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ABSTRACT. One of the problems in distribution theory is the lack of definition for convolutions and
products of distribution in general. In quantum theory and physics (see e.g. [1] and [2]), one finds that
some convolutions and products such as % - 6 are in use. In [3], a definition for product of distributions
and some results of products are given using a specific delta sequence 6,(z) = Cnn™p(n?r?) in an
m-dimensional space. In this paper, we use the Fourier transform on I’ (m) and the exchange formula to
define convolutions of ultradistributions in Z’(m) in terms of products of distributions in D’(m). We
prove a theorem which states that for arbitrary elements f and § in Z’(m), the neutrix convolution f ® §
exists in Z’(m) if and only if the product f o g exists in D'(m). Some results of convolutions are
obtained by employing the neutrix calculus given by van der Corput [4].
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1. INTRODUCTION
In the following, let p(z) be a fixed infinitely differentiable function with the properties
@® p(z) =0, |z|21,
(i) p(z) 20,

(iii) p(z) = p(~ 2),

@) J2, p(z)dz =1.

We define the function 6,(z) by 6,(z) = np(nz) forn = 1,2,---. Itis clear that {6,} is a sequence
of infinitely differentiable functions converging to the Dirac delta-function 6.

Now let D be the space of infinitely differentiable functions with compact support. If f is an
arbitrary distribution in I, we define the function f, by f, = f *6,. It follows that {f,} is a sequence
of infinitely differentiable functions converging to f.

The following definition was given by B. Fisher [5].

DEFINITION 1. Let f and g be distributions in D’ and let g, = g*6,. We say that the neutrix
product f o g of f and g exists and equals h if

N ~ lim (f6,,4) = (h,9)
for all ¢ in D, where N is the neutrix (see van der Corput [4]) having domain N’ = {1,2,---,7n,---} and
range N” the real numbers with negligible functions finite linear sums of the functions

n*n"ln, f'n(A>0,r=1,2,)

and all functions of n which converge to zero as n tends to infinity.
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Let D'(m) be the space of distributions defined on the space D(m) of infinitely differentiable
functions of the variable z = (z;, z, - - -, T, ) With compact support.

In order to give a definition for the neutrix product f o g of two distributions f and g in D'(m), we
attempt to define a 6-sequence in D(m) by putting

6n(31132v "'vzm) = 6,;(31)"‘6"(3";),

where 6, is defined as above. However, this definition is very difficult to use for distributions in D’(m)
which are functions of r, where r = (z2 +--- + z?,,)l/ % Therefore an alternative definition was
introduced in [3].

From now on we let p(s) be a fixed infinitely differentiable function defined on R+ = [0, co) having
the properties

@ p6)=0, s>1, @) p(s)>0.
Define the function 6,(z), with z € R™, by
bn(z) = C,,,n"‘p(nzr’)

forn =1,2,---, where Cy, is a constant such that

/R"' bp(z)dz =1.

DEFINITION 2. Let f and g be distributions in D’(m) and let
9n(z) = (g*6n)(z) = (9(z — 1), 6a(t))

where t = (t;,13,--,t,n). We say that the neutrix product f o g of f and g exists and is equal to h on
the open interval (a, b), where a = (ay,:-,am) and b = (by, -+, by), if

N - lim (fgn, 8) = (,9)

for all test functions ¢ is D(m) with support contained in the interval (a, b).

2. FOURIER TRANSFORM ON D’(m)
As in Gel'fand and Shilov [6], we define the Fourier transform of a function ¢ in D(m) by

F($)(0) = ¥(0) = /Rm $(z)e"dz,

where (z, o) denotes 2107 + -+ + TmOm.
The bounded support of ¢(z) makes it possible for 1 to be continued to complex values of its
argument 8 = (81,-*+,8m) = (01 + 971, +, On + iT):

Y(s) = ./Rm #(z)e=)dz.

Our new function 1(s), defined on C™, in the space of functions of m complex variables, is
continuous and analytic in each of its variable s;. If ¢(z) vanishes for |zx| > ax, k = 1,---,m, then
(s) satisfies the inequality

|sF - -sfmp(or + 471, -+, Om +iTw)| < Coexp(ar|Ti| + -+ + am|Tm). 0))
Conversely, every entire function ¥(s;, - -, s, satisfying the above inequality is the Fourier transform of
some ¢(zy, -, Ty ) in D(m) which vanishes for |zx| > ax, k = 1,2,---,m.
The set of all entire analytic functions Z(m) with the property (1) is in fact the space

F(D(m)) = {%: 3¢ € D(m) such that F(¢) = ¥}
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Convergence in Z(m) is defined via convergence in D(m): a sequence {1,,} tends to zero in Z(m)
if the sequence {¢,} tends to zero in D(m), where F(¢,) =,. The Fourier transform f of a
distribution in I’ () is an ultradistribution in Z'(m), i.e., a continuous linear functional on Z(m). Itis
defined by Parseval's equation

(.8) =2n(f,¢), ¢ € D(m).

3. CONVOLUTION IN Z'(m)
In order to define a convolution product in Z’(m), we introduce the Fourier transform F'(6,) of 6,
(where 6,(z) = Cmn™p(n?r?)) and write
Tn(0) = F(6a)(0)

which is a function in Z(m) forn = 1,2, ---.
From Parseval's equation

(Tns ¥) = 27(6p, @) == 27(6, ¢) = 27¢(0) = 27 -2}7; /_ . Y(o)do

=(1,¥)
where ¢ = ¢.
Therefore {,} is a sequence in Z(m) C Z'(m) converging to 1 in Z'(m).
Now let f be an arbitrary ultradistribution in Z’(m). Then there exists a distribution f in D'(m)
such that f = F(f). Setting f,, = F(f *6,) = F(f,), we have

(Far¥) =27(fn, ) = 20(f,0) = (F,9) n—> 00

where ¢ = ¢ in Z(m).
LEMMA 1. Let § be an arbitrary ultradistribution in Z’(m) and let §, = F(g*6,). Then the
function
6, (V) = (§a(0), ¥(0 +v))

isin Z(m) for all ¢ in Z(m).
Indeed,
0,.(v) = (F(gn), F (6 ¢(2))(9))
= 27(gn, €7 ¢(z)) = 27F (gnd)(v).

Now the result of the lemma follows on noting that g,¢ is in D(m).

We now modify the definition for the convolution product of two distributions in D'(m) given by
Gel'fand and Shilov with

DEFINITION 3. Let f and § be ultradistributions in Z’(m) such that the function (§(c), (o +v))
is in Z(m) for all 4 in Z(m). Then the convolution product f * § is defined by

((F*3) (@), ¥(0)) = (F(v), @(0), ¥(o +v)))

for all ¢ in Z(m).
It follows that f * g exists if g is in D(m). (This condition is not always true for all g € D’(m). If
g € Z(m), then g¢ € D(m).) Indeed

(3(0), ¥(0 +v)) = 27(g,€""¢(z)) = 2nF(99)(v),

where § = F(g) and ¢ = F(9).

The following theorem then holds:

THEOREM 1. Let f and § be ultradistributions in Z’(m) and suppose that the convolution
product f * § exists. Then
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(F+3) =7+, @
(F+3) =7 »a. ®
PROOF. If F(¢) = 1, we have
¥ (0) = F(iz¢(z))(0).
Hence Z'(m) is closed under differentiation.
Certainly
((F*9)',%) = = (F*a.9) = - (700, (38(0), W(0 +2)))
= (}(V)’ @'(0’), 1/1(0’ + V))) = (? * §lv ¢)

for all ¢ in Z(m). Equation (2) follows.
From the fact that if F(¢), we get

V(0 +v) = F(izp(z)e™) (o).

It follows that
@), ¥ (@ +v)) = 2"(2(2), izg(z)e"™)
=21 = (9(), $(z)e™)
= 2 (3(0), wlo +v).
Hence

((F*3)'\w) = (Fo) @) wlo +v)) = (F +5.9)

for all ¢ in Z(m) and Equation (3) follows.

Note that } # F(f') is general.

We now note that if f and gare arbitrary ultradistributions in Z’(m), then the convolution product
f *§, always exists by the above definition (3) since by Lemma 1, (§,(0), ¥(c + v)) isin Z (m) for all ¢
in Z(m). This leads us to the following definition.

DEFINITION 4. Let f and § be ultradistributions in Z’(m) and let §, = §7,. Then the neutrix
convolution product 7 ® g is defined to be the neutrix limit of the sequence { *§,}, provided the
neutrix limit & exists in the sense that

N -lim (7 +3,,9) = (k%) forall in Z(m),

Definition 4 is indeed a generalization of Definition 3, since if the convolution product f * § exists
by Definition 3, then (§(o),¥(o +v)) € Z(m), ie, gp € D(m) for all ¢ € D(m). This implies
g € C=(m).

Therefore (g,(0), ¥ (o +v)) = 2nF(g.¢)(v) converges to (§(o),¥(c +v)) in Z(m). This is
because g,¢ — ¢ (if f € C*, then f,¢ (where f, = f *6,) converges to f, uniformly on the support of
¢)in D(m), and N — limy o0 (f * 35, %) = (F *§, ) forall y in Z(m).

The following theorem holds for the neutrix convolution product.

THEOREM 2. Let f and § be ultradistributions in Z’(m) and suppose that their neutrix
convolution product exists. Then the neutrix convolution product f ® § exists and

(fed) =7 ®3.
PROOF. We have
(F+3.),9) = (¥ #329) = = (F*30.¥)

and it follows that
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N —nl_l?go(}l *gn,¢) =~-N _n“_{go(} *§m¢’) == (? ® §,W)
for arbitrary 4 in Z(m). The result of the theorem follows.
Note that (f ®3)' = F ® 7 iff N — lim (7 #(§7),%) = 0 for all  in Z(m).
We now prove our main result, the exchange formula.
THEOREM 3. Let f and § be ultradistributions in Z’(m). Then the neutrix convolution product
f ® g exists in Z'(m) iff the neutrix product f o g exists in D’(m) and the exchange formula
j®g=2nF(foyg)

is then satisfied.
PROOF. Let 1 = F(¢) be an arbitrary function in Z(m) and let

On(v) = (n(0), ¥(o +v)) = 21F (g ) (v).
Then on using Parseval's equation we have
(F(),0a(0)) = 2n(}(v), F(9:8)(¥)) = (27)"(fgn, $)-
If the neutrix convolution product f ® § exists then
(7®3.4) = N = lim (}(),0.()) = (2m)*N ~ lim (fgn, ¢)
= (2m)*(f 0 9,¢) = 2n(F(f o g), F(9)).

The neutrix product f o g therefore exists and the exchange formula is satisfied.
Conversely, the existence of the neutrix product fog implies the existence of the neutrix
convolution product and the exchange formula.

4. SOME RESULTS
The following Fourier transforms of the functions r* and A*§(z) were given in 6]

P(Aim)
A) — 9A+m_m/2 2 ~A-m
F(r*) =2Mmg =) = p

where A # —m, _m—2,---andp=VE}';10‘,2,and
Flo(L 2 ) s = Pliogoo — ism)FCF)
azly yazm = 1'% m/. .

Hence it follows that
F(A*5(z)) = o™ F(6) = o™,
where A denotes the Laplace operator.
THEOREM 4. The neutrix convolution products p?*~™ ® 1 and p?*~1"™ ® 1 exist and

r(k)2"-'"+lp2k

pﬁk—m ®1=
[(252)am2-1km(m + 2)---(m + 2k — 2)

fork=1,2,--, [ "‘2_1 ] and
p2k—l—m®1 =0

fork=1,2,---, [2].
PROOF. We have the following neutrix product (see [3]),
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A¥§(x)
2kkim(m + 2)---(m+2k — 2)

r 2. §(z) =

fork=1,2,-, [©72] and
12 . §(z) =0
fork=1,2,--, [%—]
By the exchange formula
F(r %) ® F(6) = 2rF(r~% . )

o F(A*S)
T 2kklm(m +2)---(m + 2k — 2)
2k
=27 P .
2kktm(m +2)---(m + 2k — 2)
Thus
o-2k+m_m/2 r(=2) P mel= 2mp?k
r%) PRim(m +2)(m+ 2k - 2)

It follows that

r(k)2k-m+lp2k
(252%)am/2-1ktm(m + 2)---(m + 2k — 2)

p2k—m ®1=

The second equation follows easily.
The following neutrix product is also given in [3]
Ak+1 5(:_.)

M) = S TN T 2+ 20

fork=1,2,-, [ 2] and
r1=2k . A§(z) =0
fork=1,2,--, [Z].
Hence we obtain
THEOREM 5. The neutrix convolution product p*~™ @ p? and p?*~1-™ @ p? exist and
I (k)2--m+1

2k-m 2 _
B = N EE ) (k 4+ D)(m + 2)(m 5 2)

fork =1,2,-, [#71] and
PImeg 2 = 0
fork=1,2,---,[2].
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