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ABSTRACT. Let X be an arbitrary non-empty set, and let £ be a lattice of subsets of X such that 9,
X € L. We first summarize a number of known conditions which are equivalent to £ being normal. We
then develop new equivalent conditions in terms of set functions associated with . € I(L), the set of all
non-trivial, zero-one valued, itely additive measures on tfie algebra gemerated 6y L. We finady
generalize all the above to the situation where £, and L, are a pair of lattices of subsets of X with
Ly C L, and where we obtain equivalent conditions for £, to coseparate L,.
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1. INTRODUCTION

Let X be an arbitrary non-empty set, and let £ be a lattice of subsets of X such that@, X € L.

Various necessary and sufficient conditions for the lattice £ to be normal are known (see [4,5,6]),
and we summarize a number of these in section 2. We then give new necessary and sufficient conditions
for the normality of £ in section 3. These conditions are in terms of set functions associated with a
u € I(L), where I(L) is the set of non-trivial, zero-one valued, finitely additive measures on the algebra
generated by L.

Section 4 is devoted to the more general situation of a pair of lattices £, and £, with £; C L, and
for which £, coseparates Lo. If £; = L9, then £, coseparates itself if and only if it is normal. We
proceed, at first, to give necessary and sufficient conditions for £, to coseparate L, which extend known
necessary and sufficient conditions for normal lattices which are summarized in section 2. Then we
extend our new conditions for normality, to conditions both necessary and sufficient for £, to coseparate
Lo in terms of set functions associated with a u € I(L,).

We begin in section 2 with a brief summary of the notation and terminology used throughout the
paper. Related matters can be found in [2,4,6]. We then turn our attention to normal lattices, and follow
the program indicated above.

2. BACKGROUND AND NOTATION

Here we summarize briefly the notation and terminology that will be used throughout the paper
Most of this is standard by now and follows that used in [1,3,4,7] for example. We will also assume for
convenience that all lattices considered contain the @ and X.

X is an arbitrary non-empty set and £ a lattice of subsets of X. A(L) denotes the algebra generated
by £, and I(C) those non-trivial, finitely additive, zero-one valued measures defined on A(L). Ir(L)
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denotes those . € I(L), which are L-regular, i.e
#(A) = sup{u(L)|L C A,L € L}
where A € A(L). We note, that 4 € Ir(C) if and only if » € I(L), and
w(L') =sup{p(L)ILc L',L e £}

where L € £. Here L' = X — L, and we denote by £’ = {L'|L € £}. L'is the complementary lattice
to L.

We note that there exists a one-to-one correspondence between all prime C-filters and I(C) given by
associating with 2 € I(L) the prime L-filter

F={LecL) =1). @1

Similarly, there exists a one-to-one correspondence between all C-ultrafilters and Iz(L) given by the
same collection as in (2.1) only now p € Ig(L).

Finally, we note that if H is any collection of sets of £ with the finite intersection property, i.e. the
intersection of any finite number of sets of H is non-empty, then there exists a u € Ip(L) such that
pu(A)=1forall A € H.

I,(L) denotes those u € I(L) such that y is o-smooth on L, ie. if L, € £ and L, | ® then
p(Ln) — 0. There is a one-to-one correspondence between I,(C) and all prime L-filters with the

" countable intersection property.
I°(L) denotes these 1 € I(L) that are o-smooth on .A(L), or, equivalently, are countably additive.
%2(L) = I,(L) N Ig(L), and it is easy to see that if u € I (L) then u € I°(L).
If u € I(L), we denote by p’ the following set function defined on P(X): for E C X,

W(E) = inf{u(L')|E c L', L € L}.

' is a finitely subadditive outer measure.
If p, v are set functions defined on £, we write u < (L) if (L) < v(L) forall L € £. It is now
clear that

p€Ir(C) ifandonlyif p = u'(L). 2.2

A set function defined on £ is called modular if v(L; U Ly) + v(Ly N Lg) = v(L) + v(Ly), for
all Ly, Ly € L. f v(Ly U Ly) + v(Ly N Le) < v(Ly) +v(Lg) for all Ly, Ly € L, then v is called sub-
modular, and supermodular if the inequality is reversed.

We recall that £ is countably compact (c.c.) if and only if I(L) = I, (L)', or, equivalently, if and only
if Ip(C) = I3(L).

L is countably paracompact (c.p.) if A, | 0, A, € L implies there exists B, € L, A, C B, | 0.
Clearly if £ is c.p. then I, (L") C I,(C).

L is a normal lattice if for any A;, As € L with A; N A; =0 there exist B;, B; € L with
A; CBj{,AyC Byand BiNnB; = 0.

We summarize some equivalent characterizations of normality in the following theorem (see [4,5,6]).

THEOREM 2.1. L is normal (where 0, X € L) is equivalent to any of the following:

1) Foreach u € I(L), there exists a unique v € Ig(L) such that p < v(L).

2) Forany u € I(L)and v € Ig(L) such that u < v(L) thenp < v =2 = p/(L).

3) Ifp < v(L)where u € I(L), v € Ir(L) then v(L') = sup{u(L)|L c L',L € L} where L € L.
4) IfLC LyUL)whereL, Ly, Ly € L,then L= AUBwhere A, Be€ Land A C L}, B C Lj.
5) Foranyp € I(L), F = {L € L|p'(L) = 1} is an L-ultrafilter.

Further characterizations of normality will be developed in section 3. We just note one consequence
of normality. We denote by I,(£) those u € I(L) such that u(L’) = 1 implies there exists an L € £,
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LcL',and p/(L) = 1 where L € L. If £ is normal, then I,,(C) = Ir(L). The converse, however, is
not true in general.

If we have a pair of lattices, £, Lo of subsets of X with £; C L;, and if u € I(L;) then its
restriction to A(L,) will be denoted by |, or simply | if there is no ambiguity.

In general if we have a pair of lattices £1, £, we define:

L, semiseparates L, if for all A € £,, B € L, such that AN B = 0, there exists an A; € L, such
that BC Ajand ANA; =0.

L, separates L, if for all By, B; € Lo such that By N B, = 0, there exists Ay, A; € £, such that
B, CA,B; C Asand A;NAy =0.

L, coseparates L, if for all By, By € L, such that B; N B, = @, there exists A;, As € £; such that
B, C A}, B, C Ayand AN A, =0.

Ly coallocates L; if A C BjUB;, where A € L1, By, By € L,, then there exists A;, A; € £
suchthat A = A; U Ay, A; C Bjand A; C Bj.

Under our assumption that all lattices involved contain @, X and assuming that £; C L2, then
Lycoseparates L, if and only if £, coallocates ;.

Finally, if v is a finite outer measure (either finitely subadditive or countably subadditive) defined on
P(X), we denote by S, the v-measurable sets, so

S, ={E c X|v(G) = v(GNE) +v(GNE') forall G C X}.

v is regular if for any A C X, there exists an E € S, with A C F and v(A) =v(E). Ifvisa
regular outer measure which is finite then

S, ={E C Xlv(X) = v(E) +v(E")}.
If v is any outer measure that just assumes the values zero and one, then v is clearly regular.

3. NORMAL LATTICES

In this section we wish to get characterizations of normal lattices in terms of certain set functions
associated with a p € I(£). In the presence of normality, these set functions have been investi-
gated [2,4,5,6]. We will summarize briefly these results, but we wish to go beyond this, and show that
properties of these set functions can be utilized to give necessary and sufficient conditions for a lattice to
be normal.

DEFINITION 3.1. Letu € I(L)and let E C X.
a) w(E)=sup{u(L)ILC E,LeL}
b) E(E) =inf{u,(L)|EC L',L €L}

It follows readily from the definition that, for u € I(L),

p=p<BELp (L), and (ER))

B=p <p=4(L).

Now, we have

THEOREM 3.1. If £ is a normal lattice and if 4 € I(L), then
a) p; is finitely additive and finitely subadditive on L’

b) [z is a finitely subadditive outer measure.

PROOF. a) Let A BeL, and suppose p;(A'UB’)=1. Then there exists L € L such
that L ¢ A’UB’ and u(L) =1. From Theorem 2.1 part 4 of section 2, it follows that there exists
Ay, BieL with L=A,U By, AjC A, By C B". Thus p(L) < u(A;) + u(B), consequently,
w(Ay) =1 or u(By) =1. By (3.1) this implies that u,(A;) =1 or p,(B1) =1 so p,(A")=1 or
u.(B') =1 since y, is monotone. It is now clear that u;(A' UB') < p;(A’) + p.(B') for any A,
Be L. Again, if p,(AUB')=1 and if A’NB =0, A, B €L, then using the previous notation
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A1NB; =0, and 1= p(L) = p(A1UBy) = p(A1) +p(B1). Say, p(4;) =1 and u(B;) =0, and
clearly p;(A’) = 1 and p;(B’) = 0 from which the additivity of u, on £’ follows.

b) Clearly z(@) = 0, & is monotone, and all we need prove is the finite subadditivity of Z. Let E;
and E, be arbitrary subsets with Z(E} UEp) =1. Then p,(L')=1foral LD E,UE;,,LeL. If
both @(E;) =0 and fE(E;) =0, then there exists L, L) € L' with L} D Ey, L) D E, and
p(Ly) = pi(Ly) =0. Then LiUL) D> E UE; and p;(LiUL}) =0 by part a), which is a
contradiction, and completes the proof.

Since 7 is a finitely subadditive outer measure, we denote by Sy, the i-measurable sets, i.e.

Sy ={E C X|g(G) =BG NE)+EGNE) forall G C X}.

Clearly Sy is an algebra, and since p and, therefore, [ just assume the values 0 and 1, we have
8 = {E C XIB(X) = B(E) +B(E")}.

Now we show

THEOREM 3.2. If £ is normal and if 4 € I(L), then A(L) C Sg.

PROOF. We need only show that if L € £, then 5(X) > G(L) + E(L’). Suppose 5(L') =1. By
(3.1), this implies p,(L') = 1. Hence, there exists L € £, L c L’ and (L) = 1. Since LNL =0, and
since £ is normal, there exists B}, B, € L' with LC B, L C B} and B{NB, =@. Clearly,
w(By) =1 and u(B,) = 0. Thus #(B,) = 0 by (3.1), and (L) = 0. Thus B(L’) and &(L) can't both
be one, which completes the proof.

Finally we have

THEOREM 3.3. If £ is normal and if 4 € I(L) then
2) Flaw) € Ir(L), and
b) &=u'(L)

PROOF. a) Since £ is a finitely additive measure on Sy, it follows that | 4y € I(L).

Also, for L € L,

(L) =inf{p(A")|L Cc A", A € L},
but z = u,(L'). Thus @’ =5 therefore, | 4(c) € Ir(L) (see section 2).

b) Since p < B(L), by a) and by normality (see section2), u < g =7’ = p'(L).
Let v be a set function defined on all subsets of X. Recall v is submodular if and only if

v(E1 U Ey) + v(Ey N Ey) < v(Ey) +v(E2)

.

forall £, E; C X.

It is easy to see that the following holds.

LEMMA 3.4. If v is a monotone set function defined on all sets E C X that assumes only the
values 0 and 1, then v is finitely subadditive if and only if v is submodular.

Now we establish:

THEOREM 3.5. If u € I(L), then £ is normal if and only if & is submodular (or equivalently if and
only if 7 is a finitely subadditive outer measure).

PROOF. If £ is normal, then % is a finitely subadditive outer measure by Theorem 3.1 b), and,
therefore, submodular by the Lemma.

Conversely, suppose £ is submodular. If £ is not normal, then there exists A;, Az € £ such that
A; N Ay = 0, but for all Bf, By € L' with A; C B}, A; C B, wehave BiN By # 0.

This implies that the set

B={B € L'|B' D A or B'D As}
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has the finite intersection property. Consequently there exists a u € Ip(L) such that u(B') =1 for
all B'€ B. Hence, u(B) =0 for all B' € B, which implies u,(A}) =0 and ,(A4;) =0. Thus,
B(A}) = B(A3) = 0 by (3.1). But 1 =g(X)=p(A}] U A}) =0 which is a contradiction since & is
submodular.

As our characterization theorem, we have

THEOREM 3.6. If u € I(L), then £ is normal if and only if & = p/(L).

PROOF. If £ is normal then & = p'(L) by Theorem 3.3 part b).

Conversely, suppose zZ = u'(L) and £ is not normal. Then using the same notation and construction
as in Theorem 3.5, we have u,(Aj) = 0, while A; C B’, B € L implies u(B') = 1, but A; C A}. Thus
E(A;) = 0, while clearly '(A;) = 1. This contradiction proves the theorem.

4. COSEPARATION OF LATTICES

In the present section, we will extend the results of sections 2 and 3 on normal lattices to a pair of
lattices £, and L2 such that £y C £,, and where £; coseparates £y. Clearly, if £y = Ly then £
coseparates itself if and only if it is normal. The work done here also extends that done in [2,5,6].

Our first result directly generalizes Theorem 2.1 part 1).

THEOREM 4.1. Let £, and £, be lattices of subsets of X such that £; C £,. Then L
coseparates Lo if and only if for any u € I(L,) and any vy, v € Ig(L2) such that u < v;(£;) and

B S va(Ly) then vy = vy,

PROOF. 1) We assume that £, coseparates Lo. If v; # 1, then there exists B;, By € Ly such that
v(B1) =1, 1u(Bz) =1, and B; N B, = 0. Hence, there exists A;, Ay € £; with B; C A}, B, C A}
and A1 NA; =0. Consequently, A; UA; =X so u(A;) =1 or p(A2)=1. But 4; C Bj, and
v1(By) =0, so v1(A;) = 0; hence u(A;) = 0. Similarly Ay C Bj, and v2(Bj}) = 0 so p(A;) = 0, from
this contradiction, we conclude that v; = vs.

2) Conversely, assuming the condition of the theorem holds, if £, does not coseparate C; then there
exists By, By € L, such that

H={A €Li|Bic A or B, C A’}

has the finite intersection property. Therefore, there exists a u € I(L;) such that u(A’) =1 for all
A" €H. Now let L; € £; with u(L;) =1. Then u(Lj) =0 so L) ¢ H. Hence, L N By # @ and
LyNB; # @ forall L € £, with u(Ly) = 1. Thus if we let

Hy = {Ly € L3|Ly D Ly N By, Ly € Ly with p(Ly) =1},

and
Hy = {L2 € Lo|Ly D Ly N By, Ly € £y with u(Ll) = 1}

then H; and H, are L,-filters Consequently, there exists vy, vo € Ip(L2) such that v1(Le) = 1 for all
L, € Hy and vo(Lg) =1 for all Ly € Hy. vy # v, since By € H; and By € Hy, and Bi N By = 0.
Also p <1 (L) since, if A€ Ly and p(A)=1 then A€ H, clearly, so v;(A)=1; similarly
# < vy(L;) which completes the proof.

The next theorem generalizes Theorem 2.1 part 2).

THEOREM 4.2. Let £; and L, be lattices of subsets of X such that £; C £;. Then C,;
coseparates Lo if and only if for any p € I(£,) and v € Ig(L;) such that u < v(Ly), we have
v = p'(L).

PROOF. 1) Suppose L; coseparates L. Clearly v/ < u’. Suppose v(Lg) = 0 where Ly € L,.
Then v(L}) = 1; hence Ly O Ly € £; and v(L3) = 1. Now Ly N Ly = 0 so there exists Ly, L; € £;,
Iocli,LycL) and LNk =0, so u(f/l) =1, and, therefore, u(f/l) =1. Consequently,

u(Ly) = 0, s0 u'(Lg) = 0. This implies that
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v=v'=u'(Ly).

Conversely, if this condition holds, and if 4 € I(L;), and vy, vo € Ig(Ls) with u < v1(Ly), p < (L)
then vy = vj = p'(Lq) and vp = v = p'(Ly), s0 v1 = 1y, and £, coseparates Lo by Theorem 4.1.

Note: Clearly Theorem 4.2 is equivalent to the following: Let £; C L be lattices of subsets of X,
and let 4 € I(L,) and v € Ig(L;) be arbitrary with u < v(L;). Then L, coseparates L, if and only if
v(B') =1, B € L,, there exists an A € £; with A C B’, and p(A) = 1. Clearly this result extends
Theorem 2.1 part 3.

We now extend the comment following Theorem 2.1.

Theorem 4.3. Let £, and £, be lattices of subsets of X such that £; C £,. Also let £; coseparate
Ly. Then, iffor p€I(Ly) and v € I(Ly) with p < v(L,) and with v(B') =sup{u’(A)|ACB',A€L,},
B € Ly, we have v € Ip(L5).

PROOF. Suppose v(B') =1, where B € £;. Then there exists A € £, A C B’ and py/(A) =1.
Since L; coseparates L, there exists A;, Ag € £y with A C A}, BC A), and A]NA, =0, so
AC A|C Ay CB'. Thuspy'(A])=1=p(A’), so u(As) =1. Hence v(A;) =1,and A; € £, C L
sov € Ig(Ls).

We recall:

DEFINITION 4.1. The lattice £ is almost countably compact if Ir(L') C I,(L).

Clearly if £ is countably compact then £ is almost countably compact. While, if £ is normal,
countably paracompact and almost countably compact, then £ is countably compact.

THEOREM 4.4. Suppose £; C L2 and L, coseparates Lo. If u € I,(L,) and v € Ig(L;) such
that p < v(L;) then v € I,(L3).

PROOF. If v ¢ I,(L}), then there exists a sequence {B,}, B, € Lo such that B} | 0 and
v(B.,) = 1 for all n. By the note after Theorem 4.2 there exists A, € £; with A, C B}, and p(4,) =1
for all n. Clearly, we may assume A, | , so A, | @, which implies 1 ¢ I,(L,), a contradiction.

THEOREM 4.5. Let £; C L; and L, coseparates Lo. If v € Ig(Lz) and if £, is almost countably
compact then v € I,(L5).

PROOF. Let A =v|q,). A € Ir(Ly), and since £, is almost countably compact, there exists a
u € I,(L) such that

B < A(Ly)-

Now, by Theorem 4.4, it follows that v € I,(L5;), which completes the proof.
REMARK. Under the assumption of Theorem 4.5, if in addition, I,(L5) C I,(Lq), then
v € I(Ls), in which case L, is countably compact.
We now wish to extend the results of Theorems 3.1-3.3, to the situation of a pair of lattices £;, £
with £, C L,. We define for u € I(L) and any E C X.
a) ui(E) =sup{u(L1)|L) C E, Ly € £4}.
b) Bi(E) = inf{pi(L3)|E C L, Ly € La}.
Arguing analogously to the proofs in Theorems 3.1-3.3, we obtain readily,
THEOREM 4.6. Let £, C L, and let £; coseparate Lo. Then, for p € I(L,),
a) u, is finitely additive and finitely subadditive on £,'".
b) [ is a finitely subadditive outer measure.
¢ A(Ly)C S;.
d) v =Fglaw, € Ir(L2), and p < v(Ly).
Furthermore, adhering to the above notation, we have
THEOREM 4.7. L, coseparates L, if and only if

G = {Ls € Lol'(Lg) = 1}
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is a prime Lo-filter for any u € I(C;).

PROOF. 1) If £; coseparates £, then v = v/ = p'(L,) since v € Ig(L;) and using Theorem 4.2.
From this it follows immediately that 4’ is modular on £, and G, is a prime C-filter.

2) Suppose for any p € I(L,), Gy is a prime Ly-filter. If £; does not coseparate L;, then, by
Theorem 4.1, there exists u € I(L;), vy, vo € Ip(Ls) with v; # vp, and such that u < v;(L;) and
p < va(Ly). Hence

v = v < p(La),
and
vo = vy < p'(La).

But G, is a prime Lo-filter, while vy and v, determine £, ultrafilters. Thus, we must have v; = 1y, a
contradiction. Hence, £; coseparates L.

Next, we extend Theorem 3.5.

THEOREM 4.8. Continuing with the notation prior to and in Theorem 4.6, we have that £,
coseparates L, if and only if 7 is submodular or, equivalently, a finitely subadditive outer measure for
any p € I(Ly).

PROOF. 1) If is submodular, then, in particular,  is submodular on £;. However, & = p,(C}),
so u, is submodular on £;. Hence ' is supermodular on £y. Thus if B, B; € £y, and, if
K (B1) = 1 = '(By), then u'(By N B,y) = 1, and clearly G, is a prime L-filter, so £; coseparates £;
by Theorem 4.7.

2) Conversely suppose £, coseparates Ly, then by Theorem 4.6 b) & is a finitely subadditive outer
measure for any u € I(L,).

We note if £; coseparates Ly, then v =/ = p/(L;) since v € Ir(L;) and by Theorem 4.2,
however, v = f(L;), so & = p'(Ls).

Suppose conversely for any u € I(L,), & = p'(L2). We note for any E C X, py/(E) +p,(E) =
wX)=1

If £, does not coseparate Ly, then there exists By, By € L, such that B; N By = @, and

H={A"€ L{|A' D By, or A' DBy}

has the finite intersection property. Consequently there exists a p € (£;) such that for any A € £, and
A’ > By or A' O B, then u(A’) = 1. Hence, p/(By) = p/(B2) = 1. Thus u,(Bj}) = 0. But, B; C B),
so Z(B;) = 0, a contradiction. Therefore, £, coseparates L.

Summarizing, we have extended Theorem 3.6 to:

THEOREM 4.9. Using the above notation £, coseparates L, if and only if & = u'(L,) for any
u € I(L,).
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