A NOTE ON *M*-IDEALS IN CERTAIN ALGEBRAS OF OPERATORS

CHONG-MAN CHO and WOO SUK ROH

(Received 7 October 1998)

ABSTRACT. Let $X = (\sum_{n=1}^{\infty} \ell_1^n)_p$, p > 1. In this paper, we investigate *M*-ideals which are also ideals in L(X), the algebra of all bounded linear operators on *X*. We show that K(X), the ideal of compact operators on *X* is the only proper closed ideal in L(X) which is both an ideal and an *M*-ideal in L(X).

Keywords and phrases. Compact operators, ideal, M-ideal.

2000 Mathematics Subject Classification. Primary 46A32.

1. Introduction. Since Alfsen and Effros [1, 2] introduced the notion of an *M*-ideal in a Banach space, many authors have studied *M*-ideals in algebras of operators. An interesting problem has been characterizing and finding those Banach spaces *X* for which K(X), the space of all compact linear operators on *X*, is an *M*-ideal in L(X), the space of all continuous linear operators on *X* [4, 8, 9, 11, 12].

It is known that if *X* is a Hilbert space, $\ell_p(1 or <math>c_0$, then K(X) is an *M*-ideal in L(X) [6, 8, 12] while $K(\ell_1)$ and $K(\ell_\infty)$ are not *M*-ideals in the corresponding spaces of operators [12]. Smith and Ward [12] proved that *M*-ideals in a complex Banach algebra with identity are subalgebras and that they are two-sided algebraic ideals if the algebra is commutative. They also proved that *M*-ideals in a C*-algebra are exactly the two-sided ideals [12]. Later, Cho and Johnson [5] proved that if *X* is a uniformly convex Banach space, then every *M*-ideal in L(X) is a left ideal, and if X^* is also uniformly convex, then every *M*-ideal in L(X) is a two-sided ideal in L(X).

Flinn [7], and Smith and Ward [13] proved that $K(\ell_p)$ is the only nontrivial *M*-ideal in $L(\ell_p)$ for 1 . Kalton and Werner [10] proved that if <math>1 < p, $q < \infty$, $X = (\sum_{n=1}^{\infty} \ell_q^n)_p$ with complex scalars, then K(X) is the only nontrivial *M*-ideal in L(X). In their proof of this fact, Kalton and Werner [13] used the uniform convexity of *X* and *X**. In this case, *M*-ideals in L(X) are two-sided closed ideals in L(X) [5].

In this paper, we investigate *M*-ideals which are also ideals in L(X) for $X = (\sum_{n=1}^{\infty} \ell_1^n)_p$, 1 . In our case, neither*X* $nor <math>X^*$ is uniformly convex. Therefore, no relationships between *M*-ideals and algebraic ideals in L(X) seem to be known. But still we can use Kalton and Werner's proof in [10] without using uniform convexity of *X* and X^* to prove that K(X) is the only nontrivial *M*-ideal in L(X) which is also a closed ideal in L(X) (Theorem 3.3). By duality we have the same conclusion for the space $(\sum_{n=1}^{\infty} \ell_n^n)_p$, 1 .

2. Preliminaries. A closed subspace J of a Banach space X is said to be an *L*-summand (respectively, *M*-summand) if there exists a closed subspace J' of X

such that *X* is an algebraic direct sum $X = J \oplus J'$ and satisfies a norm condition ||j + j'|| = ||j|| + ||j'|| (respectively, $||j + j'|| = \max\{||j||, ||j'||\}$) for all $j \in J$ and $j' \in J'$. In this case, we write $X = J \oplus_1 J'$ (respectively, $X = J \oplus_\infty J'$) and the projection *P* on *X* with rang *J* is called an *L*-projection (respectively, an *M*-projection). A closed subspace *J* of a Banach space *X* is an *M*-ideal in *X* if the annihilator J^{\perp} of *J* is an *L*-summand in X^* .

Let *A* be a complex Banach algebra with identity *e*. The state space *S* of *A* is defined to be $\{\phi \in A^* : \phi(e) = \|\phi\| = 1\}$. An element $h \in A$ is said to be Hermitian if $\|e^{i\lambda h}\| = 1$ for all real number λ . Equivalently, *h* is Hermitian if and only if $\phi(h)$ is real for every $\phi \in S$ [3, page 46].

In what follows, *Z* always denote a complex Banach space $(\sum_{n=1}^{\infty} \ell_1^n)_p$, the ℓ_p -sum of ℓ_1^n 's for 1 . For each*n* $, let <math>\{e_{nl}\}_{l=1}^n$ be the standard basis of ℓ_1^n . Then these bases string together to form the standard basis $\{e_n\}_{n=1}^{\infty}$ of *Z* and each $T \in L(Z)$ has a matrix representation with respect to $\{e_n\}_{n=1}^{\infty}$. If $T \in L(Z)$ has the matrix whose (i, j)-entry is t_{ij} , then we can write $T = \sum_{i,j \ge 1} t_{ij} e_j \otimes e_i$, where $e_j \otimes e_i$ is the rank 1 map sending e_j to e_i . Observe that $T(e_j)$ forms the *j*th column vector of the matrix of *T* and $||Te_j|| \le ||T||$ for all $j = 1, 2, \ldots$. If the matrix of *T* has at most one nonzero entry in each row and column, then ||T|| is the l_∞ -norm of the sequence of nonzero entries.

A number of facts which hold in $L(\ell_p), 1 , still hold in <math>L(Z)$. If the matrix of $T \in L(Z)$ is a diagonal matrix (t_{ij}) with real diagonal entries, then for each real λ the matrix of $e^{i\lambda T}$ is also a diagonal matrix with diagonal matrix entries $e^{i\lambda t_{ii}}$. Thus $T \in L(Z)$ is Hermitian if the matrix T is a diagonal matrix with real entries.

Flinn [7] proved that if *M* is an *M*-ideal in $L(\ell_p), 1 and$ *h* $is a Hermitian element in <math>L(\ell_p)$ with $h^2 = I$, then $hM \subseteq M$ and $Mh \subseteq M$. From this he proved that if *h* is any diagonal matrix with real entries, then $hM \subseteq M$ and $Mh \subseteq M$. His proof is valid for *Z* in place of ℓ_p . Thus we have the following.

LEMMA 2.1. If *M* is an *M*-ideal in L(Z) and $h \in L(Z)$ is a diagonal matrix with real entries, then $hM \subseteq M$ and $Mh \subseteq M$.

The *M*-ideal structure of L(X) for $X = (\sum_{n=1}^{\infty} \ell_q^n)_p$, $1 < p, q < \infty$ was studied by Kalton and Werner [10]. Some of their proofs for *X* are still good for *Z*. One of them is the following.

LEMMA 2.2. There is a constant *C* such that, whenever (k_n) is a sequence of positive integers with $\limsup k_n = \infty$, then $(\sum_{n=1}^{\infty} \ell_1^{k_n})_p$ is *C*-isomorphic to $(\sum_{n=1}^{\infty} \ell_1^n)_p$.

PROOF. See proof of Lemma 3.1 of [10].

We recall that a Banach space X is C-isomorphic to a Banach space Y if there exists an isomorphism T form X onto Y such that

$$\frac{1}{C} \|x\| \le \|Tx\| \le C \|x\|$$
(2.1)

for every $x \in X$. We use the following lemma which is due to Kalton and Werner [10].

LEMMA 2.3 [10]. Let X be a Banach space, $\mathcal{T} \subset L(X)$ be a two-sided ideal, and P a projection onto a complemented subspace E of X which is isomorphic to X. (a) If $P \in \mathcal{T}$, then $\mathcal{T} = L(X)$.

(b) If *E* is *C*-isomorphic with *X* and *T* contains an operator *T* with $||T - P|| < (C||P||^{-1})$, then T = L(X).

3. *M*-ideals in $L((\sum_{n=1}^{\infty} \ell_1^n)_p)$. A matrix carpentry used by Flinn [7] to characterize the *M*-ideal structure in $L(\ell_p)$ can be used to some extent in our case $Z = (\sum_{n=1}^{\infty} \ell_1^n)_p$. The proof of the following lemma is really a minor modification of Flinn's proof in [7].

LEMMA 3.1. If *M* is a nontrivial *M*-ideal in L(Z), then $K(Z) \subseteq M$.

SKETCH OF THE PROOF. Let us call two positive integers *i* and *j* are in the same block if n(n+1)/2 < i, $j \le (n+1)(n+2)/2$ for some *n*. Using Lemma 2.1, we can follow Flinn's proof of the second corollary to Lemma 1 in [7]. The only modification is the following: to prove $2^{1/q} < |t_{pl} + t_{kl}| \le 2^{1/q}$, we consider two cases. If *p* and *k* are in a different block, Flinn's proof just run through. If *p* and *k* are in the same block, then $2^{1/q} < |t_{pl} + t_{kl}| \le 2^{1/q}$.

The proof of the following lemma is contained in the proof of Theorem 3.3 in [10].

LEMMA 3.2. If \mathcal{T} is a closed ideal strictly containing K(Z) then \mathcal{T} contains all the operators which factor through ℓ_p .

The proof of the following theorem is a modification of that of Kalton and Werner [10]. Here we can go around the use of uniform convexity.

THEOREM 3.3. If \mathcal{T} is a closed ideal and also an *M*-ideal in L(Z) strictly containing K(Z), then $\mathcal{T} = L(Z)$.

PROOF. We recall that the standard basis $\{e_{nl}\}_{l=1}^{n}$ of ℓ_{1}^{n} string together to form the standard basis $\{e_{n}\}_{n=1}^{\infty}$ of *Z*. If $\{e'_{n}\}_{n=1}^{\infty}$ is the standard basis of ℓ_{p} , then the map $e_{n} \rightarrow e'_{n}$ gives a contraction from *Z* to ℓ_{p} . Since $E = \overline{\text{span}}\{e_{nl}\}_{n=1}^{\infty}$ is isometric to ℓ_{p} , there exists a norm one operator *A* from *Z* to *E* carrying e_{n} to e_{n1} via e'_{n} . Thus *A* factors through ℓ_{p} . By Lemma 3.2, $A \in \mathcal{T}$.

Since \mathcal{T} is also an *M*-ideal, by Proposition 2.3 in [14], there exists a net $(H_{\alpha}) \subseteq \mathcal{T}$ such that

$$\limsup \| \pm A + (\mathrm{Id} - H_{\alpha}) \| = 1.$$
(3.1)

To simplify subsequent calculations, let us write the standard basis of *Z* as $\{e_{nl} : n \in \mathbb{N}, 1 \le l \le n\}$ and let $\{e_{nl}^* : n \in \mathbb{N}, 1 \le l \le n\}$ be the corresponding biorthogonal functionals. Then $Ae_{nl} = e_{ml}$, where m = (n-1)n/2 + l.

Given $0 < \varepsilon < 1$,

$$\max_{+} \| \pm A + (\mathrm{Id} - H_{\alpha}) \| < 1 + \varepsilon$$
(3.2)

for infinitely many α 's. For such an α and every e_{nl} ,

$$\max \| \pm Ae_{nl} - (\mathrm{Id} - H_{\alpha})e_{nl} \| < 1 + \varepsilon.$$
(3.3)

Put $\alpha_{kj} = e_{kj}^* (\operatorname{Id} - H_{\alpha}) e_{nl}$. Then,

$$\begin{aligned} \max_{\pm} || \pm A e_{nl} + (\mathrm{Id} - H_{\alpha}) e_{nl} ||^{p} \\ &= \max_{\pm} || \pm e_{m1} - (\mathrm{Id} - H_{\alpha}) e_{nl} ||^{p} \\ &= \left(\max_{\pm} |\alpha_{m1} \pm 1| + |\alpha_{m2}| + \dots + |\alpha_{mm}| \right)^{p} + \sum_{k \neq m} \left(\sum_{j=1}^{k} |\alpha_{kj}| \right)^{p} \\ &< (1 + \varepsilon)^{p}. \end{aligned}$$
(3.4)

Since $\max_{\pm} |\alpha_{m1} \pm 1| \ge 1$, it follows that $\sum_{k \ne m} (\sum_{j=1}^{k} |\alpha_{kj}|)^p < (1+\varepsilon)^p - 1$ and $|\alpha_{m2}| + \cdots + |\alpha_{mm}| < \varepsilon$. Since $\sqrt{1+|\alpha_{m1}|^2} \le \max_{\pm} |\alpha_{m1} \pm 1| < 1+\varepsilon$, $|\alpha_{m1}| < \sqrt{2\varepsilon+\varepsilon^2} < 2\sqrt{\varepsilon}$. Thus $\|(\mathrm{Id}-H_{\alpha})e_{nl}\| < ((3\sqrt{\varepsilon})^p + (1+\varepsilon)^p - 1)^{1/p} \to 0$ as $\varepsilon \to 0$ uniformly in n and l. It follows that, for any n,

$$\|P_{n}(\mathrm{Id} - H_{\alpha})P_{n}\| \le \|P_{n}(\mathrm{Id} - H_{\alpha})j_{n}\| \le \left((3\sqrt{\varepsilon})^{p} + (1+\varepsilon)^{p} - 1\right)^{1/p},$$
(3.5)

where P_n is the projection on Z with range $\ell_1^n \subseteq Z$ and j_n is the canonical injection of ℓ_1^n into Z.

By Lemma 3.2 in [10], there exists a sequence (k_n) such that, for the canonical projection *P* from *Z* onto $(\sum_{n=1}^{\infty} \ell_1^{k_n})_p$,

$$\|P - PH_{\alpha}P\| = \|P(\mathrm{Id} - H_{\alpha})P\| < 3\left((3\sqrt{\varepsilon})^{p} + (1+\varepsilon)^{p} - 1\right)^{1/p}.$$
(3.6)

Since $PH_{\alpha}P \in \mathcal{T}$ and $\varepsilon > 0$ is arbitrary small, by Lemmas 2.2 and 2.3, $\mathcal{T} = L(Z)$. \Box

From Lemma 3.1 and Theorem 3.3, we have the following.

COROLLARY 3.4. If \mathcal{T} is a proper ideal and also an *M*-ideal in L(Z), then $\mathcal{T} = K(Z)$.

REMARK. By duality, all the lemmas, Theorem 3.3 and Corollary 3.4 hold with $Z^* = (\sum_{n=1}^{\infty} \ell_{\infty}^n)_p$, 1 , in place of*Z*.

ACKNOWLEDGEMENT. This research is supported by KOSEF No. 951-0102-003-2.

References

- E. M. Alfsen and E. G. Effros, *Structure in real Banach spaces. I*, Ann. of Math. (2) 96 (1972), 98–128. MR 50#5432. Zbl 248.46019.
- [2] _____, Structure in real Banach spaces. II, Ann. of Math. (2) 96 (1972), 129-173. MR 50#5432. Zbl 248.46019.
- [3] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press, London, 1971. MR 44#5779. Zbl 207.44802.
- [4] C. M. Cho and W. B. Johnson, A characterization of subspaces X of l_p for which K(X) is an *M*-ideal in L(X), Proc. Amer. Math. Soc. **93** (1985), no. 3, 466–470. MR 86h:46026. Zbl 555.47016.
- [5] _____, *M*-ideals and ideals in L(X), J. Operator Theory 16 (1986), no. 2, 245-260.
 MR 88c:47093. Zbl 623.46022.
- [6] J. Dixmier, Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Ann. of Math. (2) 51 (1950), 387-408. MR 11,441e. Zbl 036.35801.

- [7] P. Flinn, A characterization of M-ideals in $B(l_p)$ for 1 , Pacific J. Math.**98**(1982), no. 1, 73–80. MR 84i:47064. Zbl 469.46036.
- [8] J. Hennefeld, A decomposition for $B(X)^*$ and unique Hahn-Banach extensions, Pacific J. Math. **46** (1973), 197–199. MR 51#6492. Zbl 272.46013.
- [9] N. J. Kalton, *M-ideals of compact operators*, Illinois J. Math. **37** (1993), no. 1, 147–169. MR 94b:46028. Zbl 824.46029.
- [10] N. J. Kalton and D. Werner, *The M-ideal structure of some algebras of bounded linear operators*, Proc. Roy. Soc. Edinburgh Sect. A **125** (1995), no. 3, 493–500. MR 97i:46033. Zbl 835.46016.
- [11] A. Lima, *M-ideals of compact operators in classical Banach spaces*, Math. Scand. 44 (1979), no. 1, 207-217. MR 81c:47047. Zbl 407.46019.
- [12] R. R. Smith and J. D. Ward, *M-ideal structure in Banach algebras*, J. Functional Analysis 27 (1978), no. 3, 337–349. MR 57#7175. Zbl 369.46044.
- [13] ______, Applications of convexity and M-ideal theory to quotient Banach algebras, Quart.
 J. Math. Oxford Ser. (2) 30 (1979), no. 119, 365–384. MR 80h:46071. Zbl 412.46042.
- [14] D. Werner, *M-ideals and the "basic inequality"*, J. Approx. Theory **76** (1994), no. 1, 21–30.
 MR 95i:47080. Zbl 797.41019.

CHO: DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA *E-mail address*: cmcho@email.hanyang.ac.kr

ROH: DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA