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Abstract. A number of interesting criteria were given by earlier workers for a normalized
analytic function to be in the familiar class �∗ of starlike functions. The main object of
the present paper is to extend and improve each of these earlier results. An application
associated with an integral operator �c(c >−1) is also considered.
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1. Introduction. Let �(n) denote the class of functions of the form

f(z)= z+
∞∑

k=n+1
akzk,

(
n∈N := {1,2,3, . . .}) (1.1)

which are analytic in the open unit disk � = {z : z ∈ C and |z| < 1}. Also, let �∗ be
the class of starlike functions in �, defined by (cf., e.g., [2, 11])

�∗ :=
{
f(z)∈�(1) :�

(
zf ′(z)
f(z)

)
> 0, (z ∈�)

}
. (1.2)

For analytic functions g(z) andh(z)with g(0)= h(0), g(z) is said to be subordinate
to h(z) if there exists an analytic function w(z) such that w(0) = 0, |w(z)| < 1,
(z ∈�), and g(z)= h(w(z)). We denote this subordination by g(z)≺ h(z).
For a function f(z) belonging to the class �(1), Bernardi [1] defined the integral

operator �c as follows:

(
�cf

)
(z)= c+1

zc

∫ z
0
tc−1f(t)dt, (c >−1; z ∈�). (1.3)

We note that �cf ∈ �(n) if f ∈ �(n). In particular, the operator �1 was studied
earlier by Libera [3]. (Also, see Owa and Srivastava [8, p. 126 et seq.]).
R. Singh and S. Singh [10] proved that if f(z)∈�(1) and

�{f ′(z)+zf ′′(z)}>− 1
4 , (z ∈�), (1.4)

then f(z)∈�∗.
Recently, Yi and Ding [12] improved the above-mentioned result of R. Singh and

S. Singh [10] by showing that if f(z)∈�(1) and

�{f ′(z)+zf ′′(z)}> 1− 3
4(1− log2)2+2 ≈−0.263, (z ∈�), (1.5)
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then f(z)∈�∗.
Furthermore, Nunokawa and Thomas [6] proved that if f(z)∈�(1) and

�{f ′(z)}>−0.0175 . . . , (z ∈�), (1.6)

then �1f ∈�∗

In this paper, we extend and improve each of these earlier results in [6, 12] and also
consider an interesting application associated with the integral operator �c .

2. Preliminary results. The following results are required in our investigation.

Lemma 1 (Yi and Ding [12, Lem. 1]). Suppose that the function φ : C2×� → C sat-
isfies the condition �{φ(ix,y ;z)} ≤ δ for all real x and y ≤ −(1/2)(1+x2) and all
z ∈�. If p(z)= 1+p1z+p2z+··· is analytic in � and

�{φ(p(z),zp′(z);z)}> δ, (z ∈�), (2.1)

then �{p(z)}> 0 in �.

Lemma 2 (Owa and Nunokawa [7, Thm. 1]). Let p(z) be analytic in � with

p(0)= 1, p′(0)= ··· = p(n−1)(0)= 0. (2.2)

If p(z) satisfies the inequality

�{p(z)+αzp′(z)}> β, (z ∈�), (2.3)

then

�{p(z)}> β+(1−β)
{
2
∫ 1

0

dρ
1+ρn�(α) −1

}
, (z ∈�), (2.4)

where α≠ 0, �(α)≥ 0, and β < 1.

Lemma 3 (Owa and Nunokawa [7, Ex. 1]). Let α> 0 and β < 1. If f(z)∈�(n) satis-
fies the inequality

�{f ′(z)+αzf ′′(z)}> β, (z ∈�), (2.5)

then

�{f ′(z)}> β+(1−β){2δ(n,α)−1}, (z ∈�), (2.6)

where

δ(n,α)=
∫ 1

0

dρ
1+ρnα . (2.7)

Incidentally, the value of δ(n,α) in (2.7) can be expressed as the Gauss hypergeo-
metric function

2F1
(
1,

1
nα

; 1+ 1
nα

; −1
)

(2.8)

which may also be rewritten in terms of the difference of two Digamma (or ψ-) func-
tions

1
2nα

[
ψ
(
1+nα
2nα

)
−ψ

(
1

2nα

)] (
ψ(z) := Γ

′(z)
Γ(z)

)
. (2.9)

We also note that the inequality (2.5) is equivalent to the subordination given by
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f ′(z)+αzf ′′(z)≺ 1+(1−2β)z
1−z . (2.10)

3. Main results. The following theorem is a generalization of the main result of Yi
and Ding [12].

Theorem. Let δ(n,α) be as defined in Lemma 3 and let θ = 0.911621907, α ≥
0.17418, and

α− (1−α)2
3α

tan2θ <
2δ(n,α)−1{

1−δ(n,α)}{2δ(n,1)−1} . (3.1)

If f ∈�(n) satisfies the inequality

�{f ′(z)+αzf ′′(z)}

> 1−
2
α
+
(
1− (1−α)2

3α2
tan2θ

)

2
α
+4{1−δ(n,1)}{1−δ(n,α)}(1− (1−α)2

3α2
tan2θ

) , (z ∈�), (3.2)

then f(z)∈�∗.

Proof. Making use of Lemma 3 and the inequality (3.2), we obtain

�{f ′(z)}> β+(1−β){2δ(n,α)−1}

= 2
{
δ(n,α)−1}




2
α
+
(
1− (1−α)2

3α2
tan2θ

)

2
α
+4{1−δ(n,1)}{1−δ(n,α)}(1− (1−α)2

3α2
tan2θ

)

+1

=: γ, (z ∈�),
(3.3)

where

β= 1−
2
α
+
(
1− (1−α)2

3α2
tan2θ

)

2
α
+4{1−δ(n,1)}{1−δ(n,α)}(1− (1−α)2

3α2
tan2θ

) . (3.4)

Since α≥ 0.17418 and

1
2 < δ(n,α) < 1, (α > 0;n∈N), (3.5)

we have

2
α
+4{1−δ(n,1)}{1−δ(n,α)}(1− (1−α)2

3α2
tan2θ

)
> 0. (3.6)

Hence, by (3.1), we find from (3.3) that

0< γ < 1. (3.7)

If we put p(z)= z−1f(z), then

�{f ′(z)}=�{p(z)+zp′(z)}> γ, (z ∈�), (3.8)
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which, in view of Lemma 2, implies that

�
{
f(z)
z

}
> γ+(1−γ){2δ(n,1)−1}, (z ∈�). (3.9)

By using (3.5) and (3.7), we get

�
{
f(z)
z

}
> 0, (z ∈�). (3.10)

Next, we let

q(z)= zf ′(z)
f(z)

and λ(z)= f(z)
z

. (3.11)

Then

�{λ(z)}> γ+(1−γ){2δ(n,1)−1}, (z ∈�) (3.12)

and

f ′(z)+αzf ′′(z)= λ(z)
[
αzq′(z)+(1−α)q(z)+α{q(z)}2]

=φ
(
q(z),zq′(z);z

)
,

(3.13)

where φ(u,v ;z)= λ(z)[αu2+(1−α)u+αv].
By setting λ(z)= a+bi, we get

�{φ(ix,y ;z)}≤−1
2

{
3αax2+2b(1−α)x+αa}

≤−a
2

{
α− 1

3α
(1−α)2

(
b
a

)2} (3.14)

for all real x and y ≤ −(1/2)(1 + x2). Since �{f ′(z)} > 0(z ∈ �) implies that
λ(z)≺ L(z) :=−1−(2/z) log(1−z), we have λ(�)⊂ L(�), where (see [9])

L(�)⊂{ω :�(ω)>2log2−1}∩{ω : |�(ω) |<π}∩{ω : |arg(ω)|<θ = 0.911621907
}
.

(3.15)

By using (3.9) and (3.14), we obtain

�{φ(ix,y ;z)}≤−a
2

{
α− (1−α)2

3α
tan2θ

}
≤ β, (z ∈�).

(3.16)

Hence, by Lemma 1, we get

�{q(z)}=�{zf ′(z)
f(z)

}
> 0, (z ∈�). (3.17)

This evidently completes the proof of the theorem.

Corollary 1. Let θ = 0.911621907, α≥ 0.17418, and

α− (1−α)2
3α

tan2θ <
2δ(1,α)−1{

1−δ(1,α)}(2log2−1) . (3.18)
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If f ∈�(1) satisfies the inequality

�{f ′(z)+αzf ′′(z)}

> 1−
2
α
+
(
1− (1−α)2

3α2
tan2θ

)

2
α
+4(1− log2){1−δ(1,α)}(1− (1−α)2

3α2
tan2θ

) , (z ∈�), (3.19)

then f(z)∈�∗.

Remark 1. For α = 1, Corollary 1 immediately yields the main result of Yi and
Ding [12, Thm., p. 614].

Remark 2. A result of Ponnusamy [9, Thm. 4] can be obtained by taking β = 0 in
the proof of our theorem.
It is not difficult to apply the definition (1.3) in order to show that

f ′(z)= (�cf
)′(z)+ 1

c+1z
(
�cf

)′′(z). (3.20)

Thus, by the theorem, we arrive at the following application:

Corollary 2. Let θ = 0.911621907, −1< c ≤ 4.741187, and

1
c+1 −

c2

3(c+1) tan
2θ <

2δ
(
n,

1
c+1

)
−1{

1−δ
(
1,

1
c+1

)}{
2δ(n,1)−1} . (3.21)

If f ∈�(n) satisfies the inequality

�{f ′(z)}> 1−
2(c+1)+

(
1− 1

3
c2 tan2θ

)

2(c+1)+4{1−δ(n,1)}{1−δ(n, 1
c+1

)}(
1− 1

3
c2 tan2θ

) , (z ∈�)

(3.22)

then �cf ∈�∗, where �c is defined by (1.3).

By setting c = n = 1 in Corollary 2, we obtain Corollary 3 below, which shows that
the constant −0.0175 in the inequality (1.6) of Nunokawa and Thomas [6] can be
reduced further.

Corollary 3. Let θ = 0.911621907. If f ∈�(1) satisfies the inequality

�{f ′(z)}> 1− 5−(1/3)tan2θ
4+8(1− log2)2

(
1−(1/3)tan2θ

) ≈−0.025311 . . . , (z ∈�), (3.23)

then �1f ∈�∗.

Proof. Since

1
2
− 1
6
tan2θ = 0.222356 (θ = 0.911621907) and

3−4log2
(2log2−1)2 = 1.523967 . . . ,

(3.24)

the proof of Corollary 3 is completed by setting c =n= 1 in Corollary 2.
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Remark 3. Several nonsharp results, obtained by various other authors (cf., e.g.,
[9]), correspond to the further special cases of Corollary 2 when c = 0 and c = 1.
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