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Abstract. We investigate a family that connects various subclasses of functions convex
in the unit disk. We also look at generalized sequences for this family.
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1. Introduction. Denote by S the family of functions

f(z)= z+
∞∑

k=2
akzk (1.1)

that are analytic and univalent in the unit disk ∆ = {z : |z| < 1} and by K the family
of convex functions f ∈ S for which Re(1+zf ′′/f ′) > 0, z ∈ ∆. There are several
well-known subclasses of K. Robertson in [6] introduced the family K(α) of functions
f convex of order α, 0 ≤ α < 1, that satisfy in ∆ the inequality Re(1+zf ′′/f ′) > α.
Ruscheweyh [8] defined the subclass D of K consisting of functions f for which
Ref ′(z) ≥ |zf ′′(z)|, z ∈ ∆. His convolution conjecture [8] for this class is stronger
than the (former) Bieberbach conjecture (deBranges’ theorem).
Goodman [2] introduced the family UCV⊂K of uniformly convex functions f having

the property that for every circular arc γ contained in∆with center also in∆, the image
arc f(γ) is a convex arc. He then gave the two-variable characterization

Re

[
1+ (z−ζ)f ′′(z)

f ′(z)

]
> 0, (z,ζ)∈∆×∆. (1.2)

Ma and Minda [4] and Ronning [7] independently found a more applicable one-variable
characterization for UCV, namely

Re

[
1+ zf ′′(z)

f ′(z)

]
≥
∣∣∣∣∣zf

′′(z)
f ′(z)

∣∣∣∣∣, z ∈∆. (1.3)

We may summarize relationships between K(α), D, and UCV.

Theorem 1.1. (i) D �⊂K(α), α > 0; K(α) �⊂D, α < 1 .
(ii) D �⊂ UCV and UCV �⊂D.
(iii) UCV⊂K(1/2). See [7].
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Proof of (i). The function z+z2/4∈D−K(α), α > 0, and∫ z

0
(1−t)−2(1−α)dt ∈K(α)−D, α < 1. (1.4)

Proof of (ii). For z+a2z2+a3z3+··· ∈ D and z+b2z2+b3z3+··· ∈ UCV, the
sharp coefficient bounds |a2| ≤ A2 =

√
2−1 and |a3| ≤ A3 = 2/3(

√
5−2) were found

in [1], while |b2| ≤ B2 = 4/π2 and |b3| ≤ B3 = 8/9π2+32/3π4 were found in [4]. Since
A2 > B2 and B3 >A3, neither inclusion is possible.

In this paper, we introduce a family of functions that connects these various sub-
classes of K. We also relate this new class to the family R of functions f ∈ S for which
Ref ′ > 0, z ∈∆.

2. The main class. We say that f of the form (1.1) is in UCD(α), α≥ 0, if
Ref ′(z)≥α

∣∣zf ′′(z)∣∣, z ∈∆. (2.1)

Note that UCD(0)= R and UCD(1)=D. Note further that UCD(α) �⊂ S if α< 0, since
z+(1−α)z2/2∈ UCD(α)−S, α< 0.

Theorem 2.1. UCD(α)⊂K(1−1/α), α≥ 1, and the result is sharp.

Proof. If f ∈ UCD(α), then
∣∣f ′(z)∣∣≥α

∣∣zf ′′(z)∣∣,
∣∣∣∣∣zf

′′(z)
f ′(z)

∣∣∣∣∣≤ 1α. (2.2)

Hence,

Re

[
1+ zf ′′(z)

f ′(z)

]
≥ 1−

∣∣∣∣∣zf
′′(z)

f ′(z)

∣∣∣∣∣≥ 1− 1α. (2.3)

For sharpness, set f(z)= ∫ z0 ((1+ct)/(1−ct))dt, c =√1+α2−α. Then f ∈ UCD(α)
because for |z| = r < 1, Ref ′(z) = (1−c2r 2)/(|1−cz|2) ≥ α(2cr)/(|1 − cz|2) =
α|zf ′′(z)|. Note that Re[1+zf ′′/f ′]= Re[1+2cz/(1−c2z2)]. For z =−r , r → 1, this
last expression approaches 1−2c/(1−c2)= 1−1/α. Thus, f �∈K(β) for β > 1−1/α.

Clearly, the family UCD(α) ⊂ D for α ≥ 1. We next see when UCD(α) is uniformly
convex.

Theorem 2.2. UCD(α)⊂ UCV�α≥ 2.
Proof. Since the extremal function of Theorem 2.1 is not in K(1/2) for α< 2, an

application of Theorem 1.1(iii) shows that this function cannot be in UCV when α< 2.
If f ∈ UCD(2), then

∣∣f ′(z)∣∣≥ 2∣∣zf ′′(z)∣∣,
∣∣∣∣∣zf

′′

f ′

∣∣∣∣∣≤ 12 . (2.4)

Thus,

Re

[
1+ zf ′′(z)

f ′(z)

]
≥ 1−

∣∣∣∣∣zf
′′

f ′

∣∣∣∣∣≥
∣∣∣∣∣zf

′′

f ′

∣∣∣∣∣, f ∈ UCV . (2.5)



CLASSES OF CONVEX FUNCTIONS 821

3. Sequences. To a finite or infinite increasing sequence of integers {nk} with
nk ≥ k we associate with f of the form (1.1) the generalized partial sum defined
by

f̃ (z)= z+
∞∑

k=2
ankz

nk , (3.1)

with the special case nk = k (k = 2,3, . . . ,n) representing the nth section fn(z) =
z+∑n

k=2akzk. We determine when generalized sequences of functions in R satisfy
conditions to be in UCD(α). Since our results rely on properties for continuous linear
functionals defined on R, sharp results are obtained from the extreme points of R.
See [3]. It thus suffices to consider the extremal function f ∈ R defined by

f(z)=−z−2log(1−z)= z+2
∞∑

k=2

zk

k
. (3.2)

In [10] it was shown for f ∈ R that
(i) 4fn(z/4)⊂D,
(ii) f(az)/a⊂D, a=√2−1.
The proof of (i) for |z| = r ≤ 1/2 relied on the inequalities

Ref ′n(z)≥
(1+r)2(1−2r)

|1−z|2 ,
∣∣f ′′n (z)

∣∣≤ 2(1+r)2

|1−z|2 , (3.3)

and of (ii) for r < 1 on

Ref ′(z)≥ (1−r 2)
|1−z|2 ,

∣∣f ′′(z)∣∣≤ 2
|1−z|2 . (3.4)

We extend these results to the class UCD(α).

Theorem 3.1. If f ∈ R, then
(i) fn(bz)/b ∈ UCD(α), b = 1/2(1+α),
(ii) f(az)/a∈ UCD(α), a=√α2+1−α.

The results are sharp for all α≥ 0.
Proof of (i). From (3.3) we have

Ref ′n(z)≥α
∣∣zf ′′n (z)

∣∣ when (1+r)2(1−2r)≥ 2αr(1+r)2, (3.5)

which is true for r ≤ 1/2(1+α). Equality holds for f defined by (3.2) and n= 2.
Proof of (ii). From (3.4) we see that

Ref ′(z)≥α
∣∣zf ′′(z)∣∣ when 1−r 2 ≥ 2αr (3.6)

which holds for r =√α2+1−α.

Remark 3.2. The case α= 0 in (i) (f ∈ R) is due to MacGregor [5].

We now turn to generalized sequences.
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Theorem 3.3. If f of the form (1.1) is in R with f̃ of the form (3.1) a generalized
sum of f , then f̃ (bz)/b ∈ UCD(α), α≥ 0, where b is the positive zero in (0,1) of

1−2r −r 2−2αr 1+r 2

1−r 2
= 0. (3.7)

The result is sharp for all α.

Remark 3.4. The cases α= 0 (b =√2−1) and α= 1 (b ≈ 0.2253) were proved in
[10]. Note that the value for b decreases as α increases.

Proof. We need only consider f defined by (3.2). Defining h by

h′(z)= f ′(z)+αeiγzf ′′(z), γ real, (3.8)

it suffices to show that

h̃′(z)= f̃ ′(z)+αeiγzf̃ ′′(z)= 1+2
∞∑

nk=2

[
1+α(nk−1)eiγ

]
znk−1 (3.9)

has positive real part for |z|< b. We examine different cases.
Case 1 (n2 ≥ 3). Then

Re h̃′(z)≥ 1−2
∞∑

n=3

[
1+α(n−1)]rn−1 = 1− 2r 2

1−r
− 2αr

2(2−r)
(1−r)2

,

(1−r)2 Re h̃′(z)≥ 1−2r −r 2−2αr 2(2−r)≥ 1−2r −r 2−2αr.
(3.10)

Since this last expression is bounded below by the left-hand side of (3.7), it follows
that

Re h̃′(z)≥ 0 for |z| ≤ b. (3.11)

Case 2 (n2 = 2, n3 = 3). Then for z = reiθ ,

Re h̃′(z)≥ Re[1+2(1+αeiγ
)
z+2(1+2αeiγ)z2]−2 ∞∑

n=4

[
1+α(n−1)]rn−1

:= ReA(z)− 2r 3

(1−r)2
[
(1−r)+α(3−4r)].

(3.12)

Now

ReA(z)= 1+2r cosθ+2r 2 cos2θ+Re[2αeiγ(z+2z2)]
≥ 1+2r cosθ+2r 2 cos2θ−2αr(1+2r cosθ), (3.13)

which attains its minimum for r = b when cosθ =−(1−2αb)/4b. Thus,

ReA(z)≥ 3
4
−2b2−αb−α2b2 for |z| ≤ b,

Re h̃′(z)≥ 3
4
−2b2−αb−α2b2− 2b3

(1−b)2
(
1−b+α(3−4b)). (3.14)
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Substituting from (3.7) the value α = (1−b2)(1−b2−2b)/2b(1+b2) into the right-
hand side of (3.14), one can show that the right-hand side of (3.14) decreases as b
decreases. Since αb → 1/2 as α → ∞, we see that Re h̃′(z) ≥ 3/4− 1/2− 1/4 = 0,
|z| ≤ b.
When n2 = 2 and n3 ≥ 4, we consider two remaining possibilities, depending on

whether the first nk after consecutive even integers is the succeeding odd integer.
Case 3. We have

h̃′(z)= 1+2
m+1∑
n=1

[
1+α(2n+1)eiγ]z2n−1+2[1+α(2m+2)eiγ]z2m+2

+2
∑

nk≥2m+4

[
1+α(nk−1)eiγ

]
znk−1.

(3.15)

Setting r ′(z)= h′(z)− h̃′(z), we have for |z| ≤ b that

Re h̃′(z)≥ 1−b2−2αb
(1+b)2

−|r ′(z)|

≥ 1−b2−2αb
(1+b)2

−2
m∑

n=1
(1+2αn)b2n−2

∞∑
n=2m+3

(1+αn)bn.
(3.16)

An induction shows that the right-hand side decreases withm, so that

Re h̃′(z)≥ 1−b2−2αb
(1+b)2

−2
∞∑

n=1
(1+2αn)b2n

= 1−b2−2αb
(1+b)2

− 2b
2
(
1+2α−b2

)
(
1−b2

)2
= 1
1−b2

[
1−2b−b2−2αb

(
1+b2

1−b2

)]
= 0.

(3.17)

Case 4. We have

h̃′(z)= 1+2
m∑

n=1

[
1+α(2n−1)eiγ]z2n−1+2 ∑

nk≥2m+3
[1+α(nk−1)]znk−1. (3.18)

Then for |z| ≤ b,

Re h̃′(z)≥ 1−2
m∑

n=1

[
1+α(2n−1)]b2n−1−2 ∞∑

n=2m+3

[
1+α(n−1)]bn−1. (3.19)

Again the right-hand side decreases withm and

Re h̃′(z)≥ 1−2
∞∑

n=1

[
1+α(2n−1)]b2n−1 = 1− 2b

1−b2
−2αb

(
1+b2(
1−b2

)2
)
= 0. (3.20)

For sharpness, set nk = 2k so that f̃ (z) = z+2∑∞
k=1z2k/2k. Setting γ = 0 in (3.13),

we see that h̃′(−b)= 0.
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4. Sufficient conditions. We next see how small the coefficient need to be in order
to guarantee inclusion in the family.

Theorem 4.1. A sufficient condition for f of the form (1.1) to be in UCD(α), α≥ 0,
is that

∑∞
k=2k[1+α(k−1)]|ak| ≤ 1.

Proof. Since Re f ′ ≥ 1−∑∞
k=2k|ak| and |zf ′′| ≤

∑∞
k=2k(k−1)|ak|, the result fol-

lows.

In [9] the family T consisting of univalent functions f of the form

f(z)= z−
∞∑

k=2
akzk, ak ≥ 0, (4.1)

was investigated. Denote by TUCD(α) functions in UCD(α) of the form (4.1). For this
class, the sufficient condition of Theorem 4.1 is also necessary.

Theorem 4.2. A function of the form (4.1) is in TUCD(α) if and only if
∑∞

k=2k[1+
α(k−1)]ak ≤ 1.

Proof. In view of Theorem 4.1, we need only show that f ∈ TUCD(α) satisfies the
coefficient condition. Note that

f ′(r)= 1−
∞∑

k=2
kakrk−1, αrf ′′(r)=α

∞∑
k=2

k(k−1)rk−1. (4.2)

The result follows upon letting r → 1.
Remark 4.3. The coefficient characterizations found in [9] also show that f of the

form (4.1) is starlike � f ∈ TUCD(0), is convex � f ∈ TUCD(1), and is convex of
order 1/2� f ∈ TUCD(2). A function f of the form (4.1) is also uniformly convex
� f ∈ TUCD(2). See [11].
From the work in [9], the coefficient characterization of Theorem 4.2 enables us to

determine extreme points.

Theorem 4.4. The extreme points of TUCD(α) are f1(z)= z and

fk(z)= z− zk

k[1+α(k−1)] , k= 2,3, . . . , (4.3)

and f ∈ TUCD(α)� f can be expressed in the form

f(z)=
∞∑

k=1
λkfk(z), where λk ≥ 0,

∞∑
k=1

λk = 1. (4.4)

References

[1] R. Fournier and S. Ruscheweyh, Remarks on a multiplier conjecture for univalent
functions, Proc. Amer. Math. Soc. 116 (1992), no. 1, 35–43. MR 92k:30016.
Zbl 848.30005.

[2] A. W. Goodman,On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87–92.
MR 93a:30009. Zbl 744.30010.

http://www.ams.org/mathscinet-getitem?mr=92k:30016
http://www.emis.de/cgi-bin/MATH-item?848.30005
http://www.ams.org/mathscinet-getitem?mr=93a:30009
http://www.emis.de/cgi-bin/MATH-item?744.30010


CLASSES OF CONVEX FUNCTIONS 825

[3] D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions,
Trans. Amer. Math. Soc. 192 (1974), 285–292. MR 49#3103. Zbl 296.30014.

[4] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no. 2,
165–175. MR 93j:30009. Zbl 760.30004.

[5] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math.
Soc. 104 (1962), 532–537. MR 25#4090. Zbl 106.04805.

[6] M. I. S. Robertson, On the theory of univalent functions, Ann. of Math. 37 (1936), 374–408.
Zbl 014.16505.

[7] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions,
Proc. Amer. Math. Soc. 118 (1993), no. 1, 189–196. MR 93f:30017. Zbl 805.30012.
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