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ABSTRACT. The usual definition of regularity for convergence spaces can be characterized by a

diagonal axiom R due to Cook and Fischer. The generalization of R to the realm of probabilistic

convergence spaces depends on a t-norm T, and the resulting axiom Rr defines "T-regularity",
which is the primary focus of this paper. We give several characterizations of T-regularity, both in

general and for specific choices of T, and investigate some of its basic properties.
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INTRODUCTION.

Probabilistic convergence spaces were introduced in 1989 by L. Florescu [4] in terms of nets, and

were later reformulated using filters in [8]. Probabilistic convergence spaces are a natural extension

of probabilistic metric spaces [9]; the fundamental idea is to assign a numerical probability to the

convergence of a given filter to a given point. From a categorical perspective, the category PCS of

probabilistic convergence spaces is cartesian closed and hereditary (i.e., a quasitopos).
In [3], Cook and Fischer investigated two diagonal conditions for convergence spaces, we call

them F and R, which are in a natural way dual to each other. A convergence space is topological

iff it satisfies F, and regular iff it satisfies R. In [8], F was generalized relative to an arbitrary

t-norm T to an axiom Fr for probabilistic convergence spaces, and it was shown in [2] that the full

subcategory of PCS determined by the left-continuous probabilistic limit spaces satisfying Fr for

a strict t-norm T is isomorphic to R. Lowen’s category AP of approach spaces [7]. Thus we define

probabilistic convergence spaces satisfying Fr to be T-approachable.
Our goal in this paper is to study the dual axiom Rr in the category PCS. Probabilistic conver-

gence spaces satisfying Rr are defined to be T-regular. IfT and T’ are t-norms such that T<T’, then

T’-regularity implies T-regularity. Indeed, the largest t-norm, denoted by 7, induces the strongest

type of "T-regularity," which is equivalent to "componentwise regularity". Likewise the smallest

t-norm, , induces what we naturally call "weak regularity".
For an arbitrary t-norm T, we give several "traditional" characterizations of T-regularity in

PCS and some of its subcategories, along with examples to show how T-regularity depends on the

choice of T. We also show that T-regularity is preserved under the formation of initial structures,

thereby demonstrating that the category RrPCS of T-regular probabilistic convergence spaces is
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bireflectively embedded in PCS. It should also be noted that the category RCONV of regular
convergence spaces is bicoreflectively embedded in RrPCS for an arbitrary t-norm T.

In the last section, we show that in certain subcategories of PCS, the axiom Fr and Rr can be

stated entirely in terms of ultrafilters, which in some situations results in an appreciable simplifica-
tion.

1. CONVERGENCE SPACES.

Let X be a set, F(X) the set of all filters on X, U(X) the set of all ultrafilters on X, and 2x

the power set of X. For each z E X, : denotes the fixed ultrafilter generated by z.

Definition 1.1. A function q F(X) 2x is called a convergence structure on X if it satisfies
the following axioms.

(C,) z E q(:), for all z q X;
(c) c_ q(y) q();
(Ca) z (q() 6 q( ).

If q is a convergence structure on X, the pair (X, q) is called a convergence space, and "x q()"
will usually be written " z" (Y q-converges to ). A function f’(X, q) (Y,p) between
convergence spaces is continuous if f() f(x) whenever x. If p and q are convergence
structures on X and f" (X,q) (X,p) is continuous, where f is the identity map on X, then we

write p q (p is coarser than q, or q is finer than p).
For a convergence space (X, q), consider the following additional axioms.

(C4) z and z z.

(Cs) If F(X) and Y z, for all Y q U(X) such that 9 , then G & z.

(C6) Pq(z) z, for all z X, where Fq(z) is the q-neighborhood filter at z, defined by

A convergence structure q on X satisfying (C4) (respectively, (C5), (C6)) is called a limit stctu

(respectively, pseudotopolo9y, pretopolo99) and (X, q) is called a limit space (respectively, pseudo-
topological space, pretopological space).

With every convergence space (X, q), there is an sociated closure operator clq 2x 2x

defined by clqA {z X" z such that A q Y}, for all A G X. (X, q) is said to be regular
if z impli clq z, where clq is the filter generated by {clef "’F }. A convergence
space is said to be topological if q-convergence coincid with that relative to some topolo on X;
in this ce it is customary to identify that topology with q.

It is an interesting (and apparently not well-known) fact that the convergence properties "regu-
lar" and "topological" are in a very natural sense dual to each other, since they can be characterized

by means of dual axioms, which we call F and R, due to C.H. Cook and H.R. Fischer [3]. t X
and J be non-empty sets, q F(J), and a" 3 F(X). We define

t is called the "compression operator for " relative to tr." Note that if .7" U(J), and tr(y) E U(X)
for all y 5 d, then a" q U(X). We can now define the axioms F and R.

F: Let J be a non-empty set, k" d X, and let r- d -, F(X) have the property that tr(y) & b(y),
for all y q d. If " F(J) is such that ff(2") -% x, then r." -,q z.
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R: Let J be a non-empty set, " J X, and let tr" J F(X) have the property that tr(y) -,q (y),
for all y E J. If Y E F(J) is such that #.aY x, then (Y) z.

The next proposition summarizes previously mentioned results pertaining to these axioms. The

first assertion is proved in [8], the second in [1] and [31.

Proposition 1.2. Let (X, q) be a convergence space.

(1) (X,q) is topological if and only if it satisfies F

(2) (X, q) is regul.ar if and only if it satisfies R

Let F and R denote the axioms obtained when "F(X)" is replaced by "U(X)" in F and R,
respectively. Obviously, F = F" and R = R. The next proposition is proved in [5].

Proposition 1.3. For convergence spaces, F == F" and R == R.
Let CONV denote the category of convergence spaces and continuous maps. Let RCONV be

the full subcategory of CONV determined by the regular objects and TOP the full subcategory
’of CONV determined by the topological objects. It is well known that both RCONV and TOP
are bireflective subcategories of CONV, since the properties "regular" and "topological" are both

preserved under formation of initial structures.

2. PROBABILISTIC CONVERGENCE SPACES.

This section is mainly a review of relevant definitions and theorems from [2] and [8]. Let I
denote the closed unit interval [0,1].

Definition 2.1. A probabilistic convergence structure q on X is a function q F(X) I 2x

which satisfies:

(PCS1) For each p q I, q(,p)= %(), where each % is a convergence structure on X;
(PCS2) When p 0, % is the indiscrete topology;

(PCSz) If/ _< t/, then q. _< q..

If q is a probabilistic convergence structure on X, the pair (X, q) is called a probabilistic con-

vergence space. We will usually write q (q,), where it is understood that ft ranges through I;
the q,,’s are called the "component convergence structures." If q (q,) where each qu is a limit

structure (respectively, pseudotopology, pretopology, topology), then (X, q) is called a probabilis-

tic limit space (respectively, probabilistic pseudotopological space, probabilistic pretopological space,

probabilistic topological space).
q,

If (X, q) is a probabilistic convergence space, " F(X) and x X, then p sup{t/ I"

z} is interpreted as the probability that . q-converges to z.

A probabilistic convergence space (X, q) is left-continuous if, for each p E (0, II, qu sup{q
u < p}, and constant if, for each g (0,1], qu ql.

If (X, q), (Y, p) are probabilistic convergence spaces and f: X Y is a map, then f: (X, q) --,
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(Y, p) is said to be continuous if f" (X, qu) (Y, Pu) is continuous, for each/ E I. We denote
by PCS the category whose objects are probabilistic convergence spaces and whose morphisms are

continuous maps. Some full subcategories of PCS which are of interest are the following:

PPSS (objects are probabilistic pseudotopological spaces)
PPRS (objects are probabilistic pretopological spaces)
PTS (objects are probabilistic topological spaces)

Furthermore, the full subcategory of PCS determined by the constant objects is isomorphic to

CONV. We note that CONV, PTS, PPRS, and PPSS are bireflectively embedded in PCS; CONV
is also bicoreflectively embedded in PCS.

The notion of "t-norm," which is vital in the study of probabilistic metric spaces (see [9]), also

plays an important role in the study of probabilistic convergence spaces. We shall summarize some

facts about t-norms which are relevant to this paper; for further information the reader is referred

to [2] or [9].
A t-norm is a binary operator T 12 I which is associative, commutative, increasing in each

variable, and satisfies T(p, 1) p, for all # E I. Let T be the set of all t-norms, with pointwise

partial order. T contains a largest member , defined by (p,v) min{#,v}, and a smallest
ember , defined by

/s, ifv=
J’(/, v) v, if p

0, otherwise.

A t-norm T T is said to be strict if there is a surjective, strictly decreasing map S 1 [0, oo]
such that T(p, v) S-I(S(/) + S(v)). Neither " nor 7 is strict; an example of a strict t-norm is

T(/z, v) =/zv, where S(/z) log/.
Let (X, q) be a probabilistic convergence space, and let T T. We define two axioms for (X, q)

relative to T which are derived in an obvious way from the axioms F and R of Section 1.

FT Let p, v I. Let J be any non-empty set, - J X and a" J F(X) be such that
q’(,,)a(y) - (y), for each y J. If .T" E F(J) and " L x, then a" z.

RT Let p,v I. Let J be any non-empty set, " J X and a" J F(X) be such that

a(y) (y), for each y J. If F(J) and a 2. x, then " q,rL;) x.

For a fixed T T, the full subcategory of PCS whose objects satisfy FT is denoted by FTPCS.
The next three propositions summarize some already known results.

Proposition 2.2. [8]
(1) FTPCS is a bireflective subcategory of PCS, for every T E T;
(2) PTSC_FTPCSC_PPRS, for every T T;
(3) If T , then FTPCS=PTS.

In [7], R. Lowen introduced the category AP of approach spaces which contains the categories
TOP and MET (metric spaces and non-expansive maps) as full subcategories. In [6], R. Lowen and

E. Lowen embedded AP in a quasitopos CAP of convergence approach spaces. As a consequence of
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the next proposition, both CAP and AP are bireflectively embedded in PCS.

Proposition 2.3[2]. Let T be any strict t-norm.

(1) AP is isomorphic to the full subcategory of FTPCS whose objects are left-continuous limit

spaces.

(2) CAP is isomorphic to the full subcategory of PCS whose objects are left-continuous limit spaces.

In view of the first assertion of Proposition 2.3, we define objects in FTPCS to be T-approachable.
In view of Proposition 2.2 (3), the -approachable probabilistic convergence spaces are precisely
the probabilistic topological spaces, which yields a direct generalization of Proposition 1.2 (1).

Proposition 2.4[8]. For a probabilistic pretopological space (X, q), and a t-norm T, the following
statements are equivalent.

(1) (X, q)is T-approachable.

(2) For arbitrary/, v 5 I and for each V q i)qr. (z), there exists W E I)q(z) such that, for each

W, V V().
(3) For arbitrary/,v E I and A C_ X, cl(clq(A)) C_ clr.)(A).

’3. T-REGULARITY.

A probabilistic convergence space (X, q) is defined to be T-regular if it satisfies the axiom

The T-regular objects in PCS determine the full subcategory RrPCS.

Theorem 3.1. Let (X, q) [PCSI,T T. Then (X, q) is T-regular iff, for all , v e I, 2"
implies cI2- x.

Proof. Assume that (X, q) is T-regular, and let 2- x. For arbitrary/z I, let

Y {(7,,) 7 u(x), x,; u}.

Define a- J F(X) by a({,y) , and p J -- X by h({,y) y. Then a(z) - b(z) holds
for allz E J. For each F 2-, let SF {({,y) J" F q }, and let S be the filter on Jwith

base {5’F" F 2-}. One easily verifies that 2- C_ a5’, and hence (S ’x. By RT, it follows that

k(S) clq2- - x, as desired.

Conversely, let J, a, p, and 2- E F(J) be as in the statement of RT, and assume that tr2- z.

Since tr(y) b(y), for all y J, one may confirm that cl.tr2- C_ 2-. But cltr2- ;) z by
q’(...,)

hypothesis, and consequently k2- x. Thus (X, q) satisfies RT.

Corollary 3.2. Let (X, q) be a probabilistic convergence space.

(1) If T,T’ T and T’ < T, then if (X,q) is T-regular, it is also T’-regular.
(2) If (X, q) is T-regular for some T T and 2- 25 z, then cl. z holds for all g I.

In particular, if (X, q) is T-regular, then ql is a regular convergence structure.

(3) (X, q) is -regular iff (X, q) is componentwise regular (i.e., q, is a regular convergence structure

for all t E I).
(4) (X, q)is -regular iff both of the following hold:

(i) " z =,, clq,,2- - x, for all t I
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(ii) . z = clq," - z, for all ft E I

Proof. All of these results follow directly from Theorem 3.1. In particular, the first assertion in (2)
follows by taking v 1, and the second by letting/ r, 1. To prove (3), let/ u and note that

’(,, g) , ^ ,.
In the subcategories PPRS and PTS of PCS, the characterization of T-regularity given in

Theorem 3.1 can be reformulated as follows.

Corollary 3.3.

(1) (X,q)G [PPRS[ is T-regular iff, for all p,u G I and

(2) (x, q) IPTSl is T-regular iff the following holds for all p, v I: If z X and A C_ X is

a qrt,,)-closed set not containing z, then there is a q,-open neighborhood U of z and a

q-open neighborhood V of A such that U N V }.

A probabilistic convergence space is said to be strongly regular if it is 5b-regular and weakly

regular if it is -regular. It follows by Corollary 3.2 (4) that every (X, q) E IPCSI such that ql is

discrete is weakly regular, demonstrating a wide gap between weak and strong regularity. Note that

"strong regularity" according to our definition coincides with "regularity" as defined in [8].

Example 3.4. Let T be the t-norm defined by T(p, t,) pv, let X be any infinite set, and let q

be the probabilistic convergence structure defined by

discrete topology, p (1/2,1]

q. cofinite topology, p e (, ]

indiscrete topology, p e [0, ]
We obtain a T-regular space (X, q) which is not strongly regular. However if we modify q only

slightly to obtain p defined by

discrete topology, / q (, 1]

p. cofinite topology, u E [1/4, ]

indiscrete topology, t [0, 1/4),

the resulting probabilistic convergence space (X, p) is weakly regular but not T-regular.

Example 3.5. We borrow from [8] an example of a probabilistic convergence space which is strongly

regular but not T-approachable for any t-norm T. Let A denote Lebesgue measure and r the usual

topology on I [0,1]. Let X be the set of all real-valued, Lebesgue-measurable functions on I, the

convergence structure % on X is defined as follows: - f iff there is A C_ I such that A(A) < 1-p

and Y-(v) 2, f(v), for all v I- A. One easily verifies that q (q,) is a probabilistic convergence

structure on X.
For arbitrary ft q I, let f. Then there is A C_ I such that (A) < -/ and ’(v) 2, f(v),

for all v I- A. By regularity of ’, cl.T’(v) -h f(v) for all v E I- A, and (clq,,.$’)(v) >_ cl,(.T’(v))
implies that (clq.)(v) -h f(v) for all v I- A. Thus clqff" - f, establishing that q is strongly
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regular. The fact that (X, q) is not T-approachable for any T T is proved in Example 3.13, [8].

Example 3.6. Let X be the set described in Example 3.5 and let Y be the set obtained from X
by identifying functions which are equal almost everywhere. Let p be the probabilistic convergence
structure on Y defined as follows: for each t (0,1], 2- - f in Y iff, for each a > 0 and e </ there

is f 2- such that, for each g F, {v I’lg(v f(v)l < a} >_ e. For t 1, px is convergence

in probability. Let T’ be the t-norm defined for g,v I by T’(l,v) max{t + v- 1,0}. It is

shown in Example 3.14, [81, that (Y, p) is T’-approachable. We shall now show that (Y, p) is also

T’-regular.
Let a > 0, , v I, and 2- - f. Let T’(g, v) t/. If O, clpv2-

be a number such that 0 < e < /. Since /=/ + v- 1, we can choose el < t and e2 < v such that

ex + e2 > e. Then " f implies there is F E " such that { l’lh()
If g clq.F, there is - g with F G; thus there is G such that ,{ l’lk()- g()] <
} >_ e2 for all k G. Let h’ Gf3F. Then { l’ig()-f()] < a} >_ A{ I" [g()-h’()l+
Ih’()-f(OI < ,} > a [{ e z" ig()- h’()l < } n { Z-Ih’() f()l < }] >
Therefore cl,,..T" f, which establishes that (Y, p) is T’-regular.

In particular, (Y, p) is weakly regular. However (Y, p) fails to be T-regular for T(U, u) u.
Indeed, let 2- ], where f Xt is the characteristic function for I. Let

where g X[o,]. Then 2- X[,a], and >_ c12-. But G fails to p-converge to X[1/2,l and it

follows that (Y, p) is not T-regular.

Theorem 3.7. For a fixed t-norm T, let {(Y,,p) t A} be a collection of objects in RTPCS.
Let X be a set and f,, X Y a function, for all c E A. If q is the initial structure on X relative

to the families {(Y,,, p)’a A} and {f,, cr A}, then (X, q) is T-regular.

Proof. As is noted in [8], for any v I," 2 x iff fo(.T’) - fo(x), for all a A. Thus for/,v e
I, 2- :r impliescl,(f,,,(2-)) ]’o(x)in (Yo,p(,}), for all a A. Since o (X,q) (Yo,p’)is
continuous for all p I, c/,:(f(2-)) C_ fo,(clq,(.T’)), and hence fo(c/,,(2-)) --, fo(x)in (Yo,P(t,,))
holds for each a A, since every (Y=, p") is T-regular. Consequently, clq,,(2-) ---, x in (X, qT(,,,,)),
establishing that (X, q) is T-regular.

Corollary 3.8. T-regularity is preserved under subspaces and arbitrary products in PCS. Further-

more, RTPCS is bireflectively embedded in PCS for any T T.

Corollary 3.9. CONV and RCONV are bicoreflectively embedded in PCS and RrPCS, respec-

tively, for any T T.

Proof. In both cases the bicoreflector maps (X, q) to (X, q) and preserves the underlying function.

Note that q is regular whenever q is T-regular by Corollary 3.2 (2).

We have seen in Example 3.3 that T-regularity does not generally imply "componentwise reg-

ularity," and the question naturally arises whether there is some weaker property which every

component structure of a T-regular probabilistic convergence structure must satisfy. Indeed, there

is such a property which we define as follows: a convergence space (X, q) is symmetric if, for all

x, y . X, x implies y. Note that every regular convergence structure is symmetric.
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Proposition 3.10. A probabilistic convergence space (X, q) which is T-regular for any T E T has

the property that each component convergence space (X, qu) is symmetric.

Proof. Let t E I and let x. Let J X, let be the identity map on X, and let a X F(X)
be defined by a(x) and a(z) , for z # x. Then tcak , and by R-, : y, since

/ T(/z, 1).

We close this section with a simple characterization of those probabilistic convergence spaces

which are simultaneously T-approachable and T-regular.

Proposition 3.11. (X, q) IFTPCS[ (3 RTPCSI iff the following conditions are satisfied:

(1) clq(Vq(z)) z in (X, qT(t,,t,)), for all/,v e I and x e X.
(2) clq,,(cl,,,(A)) C c/qr(.)(A), for all/z,v q I and A _C X.

The proof is an easy consequence of Proposition 2.4 and Theorem 3.1.

4. ALTERNATE FORMULATIONS OF THE AXIOMS.

The results of the preceding section pertaining to RT, combined with those of [2] and [8] in-

volving FT, demonstrate the usefulness of these axioms in the study of probabilistic convergence
spaces. Furthermore RT, when translated under the isomorphism mentioned in Proposition 2.3, has

important ramifications in the study of approach spaces, convergence approach spaces, and related

categories which we shall discuss elsewhere.
In working with axioms or definitions based on filters, it is useful to know when =filter" can be

replaced by "ultrafilter" with no resulting loss of generality. This is true, for instance, in defining
"Hausdorff" in the setting of convergence spaces; an additional illustration is found in Proposition

1.3. In this concluding section we show that Proposition 1.3 can be generalized to the axioms FT
and RT for arbitrary probabilistic convergence spaces. Furthermore, by restricting FT and RT to

the category PPSS of probabilistic pseudotopological spaces, these axioms can be given equivalent
formulations based entirely on ultrafilter convergence.

For a probabilistic convergence space (X, q) and a -norm T, let F be.the axiom obtained when

"F(X)" is replaced by =U(X)" in the axiom FT. Furthermore, let F." be the axiom obtained when

"F(J)" is replaced by =U(J)" in the axiom F. In exactly the same way, we derive Rrr from Rr
and 1" from Rrr. It is obvious that FT => F, => F," and RT => R:r = Per’.

Theorem 4.1. For (X, q) E ]PCS] and T e T, FT ==> F. and RT 1.

Proof. Assume F. By Proposition 2.4, it suffices to show that (X, q) is a probabilistic pretopo-

logical space which satisfies: clq,,(cl,,(A)) C_ clqrc,,.,o(A), for all/z,v q I and A _C X. The proof of

Proposition 3.5, [8], estabishes that if (X, q) satisfies F., then (X, q) is pretopological. To prove

the assertion about closures, let x cl,(clq,,(A)); then there is an ultrafilter 7"/ ! x such that

cl,,(A) E 7"l. Let J X and (y) y, for all y X. If y e cl,,(A) there is an ultrafilter y

such that A e G. Define a(y) G, for y cl,.(A) and a(y) , if y . cl,,(A). If follows that

A tca’H. By FT, a7-/"’) x, and therefore x clqro,.,,)(A).
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Next, assume l:t.. To establish l:tr, it suffices to prove the characterization of RT given in

Theorem 3.1. But in the first half of the proof of Theorem 3.1, we observe that a(z) E U(X) for

every z E J. Thus this same proof remains valid when Rr is replaced by R:r.

Lemma 4.2. Let jr, a, and " F(J) be as in the statement of F.. If/4 U(X) and > na.T’,
then there exists a G E U(J), G > - such that nag

Proof. Let U C U(X) be such that U > na.T’. For A C/4, define HA {y C J" A C a(y)}. Observe

that HA N F 1 for all F 6 " and all A 6/4; otherwise, for some F .7:’, X\A a(y) for all

y 6 F. But this implies X\A naY, which is a contradiction. Let "H be the filter generated by

{HA A 6/A}, and let G be any ultrafilter on J with the property that G > " V 7"/. It is easy to

verify that aG =/4. |

Theorem 4.3. For (X, q) IPPSSI and T E T, FT == F’.

Proof. Assume F,’. Let J, a, , and " 6 U(J) be as in the statement of F., and assume that

.T" 25 x. Let H U(X) be such that H > a’. By Lemma 4.2, there exists a G U(J), such

that G > " and/4 naG. Hence, CG
q

x, and so/4 nag r,.)_. x, by F’. Since qx. is

pseudotopological by assumption, it follows that xa.T" qr"-4") X. Thus, (X, q) satisfies F. Theorem

4.1 now implies that (X, q) satisfies FT.

Lemma 4.4 Let J, a, , and E F(J) be as in the statement of RT. If U U(X) and U > (),
then there exists a e U(J) such that nag _> naY:" and/4 ().

Proof. Let/4 U(X) be such that/4 > (’). For A ff/4 and F , define

GA,F {y F (y) . A (F)},

and let G be any ultrafilter on J, with the property that G is finer than the filter generated by

{GA,F" A e/4 and F ’}. Since G _> , nag _> na’. Also, (GA,F) C_ A, for all F e " and all

A /4; thus (G) =/4. |

Theorem 4.5. For (X, q) PPSSI and T T, P" = RT.

Proof. Assume R’. Let J, a, , and F(J) be as in the statement of R., and assume that

Ha.T" x for some x E X. Let/4 U(X) be such that/4 _> (’). By Lemma 4.4, there exists a

e U(J) such that na >_ Ha.7:" and () H. Hence, na 25 x, and so/2 () qT!f4 X, by

1*. Since qr.) is pseudotopological by assumption, it follows that (’) qax--4) x. Thus, (X, q)
satisfies l. Theorem 4.1 now implies that (X, q) satisfies RT.

Corollary 4.6. Let (X, q) IPPSS[, T C T. Then (X, q) is T-regular iff, whenever p, v E I, .T" C
qT(,,,,)

U(X), and Y z, then clq X.

Proof. Use the second half of the proof of Theorem 3.1 to establish R.’.
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