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Abstract. In this paper, we first give an existence theorem of maximal elements for
a new type of preference correspondences which are �-majorized. Then some ex-
istence theorems for compact (resp., non-compact) qualitative games and generalized
games in which the constraint or preference correspondences are �-majorized (resp., Ψ -
condensing) are obtained in locally convex topological vector spaces.
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1. Introduction. The existence of equilibrium in an abstract economywith compact
strategy sets inRn was proved in a seminal paper of Debreu [5]. The theorem of Debreu
extended the earlier work of Nash in game theory. Since then there have been many
generalizations of Debreu ’s theorem by Borglin and Keiding [2], Gale and Mas-Colell
[12], Florenzano [10], Shafer and Sonnenschein [28], Tan and Yuan [30], Tarafdar [31],
Toussaint [33], Tian [32], Tulcea [17], Yannelis and Prabhakar [36] and the references
wherein. Following the work of Gale and Mas-Colell [13] and Borglin and Keiding [2]
on non-ordered preference relations, many theorems on the existence of maximal
elements of preference relations, which may not be transitive or complete, have been
proved by Bergstrom [1], Mehta [23], Toussaint [33], Tucela [17], Yannelis [35], Yannelis
and Prabhakar [36], and Walker [34]. However, their existence theorems of maximal
elements deal with preference correspondences which have lower open sections or
are majorized by correspondences with lower open sections.
It is well known that if a correspondence has an open graph, then it has open upper

and lower sections and, thus, it must be lower semicontinuous. However, a contin-
uous correspondence need not have open lower or upper sections in general. Also,
in the infinite settings, the set of feasible allocations is not necessarily compact in
the commodity spaces. The motivations for economists continually to be interested
in setting forth conditions for the existence of equilibria come from the importance
of generalized games (also called abstract economies) in the study of markets and
other general games and from the restrictions of the existing theorems. Since we en-
counter many kinds of preferences in various economic situations, it is important that
we consider several types of preferences and obtain some existence results for such
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correspondences in non-compact and non-paracompact settings.
The objective of this paper is as follows. We first give some existence theorems

of maximal elements and equilibria for generalized games and qualitative games in
which the preferences are majorized by upper semicontinuous correspondences in-
stead of beingmajorized by correspondences which have lower open sections (e.g., see
Yannelis and Prabhakar [36] and the references wherein). Then some existence theo-
rems of equilibria for non-compact generalized games are, also, given in locally convex
topological vector spaces for Ψ -condensing correspondences in infinite dimensional
locally convex topological vector spaces.
Our intention is tomerely illustrate a certain technique that we think will be of use in

various problems of mathematical economics. Many other results of the type proved
here may be proved under more general conditions.
Let A be a nonempty set. We denote by 2A the family of all subsets of A. If A is a

subset of a topological space X, we denote by clX(A) the closure of A in X. If A is a
subset of a vector space, we denote by coA the convex hull of A. If A is a nonempty
subset of a topological vector space E and S, T : A �→ 2E are two correspondences,
then coT , T ∩ S : A �→ 2E are correspondences defined by (co)T(x) := coT(x) and
(T ∩ S)(x) := T(x)∩ S(x) for each x ∈ A, respectively. If X and Y are topological
spaces and T :X �→ 2Y is a correspondence, then
(1) T is said to be upper semicontinuous at x ∈ X if for any open subset U of Y

containing T(x), the set {z ∈X : T(z)⊂U} is an open neighborhood of x in X;
(2) T is upper semicontinuous (on X) if T is upper semicontinuous at x for each

x ∈X;
(3) the Graph of T , denoted by Graph(T), is the set {(x,y)∈X×Y :y ∈ T(x)};
(4) the correspondence T : X �→ 2Y is defined by T(x) = {y ∈ Y : (x,y) ∈ clX×Y

Graph(T)}; and
(5) the correspondence clT : X �→ 2Y is defined by clT(x) = clY (T(x)) for each

x ∈ X. It is easy to see that clT(x) ⊂ T(x) for each x ∈ X. We remark here that
in defining the upper semicontinuity of T at x ∈ X, we do not require that T(x) be
nonempty.
Let X and Y be two topological spaces and let T :X �→ 2Y be a correspondence. The

mapping T is said to have a maximal element if there exists a point x ∈ X such that
T(x)=∅. Let X be a topological space, Y be a nonempty subset of a vector space E,
θ :X �→ E be a mapping and φ :X �→ 2Y be a correspondence. Then
(1) φ is said to be of class �θ if

(a) for each x ∈X, θ(x) �∈φ(x) and
(b) φ is upper semicontinuous with closed and convex values in Y ;

(2) φx is a �θ-majorant of φ at x if there is an open neighborhood N(x) of x in X
and φx :N(x) �→ 2Y such that
(a) for each z ∈N(x), φ(z)⊂φx(z) and θ(z) �∈φx(z) and
(b) φx is upper semicontinuous with closed and convex values;

(3) φ is said to be �θ-majorized if for each x ∈ X with φ(x) �= ∅, there exists a
�θ-majorant φx of φ at x.

We remark that when X = Y and θ = IX , the identity mapping on X, our notions of
a �θ-majorant of φ at x and a �θ-majorized correspondence are generalization of
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upper semicontinuous correspondences which are irreflexive (i.e., x �∈ φ(x) for all
x ∈X) and have closed convex values.
When
(I) X = Y and is a nonempty convex subset of the topological vector space E and
θ = IX , the identity mapping on X; or the case

(II) X =∏i∈I Xi and θ = πj : X �→ Xj is the projection of X onto Xj and Y = Xj is
a nonempty convex subset of a topological vector space, we write � in place of
�θ .

Let I be a countable or uncountable set of agents. For each i ∈ I, suppose her/his
choice or strategy set Xi is a nonempty subset of a topological vector space. Let X =∏
i∈I Xi. For each i ∈ I, let Pi : X �→ 2Xi be a correspondence. Following the notion of

Gale and Mas-Colell [13], the collection Γ = (Xi,Pi)i∈I is called a qualitative game. A
point x̂ ∈X is said to be an equilibrium of the game Γ if Pi(x̂)=∅ for all i∈ I. For each
i∈ I, let Ai be a subset of Xi. Then for each fixed k∈ I, we define

∏
j∈I,j �=kAj⊗Ak :=

{x = (xi)i∈I : xi ∈Ai for all i∈ I}.
A generalized game (abstract economy) is a family of quadruples Γ = (Xi;Ai,Bi;

Pi)i∈I , where I is a (finite or infinite) set of players (agents) such that, for each i∈ I, Xi
is a nonempty subset of a topological vector space and Ai, Bi : X =

∏
j∈I Xj �→ 2Xi

are constraint correspondences and Pi : X �→ 2Xi is a preference correspondence.
When I = {1, . . . ,N}, where N is a positive integer, Γ = (Xi;Ai,Bi;Pi)i∈I is, also, called
an N-person game. An equilibrium of Γ is a point x̂ ∈ X such that, for each i ∈ I,
x̂i = πi(x̂) ∈ Bi(x̂) and Ai(x̂)∩Pi(x̂) = ∅. We remark that when Bi(x̂) = clXi Bi(x̂)
(which is the case when Bi has a closed graph in X×Xi); in particular, when clBi is
upper semicontinuous with closed values, and if Ai = Bi for each i∈ I, our definition
of an equilibrium point coincides with the standard definition, e.g., see Borglin and
Keiding [2], Tulcea [17] and Yannelis and Prabhakar [36].
Throughout this paper, C denotes a lattice with a least element zero. Let X be a

Hausdorff locally convex topological vector space. Then (e.g., see Furi and Vignoil
[11]) a mapping Ψ : 2X �→ C is called a measure of non-compactness provided that the
following conditions hold for any A, B ∈ 2X :
(1) Ψ(A)= 0 if and only if A is precompact;
(2) Ψ(coA)= Ψ(A), where coA denotes the closed convex hull of A;
(3) Ψ(A∪B)=max{Ψ(A),Ψ(B)}.
It follows from (3) that if A⊂ B, then Ψ(A)≤ Ψ(B). The above notion is a generaliza-

tion of the set-measure of non-compactness of Kuratowski [20] and the ball-measure
of non-compactness of Sadovskii [27] defined in terms of either a family of seminorms
when X is a locally convex topological vector space or a single norm when X is a Ba-
nach space. For more details, we refer the readers to Fitzpatrick and Petryshyn [9] and
the references wherein.
Let Ψ : 2X �→ C be a measure of non-compactness of X and D ⊂ X. A mapping

T :D �→ 2X is called Ψ -condensing provided that if Ω ⊂D and Ψ(T(Ω))≥ Ψ(Ω), then
Ω is relatively compact.
Note that if T : D �→ 2X is a compact mapping (i.e., T(D) := ∪x∈DT(x) is pre-

compact), then T is Ψ -condensing for any measure of non-compactness Ψ . Various
Ψ -condensing mappings, which are compact or not compact, have been considered
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by Borisovich et al. [3], Furi and Vignoli [11], Gohberg et al. [21], Massatt [22], Nuss-
baum [24], Reich [26], Petryshyn and Fitzpatrick [25], and others. Moreover, when the
measure of non-compactness Ψ is either the set-measure of non-compactness or ball
measure of non-compactness, Ψ -condensing mappings are called condensing map-
pings.

2. Some lemmas. Before we give our main results, we first have:

Lemma 2.1. LetD be a nonempty closed convex subset of a locally convex topological
vector space E and T :D �→ 2D is Ψ -condensing, where Ψ : 2E �→ C is a measure of non-
compactness. Then there exists a nonempty compact and convex subset K of X such
that T :K �→ 2K .

Proof. Let x0 be an element of D and consider the family � of all closed convex
subsets C of D such that x0 ∈ C and T : C �→ 2C . Clearly, � is nonempty. Let C0 =
∩C∈�C . Then C0 is a nonempty closed and convex and x0 ∈ C0. If x ∈ C0, T (x) ⊂ C
for all C so that T : C0 �→ 2C0 .
Now, we prove that C0 is a nonempty compact convex subset of D. Suppose that

C0 were not compact. Then since T is Ψ -condensing mapping, Ψ(T(C0)) � Ψ(C0).
Let C1 = co({x0} ∪ T(C0)). Then C1 ⊂ C0 which implies that T(C1) ⊂ T(C0) ⊂ C1.
Hence, C1 ∈ � and C0 ⊂ C1. Therefore, C0 = C1, a contradiction because Ψ(C1) =
Ψ[co({x0} ∪ T(C0))] = Ψ(T(C0)), where the second equality holds because of the
definition of Ψ . This contradiction proves Lemma 2.1.

We, also, need the following result which is Lemma 2.10 in Tan and Yuan [29]:

Lemma 2.2. Let X and Y be two topological spaces and let A be a closed (resp., open)
subset of X. Suppose F1 :X �→ 2Y , F2 :A �→ 2Y are lower (resp., upper) semicontinuous
such that F2(x)⊂ F1(x) for all x ∈A. Then the mapping F :X �→ 2Y defined by

F(x)=


F1(x), if x �∈A;
F2(x), if x ∈A (1)

is, also, lower (resp., upper) semicontinuous.

The following result is essentially due to Hildenbrand [15, p. 23–24] (see also Klein
and Thompson [19, Thm. 7.3.10, p. 86]):

Lemma 2.3. Let X be a topological space and Y be a normal space. If F, G :X �→ 2Y
have closed values and are upper semicontinuous at x ∈ X, then F ∩G is, also, upper
semicontinuous at x.

Proof. If F(x) ∩ G(x) �= ∅, the conclusion follows from Hildenbrand [15,
Prop. B.III.2, p. 23–23] (see also Klein and Thompson [19, Thm. 7.3.10, p. 86]). If
F(x)∩G(x)=∅, it is easy to see that there exists an open neighborhood X of x in X
such that F(z)∩P(z)=∅ for all z ∈N (since Y is normal) and so F∩G is, also, upper
semicontinuous at x.

We remark here that in Lemma 2.3, we do not require F(x)∩G(x) �= ∅ for each
x ∈X.
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3. Maximal element theorems. In order to give our maximal element theorems, we
have the following selection result for �-majorized correspondences.

Theorem 3.1. Let X be a paracompact space and let Y be a nonempty normal
subset of a topological vector space E. Let θ : X �→ E and P : X �→ 2Y be �-majorized.
Then there exists a correspondence Ψ : X �→ 2Y , of class � such that P(x) ⊂ Ψ(x) for
each x ∈X.

Proof. Since P is�-majorized, for each x ∈X with P(x) �= ∅, let N(x) be an open
neighborhood of x in X and ψx :N(x) �→ 2Y be such that
(1) for each z ∈N(x), P(z)⊂ψx(z) and θ(z) �∈ψx(z) and
(2) ψx is upper semicontinuous with closed and convex values.

Since X is paracompact and X = ∪x∈XN(x), by Dugundji [7, Thm. VIII.1.4, p. 162],
the open covering {N(x)} of X has an open precise neighborhood-finite refinement
{N′(x)}. For each x ∈X, define ψ′x :X �→ 2Y by

ψ′x(z)=


ψx(z), if z ∈N′(x);
Y , if z �∈N′(x), (2)

then ψ′x is, also, upper semicontinuous on X by Lemma 2.2 such that P(z) ⊂ψ′x(z)
for each z ∈X.
Now, define Ψ :X �→ 2Y by Ψ(z)=∩x∈Xψ′x(z) for each z ∈X. Clearly, Ψ has closed

and convex values and P(z)⊂ Ψ(z) for each z ∈X. Let z ∈X be given, then z ∈N′(x)
for some x ∈ X so that ψ′x(z) = ψx(z) and, hence, Ψ(z) ⊂ ψx(z). As θ(z) �∈ ψx(z),
we must, also, have that θ(z) �∈ Ψ(z). Thus, θ(z) �∈ Ψ(z) for all z ∈X.
Now, we show that Ψ is upper semicontinuous. For any given u∈X, there exists an

open neighborhood Mu of u such that the set {x ∈ X :Mu∩N(x) �= ∅} is finite, say
{x(u,1), . . . ,x(u,n(u))}. Thus, we have that

Ψ(w)= ∩
x∈X

ψ′x(w)=
n(u)∩
i=1
ψ′x(u,i)(w) for all w ∈Mu. (3)

For i= 1, . . . ,n(u), since eachψ′x(u,i) is upper semicontinuous on X and, hence, onMu

with closed values and since Y is normal, by Lemma 2.3, Ψ :Mu �→ 2Y is, also, upper
semicontinuous at u. Since Mu is open, Ψ :X �→ 2Y is, also, upper semicontinuous at
u. Hence, Ψ is of class �.

Now, we prove the following theorem concerning the existence of amaximal element
for �-majorized correspondences:

Theorem 3.2. Let X be a nonempty convex subset of a Hausdorff locally convex
topological vector space and let D be a nonempty compact subset of X. Let P : X �→
2D be �-majorized (i.e., �IX -majorized). Then there exists a point x ∈ coD such that
P(x)=∅.

Proof. Suppose the contrary, i.e., for all x ∈ coD, P(x) �= ∅. Then for each x ∈
coD, P(x) �= ∅ and coD is, also, paracompact (e.g., see Ding et al. [6, Lem. 2]). Now,
applying Theorem 3.1, there exists a correspondence Ψ : coD �→ 2D of class � such
that for each x ∈ coD, P(x)⊂ Ψ(x). Since Ψ is upper semicontinuous with nonempty
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closed and convex values, by Himmelberg [16, Thm. 2], there exists x ∈ coD such that
x ∈ Ψ(x). This contradicts that Ψ is of class �. Hence, the conclusion must hold.

We note that Theorem 3.2 is closely related, though not comparable, to those exis-
tence theorems of maximal elements of Bergstrom [1], Gale and Mas-Colell [13], Mehta
[23], Yannelis [35], Yannelis and Prabhackar [36], and Walker [34].

4. The existence of equilibria in locally convex spaces. In this section, we prove a
new existence theorem of equilibria of a generalized game in which the intersection of
constraint and preference correspondences are �-majorized and with any (countable
or uncountable) set of players in locally convex topological vector spaces.

Theorem 4.1. Let Γ = (Xi;Ai,Bi;Pi)i∈I be a generalized game (abstract economy),
where I is any (countable or uncountable) set of agents (players) such that for each
i∈ I:
(i) Xi is a nonempty compact and convex subset of a locally Hausdorff topological

vector space Ei;
(ii) for each x ∈X(=∏i∈I Xi), Ai(x) is nonempty and Ai(x)⊂ Bi(x), where Bi(x) is

convex;
(iii) the set Ei = {x ∈X :Ai(x)∩Pi(x) �= ∅} is open and paracompact in X;
(iv) the mapping Ai∩Pi :X �→ 2Xi is �-majorized on Ei.

Then Γ has an equilibria point, i.e., there exists a point x ∈ X such that πi(x) ∈ Bi(x)
and Ai(x)∩Pi(x)=∅ for all i∈ I.

Proof. First, we note that if Ei = ∅ for all i ∈ I, then the conclusion follows by
Fan-Glicksberg fixed point theorem (e.g., see Fan [8] or Glicksberg [14]).
Let I0 = {i∈ I : Ei �= ∅}. Without loss of generality, we may assume that I0 �= ∅.
Case 1. For each i∈ I0 by (iv) and Theorem 3.1, there exists a mappingψi : Ei �→ 2Xi

which is upper semicontinuous with closed and convex values and Ai(x)∩Pi(x) ⊂
ψi(x) for each x ∈ Ei. Since Bi : X �→ 2Xi is, also, upper semicontinuous with closed
and convex values, the mappingψi∩Bi :X �→ 2Xi is, also, upper semicontinuous with
nonempty closed and convex values by Lemma 2.3 on Ei. Define a correspondence
φi :X �→ 2Xi by

φi(x)=


Bi(x), if x �∈ Ei,
(
ψi∩Bi

)
(x), if x ∈ Ei. (4)

Then Lemma 2.2 implies that φi is upper semicontinuous with nonempty closed and
convex values.

Case 2. For i ∈ I\I0, we define a correspondence φ : X �→ 2Xi by φi := Bi(x) for
each x ∈ X. Then φ is upper semicontinuous with nonempty compact and convex
values.
Finally, we define a correspondence Ψ : X �→ 2X by Ψ(x) := ∏

i∈I φi(x). Then
Ψ is also upper semicontinuous with nonempty compact and convex values.
Fan-Glicksberg fixed point theorem implies that there exists a point x ∈ X such that
x ∈ Ψ(x). If there exists i∈ I0 such that x ∈ Ei, then πi(x)∈φi(x)= Bi(x)∩ψi(x)⊂
ψi(x) which contradicts that ψi is �-majorized on Ei. Therefore, x �∈ Ei for all i∈ I0,
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i.e., there exists an i′ �∈ I0 such that x ∈ Ei′ . By the definition of Ψ , we must have
πi(x)∈ Bi(x) and Ai(x)∩Pi(x)=∅ for all i∈ I.
By Theorem 4.1, we have the following existence theorem of equilibria for a quali-

tative game:

Theorem 4.2. Let Γ = (Xi,Pi)i∈I be a qualitative game such that for each i∈ I,
(a) Xi is a nonempty compact and convex subset of a Hausdorff locally convex topo-

logical vector space Ei;
(b) the set Ei = {x ∈X : Pi(x) �= ∅} is open and paracompact in X; and
(c) Pi is �-majorized on Ei.

Then there exists a point x ∈X such that Pi(xi)=∅ for all i∈ I.
Proof. For each i ∈ I, let Ai,Bi : X �→ 2Xi be defined by Ai(x) = Bi(x) = Xi for

each x ∈ X, then the generalized game Γ = (Xi;Ai,Bi;Pi)i∈I satisfy all hypotheses of
Theorem 4.1. Therefore, the conclusion of Theorem 4.2 follows.

It seems natural to replace the condition (iii) of Theorem 4.1 by the condition that
“the set Ei = {x ∈X :Ai(x)∩Pi(x) �= ∅} is closed” for each i∈ I, however, the follow-
ing simple example shows that this cannot be done.

Example A. Let I = {1} and X = [0,1]. Define A, P :X �→ 2X by

A(x)=




[1/2,1], if x ∈ [0,1/2),
[0,1], if x = 1/2,
[0,1/2], if x ∈ (1/2,1].

(5)

and

P(x)=


x/4, if x ∈ [1/2,1],
∅, if x ∈ [0,1/2). (6)

It is easy to see that A and P are both upper semicontinuous with closed and convex
values and x �∈ P(x) for each x ∈X, so that A∩P is �-majorized. We, also, know that
the subset E = {x ∈X :A(x)∩P(x) �= ∅} = [1/2,1] is closed in [0,1] and A, P satisfy
all hypotheses of Theorem 4.1 except the condition (iii). But the unique fixed point
1/2 of the correspondence A is such that A(1/2)∩P(1/2)= [0,1]∩{1/8} �=∅. Thus,
the generalized game ([0,1], A, P) has no equilibrium point.

In this section, we have proved the existence theorems of equilibria for generalized
games with compact and infinite dimensional strategy spaces, an infinite number of
agents, and nontotal-nontransitive constraint and�-majorized preference correspon-
dences which may not have open graphs or open lower (upper) sections.
Since we, also, know that in the infinite settings, the set of feasible allocations gen-

erally is not compact in any topology of the commodity spaces. It is necessary to con-
sider the existence of equilibria for generalized games in which the strategy spaces
are not compact. This is done by strengthening the assumptions on the preference or
constraint correspondences which enables one to remove altogether the compactness
(or paracompactness) assumptions on the strategy spaces in the following section.
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5. Maximal elements and equilibria for �-majorized condensing mappings. In
this section, we consider the existence theorems of equilibria for non-compact qual-
itative games and non-compact generalized games in which the strategy spaces are
not compact.
We first have the following existence theorem of equilibria of generalized game in

which the constraint mappings are Ψ -condensing.

Theorem 5.1. Let � = (Xi;Ai,Bi;Pi)i∈I be a generalized game and X =∏i∈I Xi such
that for each i∈ I,
(i) for each i ∈ I, Xi is a nonempty closed convex subset of a locally convex

Hausdorff topological vector space Ei;
(ii) for each i ∈ I, Ai : X �→ 2Xi is such that for each x ∈ X, Ai(x) is nonempty and

coAi(x)⊂ Bi(x);
(iii) for each i ∈ I, the set Ei = {x ∈ X : (Ai∩Pi)(x) �= ∅} is open and paracompact

in X;
(iv) for each i∈ I, Ai∩Pi is �-majorized on Ei;
(v) the mapping B : X �→ 2X defined by B(x) = ∏i∈I Bi(x) for each x ∈ X is Ψ -

condensing, where Ψ : 2
∏
i∈I Ei �→ C is a measure of non-compactness.

Then � has an equilibrium point in X, i.e., there exists a point x̂ = (x̂i)i∈I ∈X such that
for each i∈ I, x̂i ∈ Bi(x̂) and Ai(x̂)∩Pi(x̂)=∅.

Proof. Since the mapping B :X �→ 2X is Ψ -condensing, by Lemma 2.1, there exists
a nonempty compact and convex subset K in X such that B :K �→ 2K .
Now, we follow the proof of Theorem 4.1. Note that if Ei =∅ for all i ∈ I, then the

conclusion follows by Fan-Glicksberg fixed point theorem again (e.g., see Fan [8] or
Glicksberg [14]).
Let I0 = {i∈ I : Ei �= ∅}. Without loss of generality, we may assume that I0 �= ∅.
Case 1. For each i∈ I0, by (iv) and Theorem 3.1, there exists amappingψi : Ei �→ 2Xi

which is upper semicontinuous with closed and convex values and Ai(x)∩Pi(x) ⊂
ψi(x) for each x ∈ Ei. Since Bi : X �→ 2Xi is upper semicontinuous with closed and
convex values, the mapping ψi ∩ Bi : X �→ 2Xi is, also, upper semicontinuous with
nonempty closed and convex values by Lemma 2.3 on Ei. Define a correspondence
φi :X �→ 2Xi by

φi(x)=


Bi(x), if x �∈ Ei,
(ψi∩Bi)(x), if x ∈ Ei. (7)

Then Lemma 2.2 implies that φi is upper semicontinuous with nonempty closed and
convex values.

Case 2. For i ∈ I\I0, we define a correspondence φ : X �→ 2Xi by φi := Bi(x) for
each x ∈ X. Then φ is upper semicontinuous with nonempty compact and convex
values.
Finally, we define a correspondence Ψ : X �→ 2X by Ψ(x) := ∏i∈I φi(x) for each

x ∈ X. Then Ψ is, also, upper semicontinuous with nonempty compact and convex
values. Since Ψ(x) ⊂ B(x) for each x ∈ X and B is self-mapping in K, the restriction
of Ψ on K is also self-map. Now, Fan-Glicksberg fixed point theorem implies that there
exists a point x ∈ K such that x ∈ Ψ(x). If there exists i ∈ I0 such that x ∈ Ei, then
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πi(x) ∈ φi(x) = Bi(x)∩ψi(x) ⊂ ψi(x) which contradicts that ψi is �-majorized
on Ei. Therefore, x �∈ Ei for all i ∈ I0, i.e., there exists an i′ �∈ I0 such that x ∈ Ei′ . By
the definition of Ψ , we must have πi(x) ∈ Bi(x) and Ai(x)∩Pi(x) = ∅ for all i ∈ I.

Finally, we have the following maximal element theorem for �-majorized condens-
ing correspondence.

Theorem 5.2. Let X be a nonempty closed and convex subset of a Hausdorff locally
convex topological vector space E. Let P :X �→ 2X be �-majorized (i.e., �IX -majorized)
and Ψ -condensing, where Ψ : 2

∏
i∈I Ei �→ C is a measure of non-compactness. Then there

exists a point x ∈X such that P(x)=∅.

Proof. By Lemma 2.1, there exists a nonempty compact and convex subset K of
X such that P : K �→ 2K . Then it is the same as that of Theorem 4.1 except for the
application of Fan-Glicksberg fixed point theorem to K.

For the existence of equilibria of abstract economies (or generalized games) in which
preferences are not �-majorized in topological vector spaces or locally convex topo-
logical vector spaces, we refer to Borglin and Keiding [2], Chang [4], Ding et al. [6], Gale
and Mas-Colell [13], Shafer and Sonnenschein [28], Tan and Yuan [30], Tan and Yuan
[29], Tarafdar [31], Tian [32], Toussiant [33], Tulcea [17], Yannelis and Prabhakar [36]
and the references wherein. We, also, remark that an existence result of equilibria for
abstract economy which is related to Theorem 4.1 was proven by Kim in [18] under the
different assumptions, e.g., P(x) is nonempty and convex for all x ∈ X or P(x) =∅
for all x ∈X.

Acknowledgement. The authors express grateful thanks to anonymous referee
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paper.
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