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ABSTRACT. For both ordinary convergence and 21-summability explicit sufficient conditions on a

matrix have long been known that ensure that the summability method is strictly stronger than the identity

map The main results herein show that a matrix that satisfies those conditions can be included by

another matrix only ifthe other matrix satisfies those same conditions.

KEY WORDS AND PHRASES: regular matrix, 2- 2 matrix, (summability) inclusion, Silverman-

TOeplitz conditions, Knopp-Lorentz conditions.

1991 AMS SUBJECT CLASSIICATION CODES: 40D25, 40C05

I. INTRODUCTION AND TERMINOLOGY
Let x denote a complex number sequence {xk}k__1 and A denote an infinite matrix [ok] with

complex entries; then Ax is the transformed sequence whose n-th term is given by (Ax)n , cxk.
k=l

Let c denote the set of convergent sequences, and c.4 {z Az E c} Similarly, 21 z" Ixl <

and 2.4 {z Az E 21 The matrix ,4 is called regular if c C_ c.4, and ,4 is stronger than (ordirry)

comergence if c c.4 Similarly, ,4 is called an 2 2 matrix if 21

_
2.4, and ,4 is stronger than the

Mentty (map) if 21 2.4. If A and B are matrices such that limAz L implies limBz L, then we

say "B includes .4.," and this clearly implies that c.4 C_ cB. In the 2- 2 case we simply write 2.4 C_ 2B
with no verbal phase describing it.

There is previous work giving explicit conditions on .,4 to imply that c.4 c c, or 2A 21 2
(See, e.g., the Mercerian-type theorems in [1], [3], and [41. In [2] and [5] conditions on ,4 were given

that ensure that c c.4 and 21 2.4, respectively Explicit conditions are not known for making general

comparisons of c.4 and c or of 2.4 and 2e (except when B I) In this paper we address the general
inclusion question. The principal results show that if .4 satisfies the conditions of [2] or [5] that ensure

that ,4 is stronger than I, then ,4 can be included by B only ifB also satisfies those same conditions

For the reader’s convenience we state the theorems due to Silverman-Toeplitz [6, page 43] and

Knopp-Lorentz [7] that characterize regular matrices and 2 2 matrices, respectively

SIL%rEN-TEPLIT TItEOREM. The matrix A is regular if and only if the following
conditions are satisfied:

(i) for each k, lira, 0,

(ii) for each n, o converges and lim o.,, 1,
k=l k=l

(iii) sup la.l < oo
k=l
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KNOPP-LORENTZ TItEOREM. The matrix A is an - matrix if and only if the following
condition is satisfied:

(iv) sup lal < oo.
k n=l

2. COMPARISON OF REGULAR MATRICES
In [2] Agnew proved the following simple criterion for establishing c CA

THEOREM 2.1. IfA is regular and satisfies the condition

lim ak 0, (2.1)

then c cA.

The double limit in (2.1) is taken in the Pringsheim sense: if > 0 then there exists an N such that

[ark[ < whenever both n > N and k > N. This sets the stage for the first of our "noninclusion

theorems."

THEOREM 2.2. IfA and B are regular matrices such that A satisfies (2.1) and B does not, e.,

lim b, # 0, (2.2)

then cA cB.

PROOF. First note that since the rows ofA are null sequences, (2.1) implies that

l {mel  l } =0.
Also, (2.2) allows us to choose increasing sequences d and W ofrow and column indices satisfying

Ibv(r).’(,)l > 6 > 0 for all m. (2 4)

Then use (2.3) to choose a subsequence of those pairs < v" (m), n"(m) > such that

max la.,,()l < 2-" for all m. (2 5)

Next, using conditions ST(i) we choose a further subsequence < v(m), (m) > so that for each m,

k < (m)and n > v(m)imply

lak[ < 2 and lb.kl < 2 m. (2 6)

we also use the assumption that the rows of B tend to zero (from ST(ii)) t9 choose < v(m), (rn) >
so that

Ib.l < 2

whenever k > (m) and n < v(m). Define the sequence x by

ifk (m) for m 1,2,...,
(2.7)zk’= O, otherwise.

For n > v(m), (2.5), (2.6), and (2.7) yield

3=0

_< 2-re(j) + 2-,

3m 3>m

2-mj+,
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say As rn oo these expressions both tend to zero (/ 0 because the series 2-33 is convergent);

hence, lim Az 0 and :r, E CA. For Bz we have

3<rn

The latter two terms tend to zero as above and by (2.4) the first term is unbounded, hence, z cB, and

the proof’ is complete.
RET&RK. Tn the proof’ of’ Theorem 2.2 we did not use the ull strength of he regularity

hypothesis. It would have sufficed to assume only hat the rows and columns ofA and tend to zero.

To illustrate Theorem 2.2 we can take A to be any Cesro matrix C for j > 0, or any Euler-Knopp
matrix for 0 < r < I. (They all satiffy (2.1).) Then could be any NOrlund matrix .N’, with p

finitely nonzero (s 6 page 6}), or any weighted mean N- with p E (see r6, page 571), they satisi
(2.2). Therefore none ofthe laer matris includes any of’the former.

One nght note the similarity of form bevvn Theorem 2.2 and Theorem 2.0.3 of" $] where

Wilansky proved that if" A is conull and B is not, then c cB. The conservative matrix is conull

provided that

/ -0.
k=l

3. COMPARISON OF MATRICES
In [5] the following theorem was proved, giving a sufficient condition for an - matrix to be

stronger than the identity matrix

THEOREM 3.1. IfA is an matrix for which there exists an integer m such that

E I’k 0, (3.1)liminf
then 1 A.

We next give an analogue ofTheorem 2.2.

THEOREM 3.2. If A and B are - matrices such that A satisfies (3.1) and B does not, then

Actually, we shall prove somewhat more.

THEOREM 3.3. Let A be an matrix for which there is an integer/ and a sequence {k(3)}3=
ofcolumn indices such that

li3mE la,-,,k(3) O; (3.2)

ifB is a matrix satisfying

li3m Ib,<)l o, (3 3)

then .4 g B.
PROOF. First note that we may assume that the rows ofB satisfy

lira b..k(3) 0 for each n. (3 4)
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For, if not, then there is an n" and a subsequence (k’ (j)} such that

Ib,,.,vO)l _> > 0 for every j.

Property (3.2) allows us to choose a further subsequence (k" (j)} such that

1’ [a,v,(:)[ < - for each j.

Define

This yields

while (3.5) implies that the series

1, ifk=k"(j) for3=l,2
z O, otherwise.

n>_# n=# 3=1

3=1

3-1

(Bx),.,. b.,,,O)

(3 5)

and choose v(1) so that

lb,.(x)[ 6 and y lb.,(1)l < t.
nSz/(1)

After (1) < < (m- 1) and v(1) < < v(m- 1) have been selected use (3 4) to choose

(m) > (m- 1)such that

3=1

is nonconvergent. Thus, as in the proof of Theorem of[5], we can choose x so that x E a but Bx is

not defined.

Assume that (3.2), (3.3), and (3.4) hold We shall find an x in gA that is not in gB. Using (3 3) and
replacing { k(j)} with one of its (appropriately chosen) subsequences { k(i)}, we can assume without loss
of generality that

’ Ib.<ol > 25 > 0 for each i. (3.6)
n--1

Replacing { k(i) with yet another of its subsequences { k(p) } we can get

E la",(n) < t, for each p, (3 7)

where

Next we construct an increasing sequence {z,,(m)} of row indices and a further subsequence (m)}
of {k(p)} to define the sequence z that we seek First, take u( 1) 0; then use (3 6) to choose (1)
satisfying

n--1
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v(ra-1)

n=l

and by (3.6),

Then select v(m) > v(m 1) so that

+v(ra-1)
(3 9)

and

n=(r)
(3 o)

Now define z by

k ’D’I,

O,

if k n(rn), for m 1, 2, and 0 E R

otherwise.

This yields z E gA because by (3.7),

n’-’ n=
an,x(m)

(,) N .(m)

n=l m=l n=l+v(rn-1)

For Bx, inequalities (3.$), (3.9), and (3.10) give

3=1

m=l n=l+v(m-1)
m

j#m

N v(rn) 1 N (m)

m
ra=l n=l+v(m-1) rn=l n=l+(m-1)
N 1> 6 --. 2Et,O).
m=l

m
3=

Hence, Bx gl, which establishes the assertion that x is in gA but not in gB.
Note that in defining x we need only have Iz(.)l _< lira in order to have the subsequent

inequalities valid It is the convergence ofthe tz 1 series

a.,:O)z,,O)
3=1

for n 1,2, ...,# 1 that requires the factor ofe’ in x(m) (See Theorem and Lemma of[5]
REMARK. As above with Theorem 1, we have not needed the full strength of the hypotheses, in

this case, the assumption that A is an t- matrix is stronger than what is needed. Condition (3 2)
guarantees that Ax ga whenever it exists, so the only concern is that (Ax),,, exists for n < # This

existence would be guaranteed by assuming only that the row sequences {a.k0)}a=l for n </ are

bounded. (See Lemma of[5].)
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As an illustration of Theorem 3.3, we give an example oftwo matrices that are noncomparable in the- sense

EXAMPLE 3.1. Define A by

1, ifn 1 and k 1, 2,..,

ank
1 ifk n > 1,
O, otherwise.

Take B to be the Euler-Knopp matrix E, for some r E (0, 1).

{ 0,

ifk<_n,

ifk >n.

Then

for k= 2,3,

so A satisfies condition (3 2). In Theorem 4 of[5], it is noted that for each k,

1

so Er does not satisfy (3.2). Hence, by Theorem 3.2, A ,. Although the following does not

involve Theorems 3.2 and 3.3, for the sake of completeness we show that 6, A. This is verified by
observing that if r E (0,1) and Zk := r) -k, then (Erz) r)’; therefore z , But
I(A:),I I( ,’)-’lnl oo, so : t

In closing we offer an open question related to Theorem 3.2. Can the absolute sums in conditions

(3.2) and (3.3) be weakened to ordinary sums? More precisely, ifA satisfies

lira inf a, 0
k

and B satisfies

lim inf’
k

>0,

does it follow that
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