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CONVEX ISOMETRIC FOLDING
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Abstract. We introduce a new type of isometric folding called “convex isometric folding.”
We prove that the infimum of the ratio VolN/Volϕ(N) over all convex isometric foldings
ϕ :N →N , where N is a compact 2-manifold (orientable or not), is 1/4.
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1. Introduction. A map ϕ :M →N , where M and N are C∞ Riemannian manifolds
of dimensionsm and n, respectively, is said to be an isometric folding of M into N if
and only if for any piecewise geodesic path γ : J →M , the induced pathϕ◦γ : J →N is
a piecewise geodesic and of the same length. The definition is given by Robertson [4].
The set of all isometric foldings ϕ :M →N is denoted by �(M,N).
Let p : M → N be a regular locally isometric covering and let G be the group of

covering transformations of p. An isometric foldingφ∈ �(M) is said to be p-invariant
if and only if for all g ∈ G and all x ∈ X, p(ϕ(x)) = p(ϕ(g,x)). See Robertson and
Elkholy [5]. The set of p-invariant isometric foldings is denoted by �i(M,p).

Definition 1.1. Let ϕ ∈ �(M,N), where M and N are C∞ Riemannian manifolds
of dimensions m and n, respectively. We say that ϕ is a convex isometric folding if
and only if ϕ(M) can be embedded as a convex set in Rn.

We denote the set of all convex isometric foldings of M into N by C(M,N), and if
C(M,N)≠ �, then it forms a subsemigroup of �(M,N).

Definition 1.2. We say thatϕ ∈ �i(M,p) is ap-invariant convex isometric folding
if and only if ϕ(M) can be embedded as a convex set in Rm.

We denote the set of p-invariant convex isometric foldings of M by Ci(M,p). If
Ci(M,p) ≠ �, then for any covering map, p : M → N , Ci(M,p) is a subsemigroup
of C(M).
To solve our main problem we need the following:
(1) Robertson and Elkholy [5] proved that ifN is an n-smooth Riemannian manifold,

p :M →N is its universal covering, and G is the group of covering transformations of
p, then �(N) is isomorphic as a semigroup to �i(M,p)/G.
(2) Elkholy [1] proved that if N is an n-smooth Riemannian manifold, p :M → N is

its universal covering, andϕ ∈ �(N) such thatϕ∗ :π1(N)→π1(N) is trivial, then the
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corresponding folding ψ∈ �i(M,p) maps each fiber of p to a single point.
(3) Elkholy and Al-Ahmady [3] proved that under the same conditions of (2), if N is

a compact 2-manifold, then

VolN
Volϕ(N)

= VolF
Volψ(F)

, (1.1)

where F is a fundamental region of G in M .

2. Convex isometric folding and covering spaces. The next theorem establishes
the relation between the set of convex isometric folding of a manifold, C(N), and the
set of p-invariant convex isometric folding of its universal covering space, Ci(M,p).

Theorem 2.1. Let N be a manifold and p :M → N its universal covering. Let G be
the group of covering transformations of p. If C(N) ≠ �, then C(N) is isometric as a
semigroup to Ci(M,p)/G.

Proof. Let C(N) ≠ ϕ. Then by using (1), there exists an isomorphism f from
�i(M,p)/G into �(N). Since Ci(M,p) is a subsemigroup of �i(M,p), Ci(M,p)/G is a
subsemigroup of �i(M,p)/G.
Let h = f | (Ci(M,P)/G). Since Ci(M,p)/G is a semigroup, h is a homeomorphism

and also it is one-one. To show that h is an onto map, we suppose that ϕ ∈ C(N).
Hence, ϕ ∈ �(N) and, consequently, there exists ψ ∈ �i(M,p)/G. Since ϕ ∈ C(N),
ϕ∗ is trivial and hence for all x ∈M , ψ(G,x)=ψ(x), and therefore ψ∈ Ci(M,p)/G.

Theorem 2.2. LetN be a compact orientable 2-manifold and consider the universal
covering space (R2,P) of N . Let ϕ ∈ C(N) and ψ ∈ Ci(R2,p). Then for all x, y ∈ R2,
d(ψ(x),ψ(y)) ≤ ∆, where ∆ is the radius of a fundamental region for the covering
space.

Proof. Elkholy [1] proved the truth of the theorem for N = S2. So, we have to
prove it for the connected sum of n-tori. First, let N = T be a torus homomorphic to
the quotient space obtained by identifying opposite sides of a square of length “a” as
shown in Figure 1(a)

T

a

a

b b

(a) (b)

g1 ·x

g2 ·xg3 ·x

g4 ·x
α1

α2
α3

α4 y

Figure 1.
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Suppose that ϕ : T → T is a convex isometric folding. Then ϕ∗(π1(T)) is trivial. By
Theorem 2.1, there exists a convex isometric folding ψ : R2 → R2 such that for all x,
y ∈R2 and for all g ∈G, p

(
ψ(x)

)= p
(
ψ(g,x)

)
. Equivalently, for all (P,Q)∈R2 and

for all g ∈ Z×Z, there exists a unique h ∈ Z×Z such that h◦ψ(P,Q) = ψ
(
g(P,Q)

)
,

i.e.,

ψ
(
P,Q

)+
(√
2∆m,

√
2∆n′

)
=ψ

(
P+

√
2∆m,Q+

√
2∆n

)
, wherem,n,m′,n′ ∈ Z.

(2.1)

Consider any fundamental region F of the covering space (R2,p) of T , i.e., a closed
square of length “a” with sides identified as shown in Figure 1(b). Since ϕ∗ is trivial,
by (2), for all x ∈R2, ψ(G,x)=ψ(x). Now, let x and y be distinct points of R2 such
that x = g ·y for all g ∈ G and let d(x,y) = α1. Then there exists a point x∗ = g ·x
such that

d
(
y,x∗

)=min(αi), αi = d
(
y,gi,x

)
, i= 1, . . . ,4. (2.2)

Thus, there are always four equivalent points gi ·x, i = 1, . . . ,4 which form the ver-
tices of a square of length “a” and such that d(gi ·x,y) ≤ 2∆. From Figure 1(b), it
is clear that maxd(x∗,y) ≤ ∆ and since ψ is an isometric folding, by Robertson [4],
d(ψ(x),ψ(y))≤ d(x,y), i.e.,

d
(
ψ(x),ψ

(
y
))= d

(
ψ
(
gi ·x

)
,ψ
(
y
))≤ d

(
gi ·x,y

)= d
(
x,y

)≤∆, (2.3)

and this proves the theorem for N = T .
Now, consider the connected sum of two tori, obtained as a quotient space of an

octagon with sides identified as shown in Figure 2(a). The group of covering transfor-
mations G is isometric to Z×Z×Z×Z. Using the same previous technique, we can

(a)

T#T

(b)

g1 ·x

g2 ·xg3 ·x

g4 ·x
y a1

a2a3

a4

Figure 2.

obtain four equivalent points as the vertices of a square of diameter 2∆ such that
maxd(y,x∗) ≤ ∆, and the result follows. This theorem, by using the above method,
is true for the connected sum of n-tori.
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Theorem 2.3. Let N be a compact nonorientable 2-manifold and consider the uni-
versal covering space (M,p) of N . Let φ ∈ C(N) and ψ ∈ Ci(M,p). Then for all
x,y ∈M , d

(
ψ(x),ψ(y)

) ≤ ∆, where ∆ is the radius of a fundamental region for the
covering space.

Proof. By Elkholy [2], the theorem is true for N = p2 and M = S2. Now, consider
the connected sum of two projective planes, the Klein bottle K, homeomorphic to the
quotient space obtained by identifying the opposite sides of a square as shown in
Figure 3(a).

bb

a

a

(a)

K

(b)

g1 ·x g2 ·x

g3 ·x
g4 ·x

y

Figure 3.

Suppose that ϕ : K → K is a convex isometric folding. Then there exists a convex
isometric folding ψ : R2 → R2 such that for all x ∈ R2 and g ∈G, p(ψ(x))= p(ψ(g ·
x)). Equivalently, for all (P,Q) ∈ R2 and for all g ∈ Z× Z2, there exists a unique
h∈ Z×Z2 such that h◦ψ(P,Q)=ψ(g(P,Q)), i.e.,

ψ
(
P,Q

)+
(√
2∆m′,

√
2∆n′

)

=ψ
(
P+

√
2∆m,

√
2∆n+(−)mQ), wherem,n,m′,n′ ∈ Z.

(2.4)

Any fundamental region F of the covering space (R2,p) of K is a closed square of
diameter 2∆ with the boundary identified as shown in Figure 3(b). Since ϕ∗ is trivial,
for all x ∈ R2, ψ(G·x)=ψ(x).
Now, let x and y be distinct points of R2 such that y ≠ g ·x for all g ∈ G, and let

d(x,y)=α1. Thus, there exists a point x∗ = g ·x such that

d
(
y,x∗

)=min(αi), αi = d
(
y,gi ·x

)
, i= 1, . . . ,4. (2.5)

Thus, there are always four equivalent points gi ·x which form the vertices of a par-
allelogram such that the shortest diameter is of length less than 2∆.
Now, the point y is either inside or on the boundary of a triangle of vertices g1 ·x =

x, g2 ·x, g3 ·x. Let y ′ be a point equidistant from the vertices of this triangle, i.e.,

d
(
y ′,x

)= d
(
y ′,g2 ·x

)= d
(
y ′,g3 ·x

)
. (2.6)
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From Figure 3(b), it is clear that d(y ′,x) <∆ and, hence, d(x∗,y) <∆. Therefore,

d
(
ψ(x),ψ

(
y
))= d

(
ψ
(
gi ·x

)
,ψ
(
y
))≤ d

(
g ·xi,y

)= d
(
x∗,y

)
<∆ (2.7)

and the result follows.
Now, let N be the connected sum of three projective planes obtained as the quotient

space of a hexagon with the sides identified in pairs as indicated in Figure 4(a). In this
case, (R2,p) is the universal cover of N and G � Z×Z×Z2. Using the same method as
that used above, we can always have equivalent points gi ·x, i = 1, . . . ,4 which form
the vertices of a parallelogramwhose shortest diameter is of length less than 2∆. From
Figure 4(b), we can see that maxd(y,x∗) <∆ and the theorem is proved.
In general and by using the same technique, the theorem is also true for the con-

nected sum of n-projective planes.

P#P#P

(a)

g1 ·x
g2 ·x

g3 ·x
g4 ·x

y

(b)

Figure 4.

3. Volume and convex folding. The following theorem succeeds in estimating the
maximum volume wemay have if we convexly folded a compact 2-manifold into itself.

Theorem 3.1. The infimum of the ratio

eN = VolN
Volϕ(N)

, (3.1)

whereN is a compact 2-manifold over all convex isometric foldingsϕ ∈ C(N) of degree
zero, is 4.

Proof. Robertson [4] has shown that if N is a compact 2-manifold, andϕ :N →N
is a convex isometric folding, any convex isometric folding is an isometric folding,
then degϕ is ±1 or 0. We consider only the case for which degϕ is zero otherwise
ϕ(N) cannot be embedded as a convex subset of R2 unlessN is. In this case, the set of
singularities of ϕ decomposes N into an even number of strata, say k, each of which
is homeomorphic to ϕ(N) and, hence,

VolN = kVolϕ(N), (3.2)
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that is, eN should be an even number. To calculate the exact value of eN , consider first
an orientable 2-compact manifold N . By using (1.1)

eN = VolF
Volϕ(F)

(3.3)

and this means that eN can be calculated by calculating the volume of F and of its
image ϕ(F), but F is a closed square of diameter 2∆ and ϕ(F) is a closed subset of
F such that the distance d(x,x′) between any two points x, x′ ∈ϕ(F) is at most ∆.
The supremum of 2-dimensional volume of such set is φ(∆/2)2 and, hence, 2 < eN .
But eN is an even number. Hence, eN = 4.
Now, let N be a nonorientable 2-compact manifold, i.e., a connected sum of n-

projective planes. Elkholy [2] proved the theorem for n= 1.
The fundamental region in this case is a square or a rectangle of diameter 2∆ ac-

cording to whether n is even or odd. If n is an even number, then

VolF = 2∆2 (3.4)

and the result follows. Now, let n be an odd number. Then F is a rectangle of lengths
((n+1)/2)a, ((n−1)/2)a and hence

VolF = 4∆2 sinθcosθ = 4∆2 a(n+1)/2
a
√
(n2+1)/2

a(n−1)/2
a
√
(n2+1)/2 =

n2−1
n2+12∆

2. (3.5)

Therefore, eN > 2 for all n> 1. Since eN is an even number, eN = 4.
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