.4), and (1.5) possesses an optimal solution. This theorem has a form quite
analogous to existence theorems for ordinary systems.
Systems of the form (1.3) were the objects of investigations in many papers. Es-

sential results concerning the existence of smooth solutions can be found in [2]. The
problem of the existence of solutions in Sobolev spaces is considered in [9]. In [3, 8],
the existence and uniqueness of a solution in the class of continuous functions is
assumed. Under the above assumptions, the maximum principle for piecewise contin-
uous controls is proved. In [13], the system (1.3) and (1.4), with a cost functional of
the form

I(z,u)=
∫ 1
0

∫ 1
0

(
c0
(
x,y

)
z(x,y)+c1(x,y) ∂z∂x (x,y)

+c2(x,y) ∂z∂y (x,y)+d(x,y)u(x,y)
)
dxdy

+
∫ 1
0

(
e1(x)z(x,1)+e2(x) ∂z∂x (x,1)

)
dx

+
∫ 1
0

(
e3(y)z(1,y)+e4(x) ∂z∂y (1,y)

)
dy,

(1.6)

is considered in the spaces of absolutely continuous trajectories and measurable
controls with values in a fixed compact and convex subset of Rr . Using Dubovitskii-
Milyutin method, the author gives necessary conditions for optimality that are analo-
gous to the Pontryagin maximum principle for ordinary systems.
In our paper, we introduce the notion of equiabsolute continuity of a family of ab-

solutely continuous functions of two variables and give necessary and sufficient con-
ditions for such a family to be equiabsolutely continuous (the analogue of [1, 10.2(i)]).
Next, we prove the Ascoli-Arzela theorem for absolutely continuous functions of two
variables. Making use of this theorem, we prove an analogue of [1, 10.8(iv)] for sys-
tem (1.3). Finally, on the basis of the lower semicontinuity theorem (cf. [1, 10.8(i)]),
we obtain a theorem on the existence of an optimal solution of problem (1.3), (1.4),
and (1.5).
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Systems of the form (1.3), (1.4), and (1.5) have a natural physical interpretation which
is given at the end of this paper.

2. Preliminaries. First, we recall the definition of an absolutely continuous function
on K, introduced in [11].

Definition 2.1. A function z : K �� R is called an absolutely continuous func-
tion on K (shortly, an AC function) if the associated function Fz of an interval is an
absolutely continuous function of an interval and the functions z(·,0), z(0,·) are
absolutely continuous functions of one variable on [0,1].
The associated function Fz of an interval is defined by the formula

Fz
(
[x1,x2]×[y1,y2]

)= z(x2,y2)−z(x1,y2)−z(x2,y1)+z(x1,y1) (2.1)

for all intervals [x1,x2]×[y1,y2]⊂K.
Let us recall that a function F of an interval Q ⊂ K is called absolutely continuous

if, for any ε > 0, there exists δ > 0 such that
∑N
i=1 |F(Qi)| < ε for all finite systems

of nonoverlapping closed intervals Qi ⊂ K, i = 1,2, . . . ,N , such that
∑N
i=1µ2(Qi) < δ,

where µ2 denotes Lebesgue measure in K (cf. [6]).
In [11], it was shown that z : K �� R is absolutely continuous if and only if there

exist integrable functions l1,2 ∈ L1(K,R), l1, l2 ∈ L1([0,1],R), and a constant c ∈ R
such that

z(x,y)=
∫ x
0

∫ y
0
l1,2+

∫ x
0
l1+

∫ y
0
l2+c (2.2)

for all (x,y)∈K.
Making use of the above integral representation, we can demonstrate that the abso-

lutely continuous function z possesses (in the classical sense) the partial derivatives

∂z
∂x

=
∫ y
0
l1,2+l1, ∂z

∂y
=
∫ x
0
l1,2+l2, ∂2z

∂x∂y
= l1,2 (2.3)

defined for (x,y)∈K a.e. These derivatives are, of course, integrable on K.
A vector function z = (z1, . . . ,zn) : K �� R is called absolutely continuous function

on K if each of its coordinates functions zi, i = 1, . . . ,n, is absolutely continuous on
K in the sense of Definition 2.1.
The space of all absolutely continuous vector functions z = (z1, . . . ,zn) :K �� Rn is

denoted by AC . The norm in this space is defined by the formula

‖z‖AC = ‖l1,2‖L1(K,Rn)+‖l1‖L1([0,1],Rn)+‖l2‖L1([0,1],Rn)+|c|. (2.4)

It is easy to see that the space AC with this norm is a Banach space.

3. Families of equiabsolutely continuous functions of two variables; the Ascoli-
Arzela theorem. First, we recall some definitions.
A family {ϕs(·), s ∈ S} of functions defined on [0,1](K) is called equibounded on

[0,1](K) if there exists some constant R > 0 such that
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∣∣ϕs(t)
∣∣≤ R (3.1)

for all t ∈ [0,1](t ∈K) and s ∈ S.
A family {ϕs(·), s ∈ S} of absolutely continuous functions on [0,1] is called equiab-

solutely continuous on [0,1] if, for any ε > 0, there exists δ= δ(ε) > 0 such that
N∑
i=1

∣∣ϕs(βi)−ϕs(αi)
∣∣≤ ε (3.2)

for all finite systems of nonoverlapping intervals [αi,βi], i = 1, . . . ,N , in [0,1] with∑N
i=1(βi−αi) < δ and for all s ∈ S.
A family {ϕs(·), s ∈ S} of integrable functions on [0,1](K) is called equiabsolutely

integrable on [0,1](K) if, for any ε > 0, there exists δ= δ(ε) > 0 such that
∫
E

∣∣ϕs
∣∣≤ ε (3.3)

for all measurable subsets E of [0,1](K) with µ1(E)≤ δ(µ2(E)≤ δ) and for all s ∈ S,
where µ1 denotes Lebesgue measure in [0,1].
We have the following.

Lemma 3.1. If {ϕs, s ∈ S} is a family of absolutely continuous functions on [0,1],
then this family is equiabsolutely continuous if and only if the family of derivatives
{ϕ′

s , s ∈ S} is equiabsolutely integrable.

The above definitions and the proof of Lemma 3.1 can be found in [1, 10.2].
Now, let us introduce the notion of equiabsolute continuity of a family of absolutely

continuous functions of an interval that are defined on the collection of all closed
intervals contained in K.
So, a family {Fs : s ∈ S} of functions of an interval, which are absolutely continuous

on K, is called equiabsolutely continuous if, for any ε > 0, there exists δ = δ(ε) > 0
such that

N∑
i=1

∣∣Fs(Pi)∣∣≤ ε (3.4)

for all finite systems of nonoverlapping closed intervals Pi, i = 1, . . . ,N , in K with∑N
i=1µ2(Pi)≤ δ and for all s ∈ S.
Before we prove an analogue of Lemma 3.1 for functions of an interval, we recall

(cf. [6]) that an absolutely continuous function F on K of an interval possesses a
derivative DF (x) for x ∈K a.e. This derivatives is integrable on K and

∫
P

DF (x)= F(P) (3.5)

for any interval P ⊂K.
Lemma 3.2. If {Fs : s ∈ S} is a family of functions of an interval, which are absolutely

continuous on K, then this family is equiabsolutely continuous if and only if the family
of derivatives {DF s : s ∈ S} is equiabsolutely integrable on K.
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Proof

Sufficiency. Let us fix ε > 0 and let δ > 0 be the number in the definition of
equiabsolute integrability of the family of derivatives {DF s , s ∈ S}. If {Pi, i= 1, . . . ,N}
is a system of nonoverlapping closed intervals contained in K with

∑N
i=1µ2(Pi) ≤ δ,

then

N∑
i=1
|Fs(Pi)| =

N∑
i=1

∣∣∣∣
∫
Pi

DF s

∣∣∣∣≤
N∑
i=1

∫
Pi
|DF s | =

∫
⋃N
i=1 Pi

|DF s | ≤ ε (3.6)

for all s ∈ S because µ2
(⋃N

i=1Pi
)≤ δ.

Necessity. Let us fix ε > 0 and let δ > 0 be the number in the definition of equi-
absolute continuity on K of the family {Fs, s ∈ S} for ε/6. Now, let us fix s ∈ S and
the set E ⊂K with µ2(E)≤ δ/2. Of course,

µ2(E+)≤ δ2 , µ2(E−)≤ δ2 , (3.7)

where

E+ = {(x,y)∈ E :DF s(x,y)≥ 0
}
,

E− = {(x,y)∈ E :DF s(x,y)≤ 0
}
.

(3.8)

From the integrability of DF s it follows that there exists σ > 0 (depending on ε and s)
such that ∫

F

∣∣DF s
∣∣≤ ε

6
(3.9)

for anymeasurable set F ⊂K with µ(F)≤ σ . Without loss of generality, wemay assume
that σ ≤ δ/2.
Let G be an open set such that

E+ ⊂G, µ2(G)≤ µ2
(
E+
)+σ. (3.10)

From [6, Lemma V.4.1], it follows that there exists at most countable family {Pi, i =
1,2, . . .} of disjoint right-hand open intervals Pi = [xi1,xi2[ × [yi1,yi2[, i= 1,2, . . . , such
that

∞⋃
i=1
Pi =G. (3.11)

Consequently,

∞∑
i=1
µ2(Pi)= µ2(G)≤ µ2

(
E+
)+σ ≤ δ

2
+ δ
2
= δ. (3.12)

If we denote

GN =
N⋃
i=1
Pi (3.13)

for N ∈N, then we get
µ2(GN)≤ δ, (3.14)
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µ2
(
GN\E+

)≤ µ2(G\E+)≤ µ2(G)−µ2(G∩E+)
≤ µ2(E+)+σ −µ2(G∩E+)
= µ(E+)+σ −µ(E+)= σ,

µ2
(
G\GN

)≤ σ,
(3.15)

for sufficiently large N . Thus,∫
E+

∣∣DF s
∣∣=

∫
E+∩G

DF s =
∫
E+∩GN

DF s+
∫
E+∩(G\GN)

DF s

=
(∫

E+∩GN
DF s+

∫
GN\E+

DF s

)
−
∫
GN\E+

DF s+
∫
E+∩(G\GN)

DF s

≤
∫
GN

DF s+
∫
GN\E+

∣∣DF s
∣∣+

∫
G\GN

∣∣DF s
∣∣

≤
N∑
i=1
Fs(P̄i)+ ε6 +

ε
6
≤ 3· ε

6
= ε
2
.

(3.16)

In an analogous way, we can show that∫
E−

∣∣DF s
∣∣≤ ε

2
. (3.17)

So, ∫
E

∣∣DF s
∣∣≤ ε (3.18)

for any measurable set E ⊂K with µ2(E)≤ δ/2 and for any s ∈ S.
Now, let us introduce the notion of equiabsolute continuity of a family of absolutely

continuous functions of two variables.
We say that a family {zs, s ∈ S} of functions of two variables, which are abso-

lutely continuous on K, is equiabsolutely continuous if the families {Fzs , s ∈ S},
{zs(·,0), s ∈ S}, and {zs(0,·), s ∈ S} are equiabsolutely continuous on K, [0,1], and
[0,1], respectively.
Using equalities (2.1) and (2.2), we easily notice that, for an absolutely continuous

function z,

DF z = ∂2z
∂x∂y

(3.19)

in K a.e. From Lemmas 3.1 and 3.2, we immediately obtain

Theorem 3.3. If {zs, s ∈ S} is a family of functions of two variables, which are
absolutely continuous on K, then this family is equiabsolutely continuous if and only if
the families {∂2zs/∂x∂y, s ∈ S}, {∂zs/∂x(·,0), s ∈ S}, and {∂zs/∂y(0,·), s ∈ S} are
equiabsolutely integrable on K, [0,1], and [0,1], respectively.

We end the considerations of this section with Ascoli-Arzela theorem for absolutely
continuous functions of two variables.

Theorem 3.4. Let (zn)n∈N be a sequence of absolutely continuous functions on
K. If it is equibounded and equiabsolutely continuous on K, then we can choose a
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subsequence (znk)k∈N that is uniformly convergent on K to some function z0, which
is absolutely continuous on K.

Proof. It is easy to see that the equiabsolute continuity of the sequence (zn)n∈N
carries its equicontinuity. Indeed, let ε > 0 and δ=min{δ1,δ2,δ3}, where δ1, δ2, δ3 are
the numbers in the definition of equiabsolute continuity of the sequences (zn(·,0))n∈N,
(zn(0,·))n∈N, (Fzn)n∈N, respectively, for ε/4. Then, for any points (x̄, ȳ), ( ¯̄x, ¯̄y) ∈ K,
with |x̄− ¯̄x|+|ȳ− ¯̄y|< δ, we have∣∣zn(x̄, ȳ),−zn( ¯̄x, ¯̄y)∣∣≤ ∣∣zn(x̄, ȳ)−zn(x̄, ¯̄y)∣∣+∣∣zn(x̄, ¯̄y)−zn( ¯̄x, ¯̄y)∣∣

≤ ∣∣zn(x̄, ȳ)−zn(x̄, ¯̄y)−zn(0, ȳ)+zn(0, ¯̄y)∣∣
+∣∣zn(0, ȳ)−zn(0, ¯̄y)∣∣
+∣∣zn(x̄, ¯̄y)−zn( ¯̄x, ¯̄y)−zn(x̄,0)+zn( ¯̄x,0)∣∣
+∣∣zn(x̄,0)−zn( ¯̄x,0)∣∣

≤ 4· ε
4
= ε

(3.20)

for anyn∈N. Applying Ascoli-Arzela theorem for continuous functions (cf. [4, 1.5.4]),
we assert that we can choose a subsequence (znk)k∈N that converges uniformly on K
to some function z0 continuous on K.
Now, we show that the function z0 is absolutely continuous on K. Indeed, from the

equiabsolute continuity of the sequences
(
Fznk

)
k∈N, we have for any ε > 0, there exists

δ > 0 such that
N∑
i=1

∣∣Fznk (Pi)∣∣≤ ε (3.21)

for all finite systems of nonoverlapping closed intervals Pi ⊂ K, i = 1, . . . ,N , with∑N
i=1µ2(Pi) < δ and for all k ∈ N. If we denote Pi = [xi1,xi2]× [yi1,yi2], i = 1, . . . ,N ,

then inequality (3.21) can be written in the form

N∑
i=1

∣∣znk(xi2,yi2)−znk(xi1,yi2)−znk(xi2,yi1)+znk(xi1,yi1)∣∣≤ ε. (3.22)

Using the pointwise convergence of the sequence (znk)k∈N to z0, we obtain from (3.22)

N∑
i=1

∣∣z0(xi2,yi2)−z0(xi1,yi2)−z0(xi2,yi1)+z0(xi1,yi1)∣∣≤ ε, (3.23)

i.e.,

N∑
i=1
|Fz0(Pi)| ≤ ε. (3.24)

This means that the function Fz0 of an interval is absolutely continuous on K.
In an analogous way, we can show that the equiabsolute continuity of the sequence

(znk(·,0))k∈N implies the absolute continuity of the function z0(·,0), and the equi-
absolute continuity of the sequence (znk(0,·))k∈N implies the absolute continuity of
the function z0(0,·).
So, the function z0 is absolutely continuous on K and the proof is completed.
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4. On the existence of an optimal solution. Let us consider system (1.3) and (1.4).
In the sequel, we assume that the functions

A0 :K �� Rn,n,

A2 :K �� Rn,n,

A1 :K �� Rn,n,

B :K �� Rn,r
(4.1)

are measurable and essentially bounded.
The class of admissible controls is defined as follows:

�M :=
{
u :K �� Rr ;u is measurable on K and u(x,y)∈M for (x,y)∈K a.e.},

(4.2)

where M ⊂Rr is a fixed compact and convex set.
In [11], the author proved the following.

Theorem 4.1. For any control u ∈ �M , there exists a unique solution z ∈ AC of
system (1.3) and (1.4) that satisfies (1.3) a.e. on K and the boundary conditions (1.4)
everywhere on [0,1].

Since, in the sequel, we use some facts from the proof of Theorem 4.1, we reproduce
the proof here.

Proof of Theorem 4.1. Let us define the following operator:

� : L1(K,Rn) �� L1(K,Rn),

�(l)(x,y)=A0(x,y)
∫ x
0

∫ y
0
l(s,t)dtds

+A1(x,y)
∫ y
0
l(x,t)dt+A2(x,y)

∫ x
0
l(s,y)ds.

(4.3)

It is easy to see that this operator is continuous. Consider a sequence (lk)k∈N defined
by the recurrence relation

l0 = 0, lk = Bu+�
(
lk−1

)
, k= 1,2, . . . . (4.4)

Of course, lk can be represented in the form

lk =
k−1∑
s=0

�s(Bu), (4.5)

where

�0(Bu)= Bu, �s(Bu)=�
(
�s−1(Bu)

)
, s = 1,2, . . . . (4.6)

By definition,

�(Bu)(x,y)=A0(x,y)
∫ x
0

∫ y
0

Bu+A1(x,y)
∫ y
0

Bu+A2(x,y)
∫ x
0

Bu . (4.7)

So,

∣∣�(Bu)(x,y)
∣∣≤ 3CN, (4.8)
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where

C = max
i=0,1,2

ess sup
(x,y)∈K

∣∣Ai(x,y)∣∣,
N = ess sup

(x,y)∈K

∣∣B(x,y)∣∣max
u∈M

|u| (4.9)

and, consequently, ∥∥�(Bu)
∥∥
L1(K,Rn) ≤ 3CN. (4.10)

It can be easily noticed that �2(Bu) is the sum of 32 components, and that each
component may be estimated by C2N . Thus,∣∣�2(Bu)(x,y)

∣∣≤ (3C)2N for (x,y)∈K a.e. (4.11)

and, consequently, ∥∥�2(Bu)
∥∥
L1(K,Rn) ≤ (3C)2N. (4.12)

On the basis of the induction principle, it can be shown that �s(Bu) is the sum of 3s

components. Each component of that sum is the product of s coefficientsAi, i= 0,1,2,
and a k-fold, k ≥ s, multiple integral. In this integral, there are at least [(s + 1)/2]
integrations with respect to x or y . This implies that each component of the sum
may be estimated by

CsN
1[

(s+1)/2]! . (4.13)

Consequently,

∣∣�s(Bu)(x,y)
∣∣≤ (3C)sN 1[

(s+1)/2]! for (x,y)∈K a.e. (4.14)

So,

‖�s(Bu)‖L1(K,Rn) ≤ (3C)sN
1[

(s+1)/2]! . (4.15)

Since the series of numbers
∞∑
s=0
(3C)sN

1[
(s+1)/2]! (4.16)

is convergent, there exists a limit (in L1(K,Rn))

lim
k→∞

lk = lu. (4.17)

From the continuity of � and from (4.4), we obtain

lu =�(lu)+Bu . (4.18)

Adopting

zu(x,y)=
∫ x
0

∫ y
0
lu(s,t)dsdt, (4.19)

we obtain a solution of system (1.3) in the space AC , satisfying the boundary condi-
tions (1.4).
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The fundamental role in this section is played by the following theorem.

Theorem 4.2. Let (un)n∈N be any sequence of elements of the set �M and (zn)n∈N—
the sequence of the corresponding solutions of system (1.3) and (1.4) belonging to AC.
There exist a control u0 ∈�M , a function z0 ∈ AC, and a subsequence (nk)k∈N of the
sequence of positive integers, such that the pair (z0,u0) satisfies system (1.3), (1.4), and
(i) znk ����

k→∞
z0 uniformly on K;

(ii) ∂2znk/∂x∂y k→∞
� ∂2z0/∂x∂y weakly in L1(K,Rn);

(iii) ∂znk/∂x k→∞
� ∂z0/∂x weakly in L1(K,Rn);

(iv) ∂znk/∂y k→∞
� ∂z0/∂y weakly in L1(K,Rn);

(v) unk k→∞
� u0 weakly in L1(K,Rr ).

Before proving the above theorem, we give some lemmas. The first of them is a
well-known result, so we give it without a proof.

Lemma 4.3. From any sequence (un)n∈N of elements of �M , one can choose a subse-
quence (unk)k∈N such that (unk) k→∞

� u0 weakly in L1(K,Rr ), whereu0 is some element

of �M .

Lemma 4.4. The family {∂2zu/∂x∂y, u∈�M}, where zu is the solution of the sys-
tem (1.3) and (1.4) corresponding to a control u∈�M , is equibounded on K.

Proof. Let us use the notation and some facts from the proof of Theorem 4.1.
There, it was proved that, for any control u∈�M ,

zu(x,y)=
∫ x
0

∫ y
0
lu(s,t)dtds. (4.20)

Since, in view of (4.5) and (4.17),

∂2zu
∂x∂y

(x,y)= lu(x,y)=
∞∑
s=0

�s(Bu)(x,y), (4.21)

we have

∣∣∣∣ ∂2zu∂x∂y
(x,y)

∣∣∣∣≤
∞∑
s=0
(3C)sN

1[
(s+1)/2]! <+∞. (4.22)

The above sum does not depend on u∈�M . Therefore, the proof is completed.

Lemma 4.5. The family {zu, u∈�M} is equibounded on K.

Proof. The assertion follows directly from the equality

zu(x,y)=
∫ x
0

∫ y
0

∂2zu
∂x∂y

(s,t)dtds (4.23)

and Lemma 4.4.

From Lemma 4.4, we immediately get the following.
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Lemma 4.6. The family {∂2zu/∂x∂y, u∈�M} is equiabsolutely integrable on K.

Now, we give the proof of Theorem 4.2.

Proof. Let (un)n∈N be a sequence of controls from �M and let us choose from
it, on the basis of Lemma 4.3, a subsequence (unk)k∈N such that unk k→∞

� u0 weakly
in L1(K,Rr ), where u0 is some function belonging to �M . From Lemmas 4.5 and 4.6,
it follows that the sequence (znk)k∈N of the corresponding solutions of system (1.3)
and (1.4) satisfies the assumptions of Theorem 3.4. So, we may choose a subsequence,
say still (nk), such that znk �� ��

k→∞
z0 uniformly on K, where z0 is some function from

AC . From Lemma 4.6, it follows that the sequence (∂2znk/∂x∂yk∈N) is equiabsolutely
integrable on K. Thus, making use of Dunford-Pettis theorem (cf. [1, 10.3(i)]), we
may choose a subsequence, say still (nk)k∈N, such that ∂2znk/∂x∂y k→∞

� σ weakly

in L1(K,Rn), where σ is some function from L1(K,Rn). In view of the above, let us
observe that, for any (x,y)∈K,

znk(x,y)=
∫ x
0

∫ y
0

∂2znk
∂x∂y

=
∫ 1
0

∫ 1
0
χ[0,x]×[0,y]

∂2znk
∂x∂y

��
k→∞

∫ 1
0

∫ 1
0
χ[0,x]×[0,y]σ =

∫ x
0

∫ y
0
σ.

(4.24)

χA denotes the characteristic function of the set A.
On the other hand, since the sequence (znk)k∈N converges uniformly on K to z0, we

have

znk(x,y) ��
k→∞

z0(x,y) (4.25)

for any (x,y)∈K. Consequently,

z0(x,y)=
∫ x
0

∫ y
0
σ (4.26)

for any (x,y)∈K, and
∂2z0
∂x∂y

(x,y)= σ(x,y) (4.27)

for (x,y)∈K a.e. Thus,
∂2znk
∂x∂y k→∞

� ∂
2z0

∂x∂y
(4.28)

weakly in L1(K,Rn).
Now, let us observe that

∂znk
∂x

(x,y)=
∫ y
0

∂2znk
∂x∂y

(x,t)dt (4.29)

for (x,y)∈K a.e., and that
∂znk
∂y

(x,y)=
∫ x
0

∂2znk
∂x∂y

(s,y)ds (4.30)
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for (x,y)∈K a.e. So, from the linearity and the continuity of the operator
� : L1(K,Rn) �� L1(K,Rn),

�(g)(x,y)=
∫ y
0
g(x,t)dt,

(4.31)

and from the fact that the sequence (∂2znk/∂x∂y)k∈N converges weakly in L
1(K,Rn)

to ∂2z0/∂x∂y , we obtain (cf. [7, III.24.3])

∂znk
∂x k→∞

� ∂z0
∂x

(4.32)

weakly in L1(K,Rn). In an analogous way, we assert that

∂znk
∂y k→∞

� ∂z0
∂y

(4.33)

weakly in L1(K,Rn).
To complete the proof, it is sufficient to show that the pair (z0,u0) satisfies system

(1.3) and (1.4).
Indeed, the fact that z0 satisfies the boundary conditions (1.4) follows immediately

from the uniform convergence of the sequence (znk)k∈N to z0.
The fact that (z0,u0) satisfies (1.3) follows from the convergences

∂2znk
∂x∂y k→∞

� ∂
2z0

∂x∂y
(4.34)

weakly in L1(K,Rn),

A0(·,·)znk k→∞
� A0(·,·)z0 (4.35)

weakly in L1(K,Rn),

A1(·,·)
∂znk
∂x k→∞

� A1(·,·)∂z0∂x (4.36)

weakly in L1(K,Rn),

A2(·,·)
∂znk
∂y k→∞

� A2(·,·)∂z0∂y (4.37)

weakly in L1(K,Rn),

B(·,·)unk k→∞
� B(·,·)u0 (4.38)

weakly in L1(K,Rn) and from the fact that each pair (znk ,unk), k ∈N, satisfies (1.3).

Now, let us consider Bolza problem (1.3), (1.4), and (1.5) in the spaces AC of trajec-
tories and UM of controls. Consider the function

f 0 :K×Rn×Rr �� R. (4.39)

We assume that
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(1) for any z ∈Rn, u∈Rr , the function f 0(·,·,z,u) is measurable on K,
(2) for any (x,y)∈K, the function f 0(x,y,·,·) is continuous on Rn×Rr ,
(3) for any (x,y)∈K, z ∈Rn, the function f 0(x,y,z,·) is convex on Rr ,
(4) there exist a function ψ : K �� R+0 belonging to L1(K,R) and a constant c ≥ 0

such that

f 0(x,y,z,u)≥−ψ(x,y)−c|u| (4.40)

for (x,y)∈K a.e. and z ∈Rn, u∈Rr .
We denote

m= inf{I(zu,u), u∈�M}. (4.41)

From (4), it follows that −∞<m≤+∞.
Whenm=+∞, the existence of an optimal solution is obvious.
So, let us assume that −∞<m<+∞. Let (zn,un)n∈N be a minimizing sequence for

the functional I, i.e.,

m= lim
n→∞I(zn,un), (4.42)

where zn = zun .
Making use of Theorem 4.2, we assert that there exist a pair (z0,u0)∈AC×�M and

a subsequence (nk)k∈N of the sequence of positive integers, such that the pair (z0,u0)
satisfies system (1.3), (1.4), and

znk ����
k→∞

z0 (4.43)

uniformly on K,

unk k→∞
� u0 (4.44)

weakly in L1(K,Rr ). Thus, from [1, 10.8(i)], we obtain

m≤ I(z0,u0)≤ liminf
k→∞

I
(
znk ,unk

)= lim
k→∞

I
(
znk ,unk

)=m. (4.45)

Hence,

I(z0,u0)= inf
{
I(zu,u), u∈�M

}
. (4.46)

So, we have proved the following theorem.

Theorem 4.7. If conditions (4.1), (1), (2), (3), and (4) are satisfied, and the setM ⊂Rr
is compact and convex, then there exists an optimal solution (z0,u0) of Bolza problem
(1.3), (1.4), and (1.5) in the spaces AC of trajectories and �M of controls.

5. On some physical interpretation. Let us consider a gas filter made in the form
of a pipe filled up with a substance S which absorbs a poison gas. Through the filter,
a mixture of air and gas is pressed at a speed v = v(x,t) > a > 0 with the aid of an
aggregation A. We denote by y =y(x,t) the quantity of the poison gas being present
in the capacity unit of the substance S at a distance x from the inlet of the filter
and at a moment t. Assume that the speed v = v(x,t) is so great that the diffusion
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process plays no essential role in the motion of the gas. In this case, the process of the
absorption of the poison gas by the filter, filled up with the substance S, is described
by a differential equation of the form

∂2y
∂x∂t

(x,t)+ β
v(x,t)

∂y
∂t
(x,t)+βγ ∂y

∂x
(x,t)= 0 (5.1)

under the boundary conditions

y(x,0)=y0 exp
(
− β
v0
x
)
, y(0, t)=y0, (5.2)

where y0 is the gas concentration at the inlet to the filter (y0-const.), v(x,t) denotes
the speed of the flow of the mixture of air and gas through the filter at the moment
t and the distance x from the inlet of the filter, v0 = v(0,0), β and γ are physical
quantities characterizing the given gas (for details, see [10, Chapter II]).
Without loss of generality, we may assume that x ∈ [0,1] and t ∈ [0,1]. Put

y(x,t)= z(x,t)+y0 exp
(
− β
v0
x
)
. (5.3)

It is easy to demonstrate that the system (5.1) and (5.2) is equivalent to a system of
the form

∂2z
∂x∂t

(x,t)+βγ ∂z
∂x
(x,t)+ β

v(x,t)
∂z
∂t
(x,t)− γβ

2y0
v0

exp
(
− β
v0
x
)
= 0,

z(x,0)= 0, z(0, t)= 0.
(5.4)

Let us suppose that we have some influence on the process of the filtering of the
gas, and that our control has a linear character. In this situation, we can assume that
the system describing this process is of the form

∂2z
∂x∂t

(x,t)+βγ ∂z
∂x
(x,t)+ β

v(x,t)
∂z
∂t
(x,t)= γβ

2y0
v0

exp
(
− β
v0
x
)
u(x,t), (5.5)

z(x,0)= 0, z(0, t)= 0. (5.6)

The function u :K �� [c,d], where −∞< c < d<∞ are fixed numbers, is treated as
a control. Suppose that the cost functional has the form

I(z,u)=
∫ 1
0

∫ 1
0
f 0
(
x,t,z(x,t),u(x,t)

)
dxdt. (5.7)

Assume that f 0 satisfies conditions (1), (2), (3), and (4). By Theorem 4.7, control
system (5.5), (5.6), and (5.7) possesses an optimal process (z0,u0) in the space of
absolutely continuous trajectories z ∈ AC and in the set of admissible controls
u∈ L∞([0,1],[c,d]).
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