ALMOST TRIANGULAR MATRICES OVER DEDEKIND DOMAINS

FRANK DEMEYER and HANIYA KAKAKHAIL

(Received 25 November 1997 and in revised form 13 March 1998)

ABSTRACT. Every matrix over a Dedekind domain is equivalent to a direct sum of matrices $A = (a_{i,j})$, where $a_{i,j} = 0$ whenever j > i + 1.

Keywords and phrases. Matrices, Dedekind domains, equivalence.

1991 Mathematics Subject Classification. 13F05, 15A21.

1. Introduction. Two $m \times n$ matrices A and B over a ring R are called equivalent if B = PAQ for invertible matrices P and Q over R. From now on, assume that R denotes a Dedekind domain with quotient field K. If $I = \langle a, b \rangle$ is a non principal ideal in R, then, in contrast with the situation for Principal Ideal Domains, the 1×2 matrix [a,b] is not equivalent over R to a matrix whose off diagonal entries are 0. Using the separated divisor theorem in the form given by Levy in [2], other facts about matrices over Dedekind domains in [2], and elementary properties of ideals in Dedekind domain [1], we show that any $m \times n$ matrix over a Dedekind domain is equivalent to a direct sum of matrices $A = (a_{i,j})$ with $a_{i,j} = 0$ when j > i + 1. If the direct summand A has rank r, then the number of rows, respectively columns, of A is either r or r + 1. The corresponding result for similarity of matrices over principal ideal rings is that every $n \times n$ matrix over a principal ideal ring is similar to an upper triangular matrix [3, p. 42].

2. Diagonalization of matrices. If *A* is an $m \times n$ matrix, then *A* can be viewed as an *R*-module homomorphism $A : \mathbb{R}^n \to \mathbb{R}^m$ by left multiplication. If M_A denotes the submodule of \mathbb{R}^m generated by the columns of *A*, then M_A is the image of *A* in \mathbb{R}^m and the isomorphism class of the cokernel $S_A = \mathbb{R}^m / M_A$ of *A* determines the equivalence class of *A*.

SEPARATED DIVISOR THEOREM [2]. There is a chain of integral *R*-ideals $L_1 \subseteq L_2 \subseteq \cdots \subseteq L_r$ and a fractional *R*-ideal *H* such that

$$S_A = \begin{cases} \bigoplus_{i=1}^r \frac{R}{L_i} \oplus H \oplus R^{m-r-1}, & m < r \\ \bigoplus_{i=1}^r \frac{R}{L_i}, & m = r, \end{cases}$$
(2.1)

where $H = \prod_{i=1}^{r} L_i$ if r = n and $H \cong R$ if r = 0 or r = m.

The isomorphism class of S_A , the ideals $\{L_i\}_{i=1}^r$ (as sets), and the isomorphism class of H both determine and are determined by the equivalence class of A.

We also need the following elementary facts about ideals in Dedekind domains.

LEMMA 1 [1, p. 150, 154]. Let I, J be integral ideals in R. Then

(1) There is an α in the quotient field *K* of *R* such that αI is integral and $\alpha I + J = R$;

(2) There is an *R*-module isomorphism $\gamma : IJ \oplus R \to I \oplus J$, given by $\gamma(u, v) = (x_1v - u, v_1) = (x_1v - u, v_2)$

 $\alpha u - x_2 v$), where α is as in (1) and $x_1 \in I$, $x_2 \in J$ are chosen with $\alpha x_1 - x_2 = 1$.

NOTE. The *R*-linear homomorphism γ is given by the matrix $\begin{pmatrix} -1 & x_1 \\ \alpha & -x_2 \end{pmatrix}$, where $\alpha \in K$.

THEOREM 2.2. Every $m \times n$ matrix A over a Dedekind domain is equivalent to a direct sum of matrices (a_{ij}) with $a_{ij} = 0$ whenever j > i + 1.

PROOF. An $m \times n$ matrix A is called indecomposable if A is not equivalent to a matrix of the form $\begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}$ for any matrices B_1 , B_2 . That is, A is not equivalent to a direct sum of matrices B_1 , B_2 . If A = 0, the result is clear. Assume that $A \neq 0$. It is sufficient to verify the result for indecomposable matrices. In this case, if r is the rank of A over the quotient field K of R, then [2, Lem. 2.1] asserts that m = r or r + 1 and n = r or r + 1. There are then four possible cases to check.

CASE 1. Assume that m = r and n = r. Then $S_A = \bigoplus_{i=1}^r R/L_i$, with L_1, \ldots, L_r integral R-ideals with $L_1 \subseteq L_2 \subseteq \cdots \subseteq L_r$ and $\prod_{i=1}^r L_i \cong R$. Thus, $\prod_{i=1}^r L_i = \langle a \rangle$ is a principal ideal generated by $a \in R$. Let $\phi_0 : R^r \to \prod_{i=1}^r L_i \oplus R^{r-1}$ be given by $\phi_0(r_1, \ldots, r_r) = (ar_1, r_2, \ldots, r_r)$ and let $\phi_j : L_1 \oplus \cdots \oplus L_{j-1} \oplus \prod_{i=j}^r L_i \oplus R \oplus R^{r-j-1} \to L_1 \oplus \cdots \oplus L_j \oplus \prod_{i=j+1}^r L_i \oplus R^{r-j-1}$ be given by $\phi_j = I_{j-1} \oplus \gamma_j \oplus I_{r-j-1}$, where $\gamma_j : \prod_{i=j}^r L_i \oplus R \to L_j \oplus \prod_{i=j+1}^r L_i$ is the map given in Lemma 1 and I_{j-1}, I_{r-j-1} are the identity maps of indicated rank. Let $\phi : R^r \to L_1 \oplus \cdots \oplus L_r \subset R^r$ be given by $\phi = \phi_{r-1}\phi_{r-2}\cdots \phi_1\phi_0$. Then the matrix $[\phi]$ of ϕ , with respect to the standard bases for R^r , is: $[\phi] = [\phi_{r-1}]\cdots [\phi] [\phi_0]$.

While $[\phi_i]$ may have entries which are not in *R*, $[\phi]$ has all its entries in *R* since each L_i is integral. If we write

$$[\phi_j] = \begin{pmatrix} I_j & 0 & 0 & 0\\ 0 & -1 & x_i^j & 0\\ 0 & \alpha_j & -x_2^j & 0\\ 0 & 0 & 0 & I_{r-j-1} \end{pmatrix},$$
(2.2)

then a direct calculation shows that

$$[\phi] = \begin{pmatrix} -a & x_1^1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -a\alpha_1 & -x_2^1 & x_1^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -a\alpha_1\alpha_2 & \alpha_2x_2^1 & x_2^2 & x_1^3 & 0 & 0 & 0 & 0 & 0 \\ -a\alpha_1\alpha_2\alpha_3 & \alpha_2\alpha_3x_2^2 & x_2^3 & x_1^4 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & & & & \vdots \\ -a\prod_{i=1}^{r-1}\alpha_i & & \cdots & & \alpha_{r-2}x_2^{r-2} & x_2^{r-1} \end{pmatrix}.$$
 (2.3)

Since $[\phi]$ has the same number of rows and columns and the same cokernel as *A*, $[\phi]$ is equivalent to *A*.

762

REMARK. Assume that $L_i = \langle a_i \rangle$ is principal for each i, i = 1, ..., r and $a_i \in R$. The isomorphism $\gamma_j : \prod_{i=j}^r L_i \oplus R \oplus \rightarrow L_j \oplus \prod_{i=j+1}^r L_i$ can be given as $\gamma_j(u, v) = (\alpha_j u, \beta_j v)$, where $\alpha_j = 1/\prod_{i=j+1} a_i$ and $\beta_j = \prod_{i=j+1}^r a_i$. In this case, $[\phi] = \text{diag}\{a_1, ..., a_r\}$ with $a_i \mid a_{i+1}$ for $1 \le i \le r$. This is the only case which occurs if *R* is a PID.

CASE 2. Assume that m = r and n = r + 1. Then $S_A = \bigoplus_{i=1}^r R/L_i$ with $L_i, 1 \le i \le r$ integral ideals and $L_1 \subseteq L_2 \subseteq \cdots \subseteq L_r$. Let L_{r+1} be integral ideal with $\prod_{i=1}^{r+1} L = \langle a \rangle$ principal, then $\bigoplus_{i=1}^{r+1} L_i \cong R^n$ and there is a chain of *R*-homomorphisms

$$R^{n} \xrightarrow{\phi} L_{1} \oplus \dots \oplus L_{r} \oplus L_{r+1} \xrightarrow{\pi} L_{1} \oplus \dots \oplus L_{r} \subseteq R^{r},$$
(2.4)

where π is the projection on $L_1 \oplus \cdots \oplus L_r$ along L_{r+1} . The matrix of $\pi \circ \phi$ is an $m \times n$ matrix obtained by deleting the last row of $[\phi]$ and, thus, has the same form as in Case 1. Since the cokernel of $\pi \phi$ is the same as *A* and $[\pi \phi]$ has the same number of rows and columns as $A, [\pi \phi]$ is equivalent to *A*.

CASE 3. Assume that m = r + 1 and n = r. Then $S_A = \bigoplus_{i=1}^r R/L_i \oplus H$, where L_i , $1 \le i \le r$ are integral ideals and $H \cong \prod_{i=1}^r L_i$. Choose $a \in R$ with $L_r H^{-1}a$ integral. Note that $L_r H^{-1}a$ is a submodule of $H^{-1}a$. From Case 1, we construct an R-isomorphism $\phi_r : R^r \to L_1 \oplus \cdots \oplus L_{r-1} \oplus L_r H^{-1}a \subset R^{r+1}$ whose matrix has the same form as that of $[\phi]$ in Case 1. By Lemma 1, there is a chain of isomorphisms $\psi : H^{-1}a \oplus H \to H^{-1}Ha \oplus R \to R \oplus R$ carrying $L_r H^{-1}a$ onto a submodule N of $R \oplus R$. By [1, Cor. 18.24], $(H^{-1}a \oplus H)/L_r H^{-1}a \cong R/L_r \oplus H$. Let $\Phi = (I_{r-1} \oplus \psi) \circ \phi_r : R^n \to R^m$. The matrix of Φ is $m \times n$ and the first r = n rows are the same as $[\phi_r]$. The last row does not contribute any entries above the main diagonal. So, for each j > i + 1, the i, jth entry of $[\Phi]$ is 0. Since the cokernel of $[\Phi]$ is S_A and $[\Phi]$ has the same number of rows and columns as $A, [\Phi]$ and A are equivalent.

CASE 4. Let $S_A = \bigoplus_{i=1}^r R/L_i \oplus H$, where L_1, \dots, L_r are integral ideals with $L_1 \subseteq \dots \subseteq L_r$ and by replacing H (if necessary) by an isomorphic copy, H is an integral ideal. By [1, Thm. 18.20], there is an integral ideal H_o with H_oH principal and $H_o + H = R$. There is an $a \in R$ such that $J = (\prod_{i=1}^r L_i \cdot H_o)^{-1}a \subseteq H$. As in Case 1, there is an isomorphism $\phi_{r+1} : R^{r+1} \to L_1 \oplus \dots \oplus L_{r-1} \oplus L_r H_o \oplus J$. View $L_i \leq R$ for $1 \leq i \leq r, L_r H_o \leq H_o$. As in Case 3, there is an isomorphism $\psi : H_o \oplus H \to R \oplus R$ with $\psi(L_r H_o) = N \leq R \oplus R$ and $R \oplus R/N \cong R/L_r \oplus H$. Let $\Phi = (I_{r-1} \oplus \psi) \circ \phi_{r+1}$. Then $\Phi : R^{r+1} \to R^{r+1}$ and all the rows, except possibly the last two of $[\Phi]$, are the same as that of $[\phi]$ in Case 1. So, for each j > i+1, the i, jth entry of $[\Phi]$ is 0. Since the cokernel of Φ is S_A , $[\Phi]$ and A are equivalent.

REMARK. While we could have given explicit formula for the entries in the matrices constructed in Cases 2, 3, and 4 as in Case 1, these entries are not canonically determined by *A* as a result of the many choices made in their construction. In particular, the choices of α and x_1, x_2 in Lemma 1 are not canonically determined by the ideals *I*, *J*.

REFERENCES

 C. W. Curtis and I. Reiner, *Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, vol. 11, Interscience Publishers, a division of John Wiley & Sons, New York, London, 1962. MR 26#2519. Zbl 131.25601.

- [2] L. S. Levy, Almost diagonal matrices over Dedekind domains, Math.-Z. 124 (1972), 89–99. MR 45 3437. Zbl 211.36903.
- [3] M. Newman, *Integral matrices*, Pure and Applied Mathematics, vol. 45, Academic Press, New York, London, 1972. MR 49 5038. Zbl 254.15009.

DEMEYER: DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS CO 80523, USA

E-mail address: demeyer@math.colostate.edu

KAKAKHAIL: DEPARTMENT OF MATHEMATICS, METROPOLITAN STATE COLLEGE, DENVER CO 80217, USA

E-mail address: mashroor.kakakhel@uchsc.edu

764