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THE MATCHING POLYNOMIAL OF A DISTANCE-REGULAR GRAPH
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Abstract. A distance-regular graph of diameter d has 2d intersection numbers that de-
terminemany properties of graph (e.g., its spectrum). We show that the first six coefficients
of the matching polynomial of a distance-regular graph can also be determined from its
intersection array, and that this is the maximum number of coefficients so determined.
Also, the converse is true for distance-regular graphs of small diameter—that is, the inter-
section array of a distance-regular graph of diameter 3 or less can be determined from the
matching polynomial of the graph.
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1. Introduction. Distance-regular graphs are highly regular combinatorial struc-
tures that often occur in connection with other areas of combinatorics (e.g., designs
and finite geometries) and many of their properties can be determined from their
intersection numbers. These properties include the eigenvalues of the graph, and
their multiplicities, and hence, we can determine the characteristic polynomial of a
distance-regular graph from knowledge of its intersection numbers. It is also known
that the characteristic polynomial of any graph can be determined by computing the
circuit polynomial and converting it to a polynomial in a single variable via a specific
set of substitutions.
Since the intersection array and the circuit polynomial of a distance-regular graph

both determine its characteristic polynomial, it was natural to investigate the relation-
ship between the circuit polynomial and the intersection array for distance-regular
graphs. Specifically, could the circuit polynomial be determined from the intersection
array? We show that the answer to this question is no, even though a portion of the
circuit polynomial (which is also part of the matching polynomial) can be computed
from just the intersection array.
We concerned here with the matching polynomial of a distance-regular graph, which

is a constituent of the circuit polynomial. The initial portion of the matching poly-
nomials (and other graph polynomials) of many common regular graphs have been
computed (e.g., [7, 8, 9]). In the cases where these regular graphs are distance-regular
(complete graphs, circuit, complete bipartite graphs, hypercubes), our results serve to
generalize and unify the determination of the initial coefficients of the matching poly-
nomials. Furthermore, the matching polynomial is also a constituent of many other
graph polynomials (in addition to the circuit polynomial), so these results also apply
to other more specific polynomials.
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2. Graph polynomials. The matching polynomial is an example of a general graph
polynomial, which we now describe. The first element in the construction of a graph
polynomial is a family of graphs, F , such as all trees, or all circuits. Typically such a
family is infinite, and often includes a single vertex and a single edge as members.
To each member of this family a weight is assigned. Often this weight is an inde-
terminate, which is subscripted by either the number of vertices or the number of
edges in the graph. Having chosen a family F and a weighting scheme, we compute
the F -polynomial of a graphG by first finding the spanning subgraphs ofG where each
component is an element of F . Such a spanning subgraph is called an F -cover. For each
cover, take the product of the weights of the components and then sum these terms
over all the F -covers of the graph. The resulting polynomial is the F -polynomial of G.
Throughout this paper, we consider only F -polynomials constructed by assigning the
indeterminate wi to a component with i vertices. For more on the general properties
of F -polynomials, see [6].
Presently, we are interested in the matching polynomial of a graph. We take F to be

the family consisting of just a vertex and an edge. In this case, a cover will consist of
disjoint edges and isolated vertices—a matching in the graph. The resultingmatching
polynomial has terms of the form cwn−2m

1 wm
2 , where n is the number of vertices, and

c is the number of matchings in G that have m edges. Thus, finding the matching
polynomial of a graph is equivalent to finding the number of m-matchings in the
graph, for allm.
Many of the families used to construct interesting F -polynomials include a vertex

and an edge, and therefore all of the matchings of the graph are created as F -covers.
The terms of the form cwn−2m

1 wm
2 in the F -polynomial then coincide with the match-

ing polynomial itself, in other words, the matching polynomial is a subpolynomial
of the F -polynomial. For example, the circuit polynomial is formed by taking F to be
the set of all circuits, with a vertex and an edge viewed as degenerate circuits on 1
and 2 vertices, respectively. So, the matching polynomial is a subpolynomial of the
circuit polynomial. As mentioned in the introduction, the characteristic polynomial
of a graph can be determined from the circuit polynomial. The characteristic polyno-
mial in the single variable λ is obtained by making the following substitutions into
the circuit polynomial [6]: w1 = λ, w2 =−1, and wm =−2,m> 2.

3. Matching polynomials. In order to find the initial portion of the matching poly-
nomial of a distance-regular graph, we use some results from [1, 2] that give expres-
sions for the number of certain subgraphs present in a regular graph. The coefficients
of the matching polynomial are equal to the number of matchings in the graph that
have a specified number of edges. For an arbitrary regular graph, we give expressions
for the number of such matchings that have five or fewer edges. More details and
proofs of these results can be found in [1, 2].
We adopt the following notation: For a regular graph G, let n be the number of

vertices, and r be the degree. We also require the number of certain types of subgraphs
in G (it is important to note that these are not vertex induced subgraphs, but they are
simply graphs whose edge and vertex sets are subsets of those of G). Let Mi be the
number of matchings on i edges, that is, subgraphs with i edges and 2i vertices (each
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of degree 1). Let T ,S, and P be the number of subgraphs, respectively, that are 3-cycles
(triangles), 4-cycles (squares), and 5-cycles (pentagons). Finally, let N be the number
of subgraphs that consist of a triangle together with a single edge joining a fourth
vertex to one vertex of the triangle, and let H be the number of subgraphs equal to a
complete graph on 4 vertices with one edge deleted.

Theorem 3.1. Suppose that G is a regular graph of degree r on n vertices. Then,
using the notation given above, we have

N = 3(r −2)T , (3.1)

M0 = 1, (3.2)

M1 = nr
2
, (3.3)

M2 = nr(2−4r +nr)
8

, (3.4)

M3 = nr
(
16−48r +6nr +40r 2−12nr 2+n2r 2)

48
−T , (3.5)

M4 = nr
384

(
240−960r +76nr +1344r 2−240nr 2+12n2r 2−672r 3

+208nr 3−24n2r 3+n3r 3)+(−6+6r − nr
2

)
T +S,

(3.6)

M5 = nr
3840

(
5376−26880r +1520nr +51840r 2−6400nr 2

+220n2r 2−46080r 3+9440nr 3−720n2r 3+20n3r 3

+16128r 4−4960nr 4+640n2r 4−40n3r 4+n4r 4)
− 1
8

(
216−432r +26nr +216r 2−28nr 2+n2r 2)T

+
(
8−8r + nr

2

)
S−P+4H.

(3.7)

Proof. Results from [1, 2] describe how to construct a set of linear equationswhich
when solved yield these expressions (in addition to others that specify the number of
other types of subgraphs). The original linear equations were generated by a PASCAL
program, and the solutions were found using the symbolic manipulation capabilities
of the program Mathematica.

4. Distance-regular graphs. Loosely speaking, a distance-regular graph has much
combinatorial regularity, which in turn implies some amazing algebraic properties.
Examples include complete graphs, complete bipartite graphs, hypercubes, Petersen’s
graph and some of its generalizations, line graphs of some distance-regular graphs,
and graphs related to other incidence structures such as designs and finite geome-
tries. A good introduction to distance-regular graphs can be found in [3], and a more
advanced treatment is given in [4]. Here, we list some pertinent facts that are needed
later.
Let ∂(u,v) denote the distance between two vertices u and v . Then, given vertices u

and v , at a distance i apart in a graph, the intersection number of (u,v) is defined as
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sijk(u,v)=
∣∣{w | ∂(u,w)= j, ∂(w,v)= k}∣∣. (4.1)

A graph is distance-regular if the intersection numbers depend on the choice of i,j,
and k, but not on the choice of the particular pair of vertices, u and v , that are a
distance i apart. A distance-regular graph is usually described by referencing the fol-
lowing special cases of the intersection numbers (where the subscripts make sense),

ai = si,i,1, bi = si,i+1,1, ci = si,i−1,1. (4.2)

It can be shown that knowledge of these numbers is sufficient to compute all of
the intersection numbers of a distance-regular graph. A distance-regular graph must
be regular, and if the degree is b0 = r , then ai + bi + ci = r . Thus, if the graph
has diameter d, the intersection numbers are determined by the intersection array,
{b0,b1, . . . ,bd−1;c1 = 1,c2, . . . ,cd}.
It can be shown that the intersection array of a distance-regular graph is sufficient

to determine the characteristic polynomial of the graph (see [3]).

Theorem 4.1. The first six terms of the matching polynomial of a distance-regular
graph are determined by the intersection array of the graph.

Proof. Suppose thatG is a distance-regular graphwith intersection array{b0,b1, . . . ,
bd−1;c1 = 1,c2, . . . ,cd}. We take each term of the matching polynomial in turn.

First term. Since there is only one matching with no edges, the first term of the
matching polynomial has the form wn

1 , where n is the number of vertices in G. Let
Gi(v) denote the set of vertices at distance i from vertex v , and let ki = |Gi(v)|.
Then, by counting the edges joining the vertices in Gi−1 to the vertices in Gi, we find
that bi−1ki−1 = ciki. Repeated use of this equation, together with the initial condition
k0 = 1, allows us to find n via n=

∑d
i=o ki, and, thus, we can obtain the first term from

the intersection array.
Second term. The number of matchings that have a single edge is equal to the

number of edges in the graph. If we let r denote the degree of the vertices in the
graph, then the coefficient of wn−2

1 w2 is nr/2 (3.3). However, r = b0, so we are able
to obtain this coefficient from the intersection array.

Third term. The coefficient of wn−4
1 w2

2 is given by (3.4), and depends solely on
n and r which we have already seen, can be determined from the intersection array.

Fourth term. The coefficient ofwn−6
1 w3

2 is given by (3.5) and depends onn,r and
the number of triangles T in the graph. How many triangles does a distance-regular
graph have?
Let v be a vertex of G, and let Tv be the number of triangles that pass through v .

The edge opposite to v in any such triangle joins two vertices of G1(v), and any edge
joining two vertices of G1(v) yields a triangle that has v as a vertex. Now, G1(v)
induces a subgraph that is regular of degree a1 on k1 vertices and, therefore, has
a1k1/2 edges. Since each of these edges corresponds to a triangle, we have Tv =
a1k1/2. Then, if we sum over all the vertices of G, we count each triangle three times,
once for each vertex. Also, k1 = r , so

3T =
∑
v
Tv = nk1a1

2
�⇒ T = nra1

6
. (4.3)
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Thus, we can obtain the number of triangles from the intersection array. Together
with n and r , we can then find the fourth coefficient.

Fifth term. The coefficient of wn−8
1 w4

2 is given by (3.6) and depends on n,r ,T ,
and S.
We count the number of squares that have v as a vertex. Let v be a vertex of G,

and let Sv be the number of squares that contain v as a vertex. Let w be the vertex
opposite to v in a square, that is ∂(v,w) = 2 in the square. However, the distance
between v and w may be 1 or 2 in G, so we consider two cases.

Case 1. Suppose that ∂(v,w)= 1. The vertexw is adjacent to a1 vertices in G1(v)
and, for each pair of these vertices, there corresponds a square through v with w as
the opposite vertex. Thus, we get

(a1
2

)
squares throughw and there are k1 choices for

w, yielding a total of k1
(a1
2

)
squares in this case.

Case 2. Suppose that ∂(v,w)= 2. The vertexw is now an element ofG2(v) and has
c2 neighbors in G1(v). For each pair of these neighbors, there corresponds a square
through v with w as the opposite vertex. Thus, we get

(c1
2

)
squares through w and

there are k2 choices for w, yielding a total of k2
(c2
2

)
squares in this case.

Combining these two cases and using k2c2 = k1b1 and k1 = r , we get

Sv = k1
(
a1
2

)
+k2

(
c2
2

)

= 1
2

(
k1a1(a1−1)+k2c2(c2−1)

)

= 1
2

(
ra1(a1−1)+k1b1(c2−1)

)

= r
2

(
a1(a1−1)+b1(c2−1)

)
.

(4.4)

If we sum Sv over all the vertices, we can count each square 4 times, so

4S =
∑
v
Sv = nr

2

(
a1(a1−1)+b1(c2−1)

)
,

S = nr
8

(
a1(a1−1)+b1(c2−1)

)
.

(4.5)

Now, since we see that the number of squares can be determined from the intersection
array, we see that we can also determine the fifth coefficient.

Sixth term. The coefficient ofwn−10
1 w5

2 is given by (3.7) and depends onn,r ,T ,S,
P , and H.
Fix a vertex v , and letHv be the number of graphs counted inH that have vertex v as

one of the vertices of degree 3. The other three vertices must be in G1(v) and induce a
subgraph in G1(v) which is a path of length 2. There are k1 ways to choose the central
vertex of the path and

(a1
2

)
ways to choose the adjacent endpoints. To each such triple

of vertices from G1(v) corresponds a graph counted inHv , soHv = k1
(a1
2

)
. If we sum

Hv over all the vertices of G, then we can count each graph twice, so
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2H =
∑
v
Hv =nk1

(
a1
2

)
�⇒H = nr

4
a1(a1−1). (4.6)

Fix a vertex v , and let Pv be the number of graphs counted in P which have v as a
vertex. To obtain an expression for Pv , we consider the two vertices x and y , which
are a distance 2 from v in the pentagon. These two vertices may be a distance 1 or 2
from v in G, which gives rise to the following three cases.

Case 1. Suppose that ∂(v,x) = ∂(v,y) = 2. In this case, x and y are adjacent
vertices in G2(v). Then G2(v) induces a regular graph of degree a2 on k2 vertices
and, thus, has k2a2/2 edges. Each such edge determines a pair of vertices x and y .
Now we must connect both x and y to verticesw and z, respectively, in G1(v)(w and
z may not be distinct). In each case, this can be done in c2 ways. So, we can create
c22k2a2/2 apparent pentagons, except when w = z. In this case, we have a graph that
is composed of a triangle, with an additional vertex of degree 1 adjacent to one of the
vertices of the triangle—a graph of the type counted by N . Here, v is the vertex of
degree 1, and x and y are the two vertices of degree 2. Since x and y are a distance
2 from v in G, we denote the number of such graphs as Nv,22.

Case 2. Suppose that ∂(v,x) = ∂(v,y) = 1. In this case, x and y are adjacent
vertices in G1(v). Then, G1(v) induces a regular graph of degree a1 on k1 vertices
and, thus, has k1a1/2 edges. Each such edge determines a pair of vertices x and y .
Now we must connect both x and y to new vertices w and z, respectively, also, in
G1(v). In each case, this can be done in a1−1 ways. So, we can create (a1−1)2k1a1/2
apparent pentagons, except that, again, we have not prevented the possibility that we
have chosen w = z. In the case that w = z, we again obtain graphs counted by N that
we count as Nv,11 since the two vertices of degree 2 are a distance 1 from v in G.

Case 3. Suppose that ∂(v,x) = 1, ∂(v,y) = 2. We can assume, without loss of
generality, that y is the vertex in G2(v)—there are k2 ways for this to occur. There
are c2 vertices in G1(v) which are adjacent to y , and which could be x. Now we need
to choose two more vertices in G1(v). First, z should be adjacent to y and should not
be equal to x. This can be done in c2−1 ways. Second, w should be adjacent to x,
which can be done in a1 ways. So, it appears that there are k2c2(c2−1)a1 pentagons,
but we have not ruled out the possibility thatw = z. In the case thatw = z, we obtain
graphs that we count as Nv,12 since the two vertices of degree 2 are at distances 1 and
2 from v in G.
To consolidate these three cases, notice that if Nv is the number of graphs counted

in N that have v as the single vertex of degree 1, then Nv =Nv,11+Nv,12+Vv,22. Then,
we have

Pv+Nv,11+Nv,12+Nv,22 = (a1−1)2k1a1
2

+k2c2(c2−1)a1+ c
2
2k2a2
2

,

Pv+Nv = (a1−1)2k1a1
2

+k1b1(c2−1)a1+ k1b1c2a22
,

Pv+Nv = r
(
a1(a1−1)2

2
+a1b1(c2−1)+ b1a2c22

)
.

(4.7)

If we sum this expression over all the vertices v in G, we count each pentagon 5 times
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and each graph counted in N just once. Using (3.1), we have

5P+N =
∑
v
pv+Nv =nr

(
a1(a1−1)2

2
+a1b1(c2−1)+ b1a2c22

)
,

5P =nr
(
a1(a1−1)2

2
+a1b1(c2−1)+ b1a2c22

)
− 3(r −2)nra1

6
,

P = nr
10

(a1(a1−1)2+2a1b1(c2−1)+b1a2c2−(r −2)a1).

(4.8)

Since both H and P can be determined from the intersection array, we can also
determine the sixth coefficient from the intersection array.

The following example illustrates that this result is the best possible. We begin by
considering the following pair of distance-regular graphs, which are not isomorphic,
yet have the same set of intersection numbers. The first graph is the Hamming scheme,
H(2,4), which has vertices that are strings of length 2 over an alphabet with 4 letters.
Vertices are adjacent if the corresponding strings are different in just one position.
The resulting graph on 16 vertices is regular of degree 6 and has the intersection array
{6,3;1,2}. In [5], Egawa describes a distance-regular graph found by Shrikhande [10]
that has the same intersection array as H(2,4), yet is not isomorphic to H(2,4).
Since these two graphs have identical intersection arrays, they have identical char-

acteristic polynomials. However, their circuit polynomials are not equal. This can be
seen quickly by comparing their matching polynomials, which are sub-polynomials of
their respective circuit polynomials. The matching polynomials are

H(2,4): w16
1 +48w14

1 w2+888w12
1 w

2
2 +8064w10

1 w
3
2 +37944w8

1w
4
2

+89856w6
1w

5
2 +96000w4

1w
6
2 +35712w2

1w
7
2 +2016w8

2 ,
(4.9)

Shrikhande: w16
1 +48w14

1 w2+888w12
1 w

2
2 +8064w10

1 w
3
2 +37944w8

1w
4
2

+89856w6
1w

5
2 +95872w4

1w
6
2 +35328w2

1w
7
2 +1920w8

2 .
(4.10)

Of course, the first six coefficients of these two polynomials are equal, yet they are
different in their seventh coefficient. Since their matching polynomials differ, their
circuit polynomials cannot be equal and, thus, it is clear that we cannot determine
the circuit polynomial (or for that matter, the matching polynomial) of an arbitrary
distance-regular graph by knowing just the intersection array.
As an exercise, we can apply the results contained in the proof above to the inter-

section array of the Hamming scheme and Shrikhande graph and obtain n = 16, r =
6, T = 32, S = 60, H = 48, P = 288. Then, using these values in (3.2), (3.3), (3.4), (3.5),
(3.6), and (3.7) yield the first six coefficients of the matching polynomials, as given in
(4.9) and (4.10).
An expression analogous to (3.2), (3.3), (3.4), (3.5), (3.6), and (3.7) can be found forM6,

the seventh coefficient of the matching polynomial. It depends on n,r ,T ,S,P,H, and
the numbers of each of six other subgraphs. These six subgraphs are the subgraphs
with six edges and no vertices of degree 1, one of which is the complete graph on
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four vertices. The number of subgraphs of a distance-regular graph that are complete
graphs on four vertices cannot be determined from the intersection array. This can be
demonstrated in the previous example since the Hamming graph has eight subgraphs
that are complete on four vertices, while the Shrikhande graph has none. This partially
explains the discrepancy in the seventh coefficient of the matching polynomials of
these two graphs.
The previous theorem shows how to determine a portion of thematching polynomial

of a distance-regular graph from its intersection array—the converse is possible for
graphs of sufficiently small diameter.

Theorem 4.2. Suppose that G is a distance regular graph of diameter 3 or less.
Then its intersection array can be found from its matching polynomial.

Proof. We give the proof for graphs of diameter 3. It should be obvious how
to shorten the proof for the cases of smaller diameter. Suppose that we have the
matching polynomial of a distance-regular graph of diameter 3.
The first term of the matching polynomial, wn

1 , allows us to determine the number
of vertices in the graph, n. The coefficient of the second term is nr/2, and together
with n, this is sufficient to determine the degree of the graph r . Because b0 is the
degree of the graph, we have the first element of the intersection array.
The coefficient of the fourth term depends on n,r , and the number of triangles, T

(3.5). Thus, we can determine the number of triangles in the graph. In turn, T depends
on n,r , and a1 (4.3). Because we know n and r and the dependence on a1 is linear, we
can then find a1. Because c1 = 1 for any distance-regular graph, and r = a1+b1+c1,
we can also determine b1.
The coefficient of the fifth term depends on n,r ,T , and the number of squares, S

(3.6). Thus, we can determine the number of squares in the graph. In turn, S depends
on n,r ,a1,b1, and c2 (4.5). Because we know n,r ,a1, and b1 and since the dependence
on c2 is linear, we can then find c2.
We can compute H with the information at hand since we need only n,r , and a1

(4.6). The coefficient of the sixth term depends on n,r ,T ,S,H, and the number of
pentagons, P (3.6). Thus, we can determine the number of pentagons in the graph. In
turn, P depends on n,r ,a1,b1,c2, and a2 (4.8). Because we know n,r ,a1,b1,c2 and
since the dependence on a2 is linear, we can then find a2.
With the current collection of intersection numbers, we can in turn find b2,c3, and

a3 with the following sequence of equations:

r = a2+b2+c2, k1 = r ,
k1b1 = k2c2, n= 1+k1+k2+k3,

k2b2 = k3c3, r = a3+c3.
(4.11)

Thus, the matching polynomial of a distance-regular graph of diameter 3 determines
its entire intersection array.

Recall that the intersection array of a distance-regular graph determines the charac-
teristic polynomial of the graph and, thus, determines the eigenvalues and their multi-
plicities, for the graph. In the case of small diameter distance-regular graphs, because
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the matching polynomial determines the intersection array, it also determines the
eigenvalues and their multiplicities, for the graph. So, the first six coefficients of the
matching polynomial carry enough information about small diameter distance-regular
graphs to determine the entire spectrum.
In summary, we have seen that while both the intersection array and the circuit

polynomial determine the spectrum of a distance-regular graph, in general, they are
independent of each other. However, the initial portion of the matching polynomial
(and hence, also the initial portion of the characteristic polynomial) of a distance-
regular graph can be found from the intersection array of a distance-regular graph.
Thus, for those classes of regular graphs that are also distance-regular, we can easily
calculate the initial portion of thematching polynomial and some initial terms of other
graph polynomials that contain the matching polynomial as a sub-polynomial.
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