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ABSTRACT. For both ordinary convergence and ¢!-summability explicit sufficient conditions on a
matrix have long been known that ensure that the summability method is strictly stronger than the identity
map The main results herein show that a matrix that satisfies those conditions can be included by
another matrix only if the other matrix satisfies those same conditions.
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1. INTRODUCTION AND TERMINOLOGY
Let z denote a complex number sequence {zi}r.; and A denote an infinite matrix [anc] with

00
complex entries; then Az is the transformed sequence whose n-th term is given by (Az), = Y @nixxk.
k=1

Let c denote the set of convergent sequences, and c4 = {z : Az € ¢} Similarly, ¢! = {z: § |zk] < oo}

and ¢4 = {z: Az €'} The matrix A is called regular if ¢ C ca, and A is stronger than (ordinary)
convergence if ¢ ;CA Similarly, A is called an £ — ¢ matrix if £! C €4, and A is stronger than the
identity (map) if £* ;8 4. If A and B are matrices such that lim Az = L implies lim Bz = L, then we
say “B includes A,” and this clearly implies that c4 C cg. In the £ — £ case we simply write £4 C {p
with no verbal phase describing it.

There is previous work giving explicit conditions on A to imply that c4 = c =cj or 4 = ¢! = ¢,
(See, e.g., the Mercerian-type theorems in [1], [3], and [4]. In [2] and [S] conditions on A were given
that ensure that ¢ ;c 4 and £! ;l 4, respectively Explicit conditions are not known for making general
comparisons of c4 and cp or of £4 and ¢p (except when B = I) In this paper we address the general
inclusion question. The principal results show that if A satisfies the conditions of [2] or [5] that ensure
that A is stronger than I, then A can be included by B only if B also satisfies those same conditions

For the reader's convenience we state the theorems due to Silverman-Toeplitz [6, page 43] and
Knopp-Lorentz [7] that characterize regular matrices and £ — ¢ matrices, respectively

SILVERMAN-TOEPLITZ THEOREM. The matrix A is regular if and only if the following
conditions are satisfied:

(i) for each k, li’xlna,.k =0,

00 0
(i) for each n, 3 a, converges and lim " anx = 1,
k=1 ™ k=1

00
(iif) SquZl [ank| < 00
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KNOPP-LORENTZ THEOREM. The matrix A is an £ — £ matrix if and only if the following
condition is satisfied:

00
(@iv) sup Y |ank| < 0.
k n=1

2. COMPARISON OF REGULAR MATRICES
In [2] Agnew proved the following simple criterion for establishing ¢ ; c4

THEOREM 2.1. If A is regular and satisfies the condition
lim an = 0, @n

then c ; ca.

The double limit in (2.1) is taken in the Pringsheim sense: if € > 0 then there exists an N such that
lank| < € whenever both n > N and k > N. This sets the stage for the first of our “noninclusion
theorems.”

THEOREM 2.2. If A and B are regular matrices such that A satisfies (2.1) and B does not, i e.,

limboi # 0, 22)

thency & cp.
PROOF. First note that since the rows of A are null sequences, (2.1) implies that

lim {max |ans| } = 0. @23)

Also, (2.2) allows us to choose increasing sequences v’ and ' of row and column indices satisfying
[byrimywimyl = 6 >0 forall m. (2 4)

Then use (2.3) to choose a subsequence of those pairs < v”(m), &”(m) > such that
max |a, o(m)] <27 forall m. 25)

Next, using conditions ST(i) we choose a further subsequence < v(m),x(m) > so that for each m,
k < k(m) and n > v(m) imply
lank| < 2™ and [bu| < 2—m. (26)

We also use the assumption that the rows of B tend to zero (from ST(ii)) tp choose < v(m),x(m) >
so that

lbrk| <277

whenever k > k(m) and n < v(m). Define the sequence z by

{m, ifk=r(m) for m=1,2,..,,
T =

| 0, otherwise. @7

For n > v(m), (2.5), (2.6), and (2.7) yield

1(Az),] = D an(n ()

7=0

<N 2 G + ). 27(0)

1<m >m

<2+ Ra,

J<m
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say Asm — oo these expressions both tend to zero (R,, — 0 because the series 3 _ 277 is convergent),

hence, lim Az = 0 and = € c4. For Bz we have

|(B2)y my| = 1wty Zoim)| = Y [Bumy.n|(5)

J#m
= |butmyaemm| = D276 = D 277(5)
<m »>m

= |byimyn(m)lm = 27" m(m + 1) — Rp.

The latter two terms tend to zero as above, and by (2.4) the first term is unbounded, hence, z ¢ cp, and
the proof is complete.

REMARK. In the proof of Theorem 2.2 we did not use the full strength of the regularity
hypothesis. It would have sufficed to assume only that the rows and columns of A and B tend to zero.

To illustrate Theorem 2.2 we can take A to be any Cesaro matrix C) for j > 0, or any Euler-Knopp
matrix E, for 0 < r < 1. (They all satisfy (2.1).) Then B could be any Norlund matrix N, with p
finitely nonzero (see [6, page 64]), or any weighted mean 'IV,, with p € £! (see [6, page 57]), they satisfy
(2.2). Therefore none of the latter matrices includes any of the former.

One might note the similarity of form between Theorem 2.2 and Theorem 2.0.3 of [8] where
Wilansky proved that if A is conull and B is not, then c4 € cg. The conservative matrix A is conull
provided that

o o
mY an ~ ) (li;nank) =0.
k=1 k=1
3. COMPARISON OF ¢ — £ MATRICES

In [5] the following theorem was proved, giving a sufficient condition for an £ — £ matrix to be
stronger than the identity matrix

THEOREM 3.1. If A is an £ — £ matrix for which there exists an integer m such that

00
hmkmfz lank| = 0, 3.1)
n=m
then £ ; £y,
We next give an £ — £ analogue of Theorem 2.2.
THEOREM 3.2. If A and B are £ — ¢ matrices such that A satisfies (3.1) and B does not, then

T lp
Actually, we shall prove somewhat more.
THEOREM 3.3. Let A be an £ — £ matrix for which there is an integer 4 and a sequence {k(7)}}2,

of column indices such that

o0
lim > lan iy | = 0; 32)
n=gp
if B is a matrix satisfying
o0
fim Y bk # 0, ¢G3)
n=uy

thenf, ¢ ¢p.
PROOF. First note that we may assume that the rows of B satisfy
limb, k(;) =0 for each n. (34)
J
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For, if not, then there is an n~ and a subsequence {k’(5)} such that

|bns k(5)] > € >0 for every j. @35)

Property (3.2) allows us to choose a further subsequence {k”(j)} such that

S 1
Z |@nk(p| < =5 for each j.
n=p J
Define
S {1, ifk=k'(j) for y=1,2,...,
710, otherwise.
This yields
o0 00
PBICEINED )DL
n2u n=u | =1
00 00
<Y lani|
=1 n=p
(=
1
<y 7
J=1

while (3.5) implies that the series

0
(Bz), =Y bnewry)
J=1

is nonconvergent. Thus, as in the proof of Theorem 1 of [5], we can choose z so that z € £4 but Bz is
not defined.

Assume that (3.2), (3.3), and (3.4) hold We shall find an z in £4 that is not in £5. Using (3 3) and
replacing {k(5)} with one of its (appropriately chosen) subsequences {k (i)}, we can assume without loss
of generality that

o0
z |bn k()] = 26 >0 for eachi. (3.6)

n=1

Replacing {k(i)} with yet another of its subsequences {k(p)} we can get ,

[l
Z |ani(p)| < tp, foreachp, 37

n=g
where t € £}
Next we construct an increasing sequence {(m)} of row indices and a further subsequence {x(m)}
of {k(p)} to define the sequence z that we seek First, take v( — 1) = 0; then use (3 6) to choose x(1)

satisfying
Z |bn,x(l)l 2> 26,
n=1

and choose (1) so that

D lbray| =6 and Y [banl <t

n<vy(1) n>y(1)

After k(1) <... <k(m—1) and v(1) <... <v(m—1) have been selected use (3 4) to choose
k(m) > k(m — 1) such that
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v(m-1)

Y Ibnim| < tm, (33)
n=1
and by (3.6),
Z |bn.x(m)' > 26.
n=1

Then select v(m) > v(m — 1) so that

v(m)

Yo el =6 3G9
n=1+v(m-1)
and

00

3" asim)| < tm. (3 10)

n=v(m)

Now define z by
el

z ,_{—, ifk=k(m), form=1,2,..,and6 € R
k=4 m

0, otherwise.

This yields = € £4 because by (3.7),

Zl(Az) |<Z

n=p n=p

(o]
<> tm.

n=p

Z Qp, x(m)

For Bz, inequalities (3.8), (3.9), and (3.10) give

v(n) v(m)
SCENES DD DI DIV €
J_.

m=1 n=14r(m-1)

N v(m)
Z Z Ibn ;c(m)l_ - Z |b" N(J)l
m=1 n=14v(m-1) JEM
N v(m) v(m)
S ORI SRUMESS SIS SR s W
m=1 n=1+v(m-1) m=1 n=l+v(m-1) g#m

N
1
> 62 o Zzt"(i’)'
m=1 =1

Hence, Bz ¢ £!, which establishes the assertion that z is in £4 but not in £.
Note that in defining = we need only have |Z.(,)| < 1/m in order to have the subsequent
inequalities valid It is the convergence of the 2 — 1 series

o0
Y trnin = (Az),
=1
forn = 1,2, ..., — 1 that requires the factor of e in T(m) (See Theorem 1 and Lemma 1 of [5] )
REMARK. As above with Theorem 1, we have not needed the full strength of the hypotheses, in

this case, the assumption that A is an £ — £ matrix is stronger than what is needed. Condition (3 2)
guarantees that Az € ¢! whenever it exists, so the only concern is that (Ar), exists for n < u This

existence would be guaranteed by assuming only that the row sequences {a,,,k(,)};‘;l for n < p are
bounded. (See Lemma 1 of [5].)



516 J A FRIDY

As an illustration of Theorem 3.3, we give an example of two matrices that are noncomparable in the
£ — ¢ sense
EXAMPLE 3.1. Define A by

1, ifn=1landk=1,2,..,
Ong 1= %, ifk=n>1,
0, otherwise.

Take B to be the Euler-Knopp matrix E, for some r € (0,1).

n _ Nk _k .
Er[n,k] = { (") (1 T) r*,  ifk <n,

0, ifk > n.
Then

= 1
E lank] = =, fork=2,3,..,
n

n=2

so A satisfies condition (3 2). In Theorem 4 of [5], it is noted that for each k,

3B Kl =
so E, does not satisfy (3.2). Hence, by Theorem 3.2, £4 € £z,. Although the following does not
involve Theorems 3.2 and 3.3, for the sake of completeness we show that £z, ¢ €,. This is verified by
observing that if r € (0,1) and ) := (—r)7%, then (E,z), = (—r)"; therefore z €5  But
[(Az),| = [(—7)7"/n| > 00,50 ¢ £4.
In closing we offer an open question related to Theorem 3.2. Can the absolute sums in conditions
(3.2) and (3.3) be weakened to ordinary sums? More precisely, if A satisfies

o0
lim inf ; ane| =0
and B satisfies
o0
lim inf ;‘b,,k >0,
does it follow that £4 ¢ £5?
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