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ABSTRACT. We introduce a new interpolation at Chebyshev nodes. The usual Hermite interpolation is
the limit case of our new interpolation as A — 0
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1. INTRODUCTION

In many cases we do not know whether the interpolated function is differentiable or we only know
the values of the interpolated function at nodes. Then, how do we construct an interpolation to describe
the interpolated function better? In [1], the author introduced a new kind of interpolation (0, 6™)
M) (f, z) for 2m-periodic function at nodes z, = 2k7/n(k = 0,1,...,n — 1), such that

LM (f,zx) = f(zi),
ML (f 2) = 6Mf(zy) (k=0,1,...n—1),

interpolation L

where

6f(z) =6'f(z) = f(z+h) - f(z = h),
Mf(z) =6(6Mf(z)), (M >2,0< h <m/n).

The usual Birkhoff and Hermite interpolations are the limit cases as h — 0

From this it is natural to ask whether the similar interpolation problem of non-periodic function by
algebraic polynomials has a unique solution. If the answer is positive, what are the explicit formulae of
fundamental polynomials? In this paper we will answer these questions for Chebyshev nodes in Sections
2 and 3 respectively In Section 4, we will consider the convergence.

2. REGULARITY OF THE INTERPOLATION PROBLEM

Let T, (z) =cosnf (z =cos 8) be the Chebyshev polynomial and zx = cos 6 = cos(2k—1)m/(2n)
(k =1,...,n) its zeros. Our interpolation problem is

P: For any two given sets of complex numbers {ax}] and {f;}], whether or not there exists a
unique algebraic polynomial p,,—1(z) of order at most 2n — 1 such that

{PZn—l(zk) =,

Pan—1(cos(6x—h/2)) —pan—y (cos(6x+h /2 — ﬁk (k =1 Tl). (2 13)

h sin 6
Taking a limit as h — 0 in (2.1a), we have

Pan- (I )=a ’
{Pén-i(x:) = ﬁ:, (k=1,..,n) (2 1b)

which are the conditions for Hermite interpolation Hence, this interpolation is a generalization of
Hermite interpolation.
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We have the following
THEOREM 2.1. The interpolation problem P always has a unique solution
PROOF. Set, for an algebraic polynomial o,_; of order at most 2n — 1,

2n—1
Ton-1(8) = Pan_1(c0s) = % + a,cos 6,
=1

Then r9,_; is a cosine polynomial of order at most 2n — 1.
It is obvious that Theorem 2.1 is equivalent to the system of equations

2n—1
Ton-1(0k) = 9 +3  a,cos56, =0,
=1

2n—1 . . (2 2)
Shjaron-1(0k) = — 22 a, sm%jh sinjf, =0, (k=1,...,n).
=1

From the first set of equations of (2.2)

n—-1

Ton-1(0k) = 922 + Z a, cos j6; + Z g5, c0S(2n — 7)0)
=1 =1

<
I
—

= % +3 (a, - aga_,)c08j6; =0, k=1,.,n @3)

[
il
—-

(2 3) shows that the following trigonometric polynomial of order <n — 1
n-1
ag .
) + ,—E_ 1 (a, — agn_,)cos 50

has 2n zerosin [— 7, m) : @ = 6, (k =1,...,n) Hence, we must have
a=0, a,—ag,=0, j=1,.,n—1 (24)

On the other hand, from the second set of equations in (2.2) it is easy to see that

n—1
1. 1 . .
njoTon-1(6x) = — Z{FZI (a] sin E]h + agn_; sin E(Zn - ])h) sin 76

+a,.sin—;-nhsinn0;,} =0 k=1,..,n 2.5)

Therefore the trigonometric polynomial of order < n

n-1

! . . .. ! .
Z(a, sm§ jh + ag,_,sin %(Zn - ])h) sin j@ + a,, sin 3 nhsinnd
=1

has 2n + 1 zeros: 6 =0; § = £ 6, (k=1,...,n). Hence, we have
a,lsin-;-nh =0, a sin%jh + Qgn—; sin% (2n-jh=0, 3=1,.,n-1 (2.6)
Solving the system of (2.4) and (2.6) and observing that
sin%jh >0 and sin% (2n -5k >0,
we obtain
a,=0, j=01,.,2n-1

QED



A GENERALIZATION OF HERMITE INTERPOLATION

3. FUNDAMENTAL POLYNOMIALS OF THE INTERPOLATION
Our main result is the following

THEOREM 3.1.
conditions

and

respectively, are given by

{pm(cosok) = bkm,

6h/gpm(c050k) = 0, (m,k = 1, ...,n)

{qm(cosﬂk) =0,

61 /29m(cos b,
—_ hp:sﬁ(::: k) = 6km1 (m,k = 1'“.’n)

2 (1 % sini(2n— j)hcos b,
Z)=—|5+ 1 - — cos j0 |, (z = cos@
Pn(2) n(2 ; sin} jh +sinj (2n — j)h 7). )
and
hsi am 2n-1 : .am
gm(z) = = 1 s"?J] — €05 j6, (z = cos6).
n 4 singjh+sing (2n -5k

PROOF. First, we prove the polynomial p,,(z) satisfies (3.1). Using the following identity

n

=1
we have
Pm(c0s i) =
And
63 pm(cosbi) = —
+
=0.

Similarly, using the identity

2k -1

2 f1 &K .
—{E-FZCOSJemCOS]ek}:(S)‘m, 9":_?1_”’ (k,m=1,..,n).

sin 3 (2n — j)h cos j6,n
sin § jh +sin §(2n — j)h

cos 56

BN
N

o>

1 sin} jhcos(2n ~ ;)b
=1

sin § jh +sin}(2n — j)h

cos(2n — j)ek}

n—

. sin 3 jh cos 8
& sing jh +sing(2n - )k

{3+

2n-1

sin 3 (2n — 5)h cos j6m
sin ,1-, jh +sin %(Zn -k

cos j6x }

cos 76, cos jOk} = bkm-

cos 76

BN
D =

—

n—1

-

BRI
N

J=1

. l o .
in5(2n — j)hcosjbm . 1 . . .
sin(@n - J) J sin = jh sin 76

4
n < sinljh+sini(2n-sh 2

<
—_

3
—

sin jhsin}(2n — j)h
sin jh + sin }(2n — j)h

€08 j0m sin 56k

<

—-

3

sin } jhsin }(2n — j)h

cos(2n — j)8m sin(2n — 7)8
1 sin%jh +Si“%(2n—j)h ( 7 ( 7)6k

Sk 3w

=

721

The fundamental polynomials p,(z) and g¢,(z) satisfying the following

G1

(32

(33)

G4

(353)
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21 . . =
— —51nn0msmn0k+g sin j0,, sin j6x ¢ = bkm, k,m=1,..,n, (36)
n|2 poer

we can prove (3 4) satisfies (32) QED

4. CONVERGENCE OF THE INTERPOLATION
For f € C[ — 1, 1] define the following operators

n n 9 hY) 9, — L
Sulf2) = 32 fomete) - 3o Ll ) Sleoslb 2 8)) oy g
k=1 k=1 k
and
onlfr2) = 3 Flen)m(a), (42)
k=1

which satisfy the following conditions

{gnéf(;k 2;9{52)53 f(cos) (k=1,...,n) (432)
and
{5l =0 k=1,.um. @40
If we take limits in (4 12)-(4 4a), we have for f € C'[ - 1,1]
mmn=gﬂm&m+§fmmmx (4 1)
and for f € C[— 1,1]
amw=§ﬂnmax (4 2)

which satisfies the following conditions

Ha(fo2x) = f(zk)
{MUJ0=ﬂm%@=me) (430)

and

Fo(f,zk) = f(zx)
{Fr’z(f’x:)=0, ’Ek=1,...,n) (4 4b)

respectively. Obviously,

201 2n-1 .7
=1l = —{ = - = 6 6
P.(z) }ln_r’nopk(a:) n{Z +,2;: (1 2n)cosy & COS ji

1 [(sinn(o-60) 2+ sinn(@+6) )
" 4n? |\ sin (6 — 6%) sinf(0+6) ) |

and
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. sinek 2l . .
Qu(@) = lim gu(z) = —* 3 _ sin 6 cos j6
1=1

sin? 8, cos® né
" n2(cosf — cosby)’

Operators H,(f,z) and F,(f,z) are the famous Hermite and Hermite-Fejér operators respectively (see
[2] and [3])

Now we state our main results in this section.

THEOREM 4.1. Ifcis a constant (0 < ¢ < 1) and h = c7/n, then we have for f € C[ - 1,1]

f(@) = Sa(f,z) = O(Ezn-1(f)logn),

where E,(f) is the best approximation of f by algebraic polynomials of order < n and the sign "O" is
independent of f,n and =

THEOREM 4.2. If p is a constant (0<p<1) and 0 < h < p7/n, then we have for
fecC[-1,1)

n — x2
1@ - sn(f2)=0(3) Zw(f,§+——°1,cf), @6
k=1

where the sign "O" is independent of k, f,n and =
In order to prove the above theorems, we need some lemmas
LEMMA 4.1. The following estimates are valid.

> Ipk(z)| = 0Q1) @7
k=1
and
= lgk(z)] _ ,(logn
g sin 6 —0( n > “8

We omit the proof since it is similar to the one in [1]
LEMMA 4.2. Let 1 < j < n satisfy that

inf |6~ 6] = 10— 6,

1<k<n
and let i = |k — j|. Then
el =0(5) (6 £ @9
and
p;(z)| = O(1). (410)
PROOF. It is clear that
p(z) = 51; (1 + 22:_: — %;:i(:l: ;( ;ih_ 5 05360 - ok)>

1 2l sin %(2n - Hh )
—1+2 cosj(6 + 6
+2n< * ; Sn1gh+sin(an —jh 0+

=I5+ 1.

Denote the Fejér kernel by
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k-1 1 2
J 1(sinjkz
=142 1-= == .
ok(z) =1+ ]E=1 ( k)cosya: k( Snlz )

Then we have the following identity

(G + 1)o,41(x) — 2jo,(z) + (j — 1)o,-1(x) = 2cos jz.

By (4 12), we have

fi= 2_177- [ -2 sin%s}iznjiiz:é-(;z)}i 1)k 1(6 - 6)
sin:i-':-(:i;(:gll)h o1(6 - ak)]
M 515 [sin Ih +Ssiif;%%’(22n “1h 2n02n (6 = 6)
* s—,ﬁﬁ;ﬁ (2n — 1)02,-1(6 — 6)
2sinjh

- 2n — 1)ogn-1(0 — 6
sin%h+sin%(2n—1)h(n )oan-1( k):l

+i2§2( sin}(2n - j+1)h
2n &g \sinj(j—1)h+sinz(2n— 3+ 1)k
2sin}(2n — j)h
sin jh+sin1(2n - j)h
sinj(2n — j— 1)k
sind(j+1)h+sind(2n—j- 1)k
= Iy + I1g + In3.

) 3o,(6 = 6k)

It is obvious that

1 2sin}h sinh 1
In=\5- =3 — - = - =0| |
n singh+sing(2n— 1)h  sinh +sin(n — 1)k n

Observing that for0 < h < pm/n, (0 < p < 1)

sinh -0 1
sinh +sin(n —1)h ~  \n/’

we obtain
Ii;=0
12 (n2sm21(a ak)) n2(6 — ok)z)
1
<o{ty) =o(3) oo
Ik - 5 ?
Set
1
sin 3(2n — z)h
= 0<z<2n)
u(=) sin 3 zh +sin§(2n — z)h (Os=z<2n)
Since, by [1]

a-of3)

we have

(412)

(413)

(414)

(4.15)
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1 2n-2 1 1
113=0<;3-)Z‘101(9—91;)|=0(m> =O(i_2>’ (k # 7). (416)

=2

Combining (4 13)-(4 16) yields
1 .
Similarly, using that

sin? %(0 +6,) > sin? %(e ~6,),

we can prove that
1 .

Hence (4 9) follows from (4 11) and (4.17)-(4 18)
As to (4 10), it is a consequence of (4 7) Q.E.D

PROOF OF THEOREM 4.1. Denote by p;,_;(z) the best approximation polynomial of order
< 2n — 1 for function f(z).

15() = Pincr @)1y = Eana (F):
Then according to Theorem 2.1, we have
Pon-1(%) = Sn(Pon-1,7)-
Hence (4 5) follows from (4 7), (4.8) and the following relation
f(@) = 8a(f,2) = f(z) = Pon1(2) + Sn(Pyn-1 — f2).

QED
PROOF OF THEOREM 4.2. Sinces,(1,z) = >_ pi(z), we have
k=1

n

@) = salfoz) =Y [f(2) = f@olpe(z) + [f(z) = F(z,)]py(2).

k=1,k#;
Using (4 9), (4.10), and the known results (see [4])

ivli-z2 2
-z =0 X——Z + L
n n?

je-2=0(%).
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>, (k #7)

we can easily obtain (4.6) Q.E.D
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