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Abstract. The MacLane’s class � of analytic functions is the class of nonconstant analytic
functions in the unit disk that have asymptotic values at a dense subset of the unit circle. In
this paper, we define a subclass � of � consisting of those functions that have asymptotic
values at a dense subset of the unit circle reached along rectifiable asymptotic paths. We
also show that the class � is a proper subclass of � by constructing a function f ∈� that
admits no asymptotic paths of finite length.
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1. Preliminaries. In all what follows, f is a nonconstant analytic function on the
unit disk.

Definition 1 [2]. We say that a simple curve Γ : z(t), 0 ≤ t < 1 is a boundary
path ending at ζ if |z(t)| → 1 as t → 1 and if Γ̄ ∩C = {ζ}. The number a is called an
asymptotic value associated with ζ if there is a boundary path Γ such that f(z(t))→ a
as t→ 1 and Γ̄ ∩C = {ζ}. In that case, we call Γ an asymptotic path.

Definition 2. We define the set A(f) to be the set of all points ζ at which f has
an asymptotic value. In particular, we denote by Aa the set of all points ζ associated
with the asymptotic value a, and by A∞ the set of all points ζ associated with the
asymptotic value ∞. We also define the set AR to be the set of all points on the unit
circle at which f has asymptotic values reached along rectifiable asymptotic paths.

Definition 3 [3]. If A(f) is a dense subset of C , we say that f ∈�, the MacLane
class of analytic functions and we define the set � to be the subset of � for which AR

is a dense subset of the unit circle C .

Definition 4 [1]. Let H ⊂D be a relatively closed subset of D. We say that H is an
Arakelyan set orH ∈K(D) if, for every z0 ∈D−H, there is a boundary path Γ0 ⊂D−H
which connects z0 to C , that is, if there is a boundary path Γ0 : z(t), 0 ≤ t < 1, such
that z(t)∈D−H, z(0)= z0 and d(z(t),C)→ 0 as t→ 1. Here, d(z(t),C) denotes the
distance from z(t) to C .

Definition 5. Let H ⊂ D. We say that H is a set of tangential approximations
(by analytic functions of H) provided that, for each function g continuous on H and
analytic on the interior H0 of H, and for each positive continuous function ε(t), 0 <
t < 1, there is an analytic function f on D such that, for all z ∈H,

∣∣f(z)−g(z)
∣∣< ε

(
d(z,C)

)
. (1)
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Note that when H0 =φ, the function g is only required to be continuous on H.

Lemma 1 [1]. LetH∈K(D), andH0=φ. ThenH is a set of tangential approximation.
This is Arakelyan’s theorem.

2. Main theorem. � is a proper subset of �.

Proof. The strategy is to construct a function f ∈� by approximating a function
g on an Arakelyan set H, with H0 =φ, using Lemma 1.
The set H is the union of
(a) a sequence of circles converging to the circumference C , each having small

equally spaced gaps in it, and
(b) the boundary paths that snake through the gaps.

The gaps in a circle have a total length that approaches zero quickly as the circles ap-
proach the circumference. Also, the gaps on consecutive circles are rotated enough so
that the asymptotic paths approaching a point of the circumference that pass through
the circles only in the gaps (of most of the circles) have infinite length.
The set H so constructed turns out to be a set of tangential approximation. We de-

fine a continuous function g on the set H as follows. On each circle (minus its gaps),
the function is constant, and on consecutive circles, it has values 0,1,2,3,0,1,2,3,0,
1,2,3, . . . . Along the asymptotic paths of the set H, the function approaches infinity
(uniformly) as the modulus approaches 1. Arakelyan’s theorem allows us to extend
the function g into an analytic function f with the desired property. The set H and
the function g and, consequently, f are constructed in such a way that any asymp-
totic path along which f converges must be either funneled only through the gaps of
the circle (if the limit is other than 0, 1, 2, or 3), or must eventually only hit at most
one of four circles (hence, pass through the gaps most of the time). In either cases,
the asymptotic path must be of infinite length because it is trying to avoid the cir-
cles minus the gaps on which the function keeps alternating between the four finite
values. More specifically, we start with a sequence of circles {Cj

n} converging to the
circumference C each having small equally spaced gaps so that the circle minus the
gaps form the first set of arcs {γj

n,k}, (n = 2,3, . . . , k = 1,2, . . . ,n, j = 0,1,2,3). The
arcs {γj

n,k} will be positioned so that if any asymptotic path were to avoid a ‘good
number’ of them, that asymptotic path would have to be of infinite length. The sec-
ond set of arcs {Γp\q}, (q = 1,2,3, . . . and p = 1, . . . ,q−1) consists of boundary paths
ending at a dense subset of C . The set H is the union of the sets {γj

n,k} and {Γp\q}.
First, we show that H ∈ K(D) then we define a function g on H with the property
that g→∞ as |z| → 1 along the boundary paths Γp\q, while the function g takes four

different constant values on subarcs {γj
n,k} of four consecutive concentric circles Cj

n,
j = 0,1,2,3. Finally, we show that g andH satisfy the conditions of Lemma 1 and that,
for an appropriate choice of ε(t) > 0, the function f in the conclusion of the lemma
has the desired property: f ∈�−�.

Construction of the set H.

H =
(
∪3

j=0∪∞n=1∪n
k=1
(
γj
n,k

))
∪
(
∪∞q=1∪q−1

p=1
(
Γp\q

))
. (2)
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We only take the values of p and q that are relatively prime ((p,q)= 1).
(1) Description of the arcs γj

n,k, n = 2,3, . . . ; j = 0,1,2,3; k = 1,2, . . . ,n. We start
with a sequence of circles {C0

n}, n = 2,3, . . . , centered at the origin, each of radius
r 0n = 1−1/n, and we let Dn, n= 2,3, . . . be the annulus Dn = {r 0n ≤ |z|< r 0n+1}. Let D1

be the disc {z : |z| < r 02 }. Within each annulus Dn, we define three concentric circles

Cj
n, (j = 0,1,2,3) centered at the origin, of radius r j

n = r 0n+ (j/(4n(n+1))), where
j = 1,2,3. So, the three circles are equally spaced consecutively between C0

n and C0
n+1.

Note that here and in all that follows, j is used as an index rather than an exponent
in r j

n . On every circle C
j
n, (n= 2,3, . . . ; j = 0,1,2,3) we arrange n (equally spaced) arcs

{γj
n,k}, (k= 1,2, . . . ,n) of equal length so that the gaps

Cj
n−∪j

(
γj
n,k

)
(3)

consist of n open arcs σ j
n,k, each of length πr j

n/2n, such that, for j = 0 or 2, the arcs

σ j
n,k, k = 1,2, . . . ,n, all have their midpoint at the point r j

ne2kπi/n, whereas for j = 1

or 3, the arcs σ j
n,k, k = 1,2, . . . ,n, have their midpoint at r j

ne(2k+1)πi/n (a rotation of

angle π/n from the previous case). The arcs σ j
n,k, which are the gaps on the circles,

are rotated enough so that a boundary path funneling through a ‘good number’ of
them would be of infinite length. Note that the length of γj

n,k is

∣∣∣γj
n,k

∣∣∣= 2πr j
n

n
− πr j

n

n
. (4)

In the future, we refer to the arcs γj
n,k(σ

j
n,k), j = 0,1,2,3, in Dn as the arcs γn(σn)

provided there is no ambiguity. The distance from a point of σn on C j
n to a point of

σn+1 on C j
n+1 is at least

πr j
n

n
− πr j

n

2n
for j = 0,1,2, (5)

because of the arrangement of the arcs γn and σn. Consider a curve Jn ⊂Dn such that

Jn∩C j
n �=φ for j = 0,1,2,3. (6)

Suppose, in addition, that Jn∩γj
n,k �=φ for at most one value of j ∈ {0,1,2,3}. There-

fore, Jn crosses a pair of circles C j
n and C j

n+1 for some value of j ∈ {0,1,2,3} at points
of some arcs σn and σn+1. By the previous remark, the length of such a path is

∣∣Jn∣∣>πr j
n

(
1
n
− 1
2n

)
. (7)

(By doing so, we have made sure that the gaps on consecutive circles are rotated
enough so that asymptotic paths approaching a point of the circumference that pass
through the circles only in the gaps (of ‘most’ of the circles) have infinite length.)
(2) Description of the boundary paths Γp/q. For q = 1,2, . . . , and p = 1,2, . . . ,q−1 and

(p,q)= 1, let

S = {e2πip/q}. (8)

Note that S is a dense subset of C . We define a sequence of disjoint boundary paths
{Γp/q}, wherep and q are asmentioned above, and such that Γp/q∩{z : |z| = r} consists
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of exactly one point for all r satisfying r 0q ≤ r < 1. (Γp/q is not defined for r < r 0q .) We

need to construct the arcs Γp/q∩Cj
n for j ∈ {0,1,2,3}, and n= q, q+1, . . . , so that

Γp/q∩Cj
n �= Γp′/q′ ∩Cj

n, (9)

if p/q �= p′/q′. In the special case of Γ1, we make

Γ1∩Cj
n =



r j
n eπi/2n+1 for j ∈ {0,2},
r j
n eπi/2n+1eπi/n for j ∈ {1,3}.

(10)

For q > 1, we make

Γp/q∩Cj
n =



r j
n e(2πi�np/q�/n)+(pπi/2n+1q) for j ∈ {0,2}
r j
n e(2πi�p/q�/n)+(pπi/2n+1q)eπi/n for j ∈ {1,3},

(11)

where � � is the greatest integer function. The first part of the argument, 2πi�np/q�/n,
is the center of the ‘gap’ σ j

n,k, while the second part of the argument, pπi/2n+1q,
determines the distance from the point Γp/q∩C j

n to the midpoint of the arc σ j
n,k; it

ensures that the point of intersection is still within σ j
n,k. Such paths Γp/q must end at

the dense subset S of C since, for any p and q as described above,

r j
n → 1 and e(2πi�np/q�/n)+(pπi/2n+1q) �→ e2πip/q as n→∞. (12)

Note that two different paths intersect the circle C0
n at two different points since if

p/q �= p′/q′, then

r j
n e(2πi�np/q�/n)+(pπi/2n+1q) �= r j

n e(2πi�np′/q′�/n)+(p′πi/2n+1q′). (13)

We define

Γp/q : z(t), 0≤ t < 1 (14)

to be the polygonal arc that begins at

z(0)= r 0q e(2πip/q)+(pπi/2q+1q). (15)

(Observe that the arc Γp/q starts on the arc σ 0
q,p whose midpoint is of argument

2πip/q.) In the annulusDn, forn= q, q+1, . . . the arc joins r 0ne(2πi�np/q�/n)+(pπi/2n+1q)

on C0
n successively

to r 1ne(2πi�np/q�/n)+(pπi/2n+1q)eπi/n on C1
n,

to r 2ne(2πi�np/q�/n)+(pπi/2n+1q) on C2
n,

to r 3ne(2πi�np/q�/n)+(pπi/2n+1q)eπi/n on C3
n, and finally

to r 1n+1e(2πi�np/q�/n)+(pπi/2n+1q) on C0
n+1.

Observe the rotation provided by the eπi/n factor. From the definition of Γp/q and

from the fact that Γp/q∩Cj
n �= Γp′/q′ ∩Cj

n in case p/q �= p′/q′, the paths are disjoint. As
an illustration, we take the path Γ4/5. Its initial point is the point r 05 e2πi(4/5)+4πi/266 on
the arc σ 0

4,5 ⊂ C0
5 . The path Γ4/5 ends at the point of C of the argument 2πi(4/5). The

second circle that Γ4/5 crosses at a point on an arc σn whose midpoint is of argument
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2πi(4/5) (more informally, the gap at 2πi(4/5)), is the circleC0
10. The kth such circle is

the circle C0
5k. (Note that this is a justification for using the greatest integer function. In

fact, the solution forn in the equation e2πi�n4/5�/n = e2πi(4/5) is n= 5k.) Now, consider
the paths Γ1/3 and Γ1/4. They both intersect C0

8 at different points of the same arc σ 0
8,2.

In fact,

Γ1/3∩C0
8 = r 08 e

(2πi�8(1/3)�/8)+(πi/293) = r 08 e
(πi/2)+(πi/293) (16)

while

Γ1/4∩C0
8 = r 08 e

(2πi�8(1/4)�/8)+(πi/293) = r 08 e
(πi/2)+(πi/294). (17)

In general, there might be more than two paths Γp/q intersecting a circle C0
n at different

points of the same arc σ j
n,k. However, there are finitely many (n2) such paths since

q ≤ n and p < q. Note that the arcs {γn} and {σn} have been arranged so that any
such path Γp/q is of infinite length since, Γp/q∩Dn contains an arc joining a point of

σ j
n,k to a point of σ

j+1
n,t , j = 0,1,2, similar to the arcs Jn in a previous remark. Finally,

define the set H to be the following disjoint union:

H =
(
∪3

j=0∪∞n=1∪n
k=1

(
γj
n,k

))
∪
(
∪∞q=1∪q−1

p=1
(
Γp\q

))
. (18)

The set H is relatively closed because every arc γj
n,k is closed and Γp\q are closed arcs

in Dn.

Proof of H ∈K(D). Let z0 ∈ D−H. We need to find a path Γ0 ∈ D−H that con-
nects z0 to C . Note that z0 �∈ γn for any n, and z0 �∈ Γp/q for any Γp/q ⊂ H. Choose n
so that z0 ∈ Dn. Since D−H is open in D, we can construct a path Γ0 in D−H that
first joins z0 to some point z′0 ∈ σn−H for some σn ⊂ D. Observe that there might
be more than one path Γp/q crossing the same arc σn. Let Γh/m⊂H be the boundary
path in H with the property that Γh/m∩σn is the closest to z′0 on σn. From z′0, we
make the path Γ0 ⊂D−H follows Γh/m so closely in Dn−H that Γ0 intersects no path
Γp/q ⊂H, and so that the distance between Γ0 and Γh/m in the annulus Dn approaches
0 as n→∞. Thus, Γ0 connects z0 to the boundary without intersecting H, and it ends
at the point e2πi(h/m) as desired.

Construction of the function g on H.

g(z)=


j for z ∈ γn ⊂ Cj

n, j = 0,1,2,3,
1

1−|z| for z ∈ Γp/q for all p/q, q = 1,2, . . . ; p = 1,2, . . . ,q−1. (19)

Observe that g→∞ as |z| → 1 along Γp/q. Note that H has no interior and g is contin-
uous on H.

Construction of a function f ∈�−�. Since g and H satisfy the conditions
of Lemma 1, there corresponds to every positive continuous function ε(t) : 0< t < 1,
some analytic function f on D with the property that

∣∣f(z)−g(z)
∣∣< ε

(
d(z,C)

)
for all z ∈H. (20)
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Let f denote the function corresponding to ε0(t)= 1/9 for all t.
Since

g �→∞ as |z| �→ 1 when z ∈ Γp/q, (21)

then

f �→∞ as |z| �→ 1 when z ∈ Γp/q (22)

as well, and since the paths Γp/q end at a dense subset S of C , it follows that ∞ is
reached as an asymptotic value at a dense subset of the unit circle, that is A∞ is a
dense subset of C , so that f ∈�, the MacLane class.
Since the function g has values that differ by one on the arcs γn of the different cir-

cles Cj
n, j ∈ {0,1,2,3}, the function f has values that differ at least by 1−2(1/8)= 3/4

on the arcs γn of the different circles Cj
n, j ∈ {0,1,2,3}. Therefore, if n is sufficiently

large, no asymptotic path can cross the arcs γn on more than one of the four circles
Cj
n, j ∈ {0,1,2,3}; hence, by a previous remark,

∣∣Γp/q∩Dn
∣∣≥πr 0n

(
1
n
− 1
2n

)
for all n> q. (23)

Finally, since the regions Dn are disjoint and

Γ =∪∞n=1
{
Γ ∩Dn

}
, (24)

it follows that, for any asymptotic path Γ ,

|Γ | ≥
∑
n
πr 0n

(
1
n
− 1
2n

)
=∞. (25)

In other words, no asymptotic path is rectifiable, and so f �∈�.
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