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AN IRREDUCIBLE HEEGAARD DIAGRAM OF THE REAL
PROJECTIVE 3-SPACE P3
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Abstract. We give a genus 3 Heegaard diagram H of the real projective space P3, which
has no waves and pairs of complementary handles. So Negami’s result that every genus 2
Heegaard diagram of P3 is reducible cannot be extended to Heegaard diagrams of P3 with
genus 3.
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1. Introduction. In the study of 3-manifolds, the construction of an algorithm for
recognizing the 3-sphere S3 among all 3-manifolds is a very important problem. The
first work in this direction was done by Whitehead [12], and later Volodin, Kuznetsov,
and Fomenko [11] conjectured that Heegaard diagrams for S3 are reducible, except
for the canonical one.
Homma, Ochiai, and Takahashi [4] proved that the conjecture is true for the case of

genus 2. But for the case of genera greater than two it is not true anymore. Morikawa [5]
gave a counterexample for the case of genus 3, and Ochiai [8, 9] gave counterexamples
for the case of genera 3 and 4. Negami [6, 7] proved that every 3-bridge projection of
a link can be transformed into a minimum crossing one by a finite sequence of wave
moves if and only if the link is equivalent to one of a trivial knot, a splittable link, and
the Hopf link. Consequently, any genus 2 Heegaard diagrams of S3, S2×S1#L(p,q)
and P3 are reducible.
In this paper, we give a genus 3 Heegaard diagram H of the real projective space

P3, which has no waves and pairs of complementary handles. Moreover, we construct
a crystallization Γ corresponding to the Heegaard diagram H and show that at least
one among the Heegaard diagrams associated with Γ is transformed into a Heegaard
diagram with some pairs of complementary handles by a finite sequence of wave
moves, and so it is reducible to the canonical diagram of P3.

2. Preliminaries. Let M be a closed orientable 3-manifold and let Tn, T̄n be solid
tori of genera n and h : ∂Tn → ∂T̄n a homeomorphism of the boundary surface. Then
the triad (Tn, T̄n;M) is called a Heegaard splitting of genusn forM whenM = Tn∪h T̄n.
A collection of mutually disjoint n meridian disks m1, . . . ,mn in a solid torus T of

genus n is called a complete system of meridian disks of T if Cl(T −∪n
i=1N(mi,T)) is

a 3-ball, where N(mi,T) is a regular neighborhood ofmi in T . We call a collection of
mutually disjoint (n+1)meridian disks in T an extended complete system ofmeridian
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disks of T provided that any n subcollection is a complete system of meridian disks
of T .
Let {m1, . . . ,mn} (respectively, {m1, . . . ,mn+1}) be a complete system of meridian

disks (respectively, an extended complete system of meridian disks) of Tn, and let
{m̄1, . . . ,m̄n} (respectively, {m̄1, . . . ,m̄n+1}) be a complete system of meridian disks
(respectively, an extended complete system ofmeridian disks) of T̄n, where (Tn, T̄n;M)
is a Heegaard splitting of genus n forM ; and let uj = ∂mj , vj = ∂m̄j for j = 1,2, . . . ,n,
n+1. We call the triad H = (F ;u,v) a Heegaard diagram for M , where F = ∂Tn = ∂T̄n

and u = u1∪···∪un, v = v1∪···∪vn. Moreover, we call the triad H̃ = (F ;ũ, ṽ) an
extended Heegaard diagram for M , where ũ=u∪un+1 and ṽ = v∪vn+1.
Next, we give the concept of wave of Heegaard diagrams. Let H = (F ;u,v) be a

Heegaard diagram for M , and w an arc on F such that for a meridian or a longitude
of H, say u1,

w∩(u1∪···∪un∪v1∪···∪vn
)=w∩u1 = ∂w (2.1)

and both ends of w attach to the same side of u1. Then one of two circles in u1∪w,
different from u1, bounds a meridian disk of H, say u′1, and H′ = (F ;u′,v) is a new
Heegaard diagram, where u′ = u′1∪u2∪···∪un. We call w a wave for H, and the
replacement of u1 with u′1 a wave move with w if C(H′) < C(H), where C(H) is the
complexity of H which is defined as the cardinality of u∩v .
LetH be a Heegaard diagram of the real projective space P3 other than the canonical

one H̄ associated with Figure 5. Then H is said to be reducible if there is a finite
sequence of (normal) Heegaard diagrams, Hn,. . . ,H0, with Hn = H and H0 = H̄, such
that Hi−1 is a wave move of Hi (i= 1,2, . . . ,n).
Wave moves are also defined for n-bridge decompositions of links; the relations

between two wave theories are investigated in [7]. In particular, for 3-bridge decom-
position of links, we have the following theorem.

Theorem 2.1 [6]. Every 3-bridge projection of a link can be transformed into a
minimum crossing one by a finite sequence of wave moves if and only if the link is
equivalent to one of a trivial knots, a splittable link, and the Hopf link.

By a 4-colored graph G = (Γ ,γ), we mean a regular graph Γ (with possibly multiple
edges, but no loops) of degree 4, endowed with a proper edge coloration; a coloration
γ : E(Γ)→∆3 = {0,1,2,3}, where E(Γ) is the set of edges of Γ , such that γ(e1) �= γ(e2)
for any two adjacent edges e1, e2.
A 3-dimensional pseudocomplex K(G) is associated with G(Γ ,δ). For details, see [2].

G is said to represent |K(G)| and every homeomorphic polyhedron.
A 4-colored graph G representing a PL manifold M is called a crystallization if,

for each colour c ∈ Γ3, the subgraph obtained by deleting all coloured edges c is
connected. Crystallizations exist for all PL manifolds (see [10]).

3. A Heegaard diagram of P3. As mentioned in Section 2, genus 2 Heegaard split-
tings of closed orientable 3-manifolds are closely related to 3-bridge decompositions
of links. In fact, Birman and Hilden [1] proved that there is a bijective correspon-
dence between the equivalence classes of 3-bridge projections and those of genus 2



AN IRREDUCIBLE HEEGAARD DIAGRAM . . . 125

Heegaard diagrams. By Theorem 2.1, every Heegaard diagram of genus 2 of P3, other
than the canonical one, contain at least one wave.
In this section, we give a Heegaard diagram of genus 3 of P3 which has no waves

and pairs of complementary handles.
In Figure 1, it is easily checked that this Heegaard diagramH has no waves and pairs

of complementary handles.
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Figure 1.

Now, we need to show that this Heegaard diagram H represents the real projective
space P3.

Proposition 3.1. Let M3 be a manifold with the above Heegaard diagram. Then
M3 is the real projective space P3.

Proof. Construct a crystallization Γ associated with the above Heegaard diagram
via Gagliardi’s method [3].
In Figure 2, colorations {0,1,2,3} are given as follows: edges consisting of circles

Ci(i = 1,2,3,4) are {1,2}-colored alternatively, edges connecting vertices of Ci and
Cj(i �= j) are 3-colored, and edges connecting small and capital letters are remaining
0-colored.
Since the dotted lines in Figure 2 are axes for an involution, this crystallization

represents a 2-fold branched covering of S3 branched over the following link (Figure 3)
by Ferris’ construction of 2-fold branched coverings of S3 [2].
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Figure 3.

In Figure 4, dotted lines are eliminated overbridges by jump moves [7]. By a couple
of jump moves about underbridge, it is not hard to see that this link is equivalent to
the standard Hopf link (Figure 5). Therefore, M3 is the same as P3.
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Figure 4.

Figure 5.

Remark. In Figure 3, this link represents a 4-bridge projection which has no waves.

Now, we construct an extended Heegaard diagram H̃ associated with H = (F ;u,v).
The extended Heegaard diagram H̃ contains 16 Heegaard diagrams for P3. At least one
of them can be transformed into a Heegaard diagramH′ with a pair of complementary
handles by a finite sequence of wave moves (Figure 6).
By Singer moves on H′, we have a Heegaard diagram of genus 2 of P3 and so it is

transformed into the canonical one [6]. In Figure 6, a pair of complementary handles
occurs at black dot.
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