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ABSTRACT. The spectral function ©(t) = >~ exp( — tA,), where {’\1}21 are the eigenvalues of the
=1

negative Laplace-Beltrami operator — A, is studied for a compact Riemannian manifold  of dimension
"k" with a smooth boundary 952, where a finite number of piecewise impedance boundary conditions
(a%. +'y,)u =0 on the parts 9Q,(: =1,...,m) of the boundary 8Q can be considered, such that

m
00 = | 89, and 7, (i = 1, ..., m) are assumed to be smooth functions which are not strictly positive
1=1
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1. INTRODUCTION
The underlying problem is to determine the geometry of a compact k-dimensional smooth
Riemannian manifold 2 with metric tensor g = (gog), from a complete knowledge of the eigenvalues for

the negative Laplace-Beltrami operator —A = — 7;1;; a—‘;’: [g"“'3 /detg a%,] where g7! = (¢g°#)
Let Q be a compact Riemannian manifold of dimension "k" with a smooth boundary Q2 Suppose
that the eigenvalues
0<A<H<A<. €< >0 as j— oo, an

are known exactly for the eigenvalue equation
(O+A)u=0 in 9, (12)

together with the impedance boundary condition

(i+'y)u=0 on 99, (13)
on

where % denotes differentiation along the inward pointing normal to 952 and - is a smooth function
which is not strictly positive

Hsu [1] has investigated problem (1.2)-(1 3) and has determined the geometric quantities associated
with the manifold 2 from the asymptotic expansion of the spectral function
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0
o) = Zexp( —tA;) as t—0. (14)
J=1

Problem (1.2)-(1 3) has been investigated by many authors (see, for example, Mckean and Singer [3]
and Hsu [1]) if ¥ = 0 (Neumann problem) and have shown that

(@mt)*?0(t) = ag + a1tY? + ayt + agt¥2 +0(£2) as t— 0, as)
where
ao = |92},
VT
a = T |6Q|,
1 1
ay = = fK(:t)da:— = / tr H(z)dz,
6 Ja 3 Jan
and

a3 =+/7 /aﬂ {é K%(z) - % [tr H(2))* + % tr H*(2) + % Ric(n)(z)}dz.

In these formulae, || is the (Riemannian) volume of 2, |9 is the (Riemannian) surface area of
09, K (z) is the scalar curvature of Q2 at z, H(z) is the second fundamental form of the boundary 8%,
K%®(z) is the scalar curvature of 9 (equipped with the induced metric) at z, Ric(n)z is the Ricci
curvature of 2 at z in the normal direction "n" of the boundary 9, and tr H(z) is the mean curvature of
o

The object of this paper is to discuss the following more general inverse problem Suppose that the
eigenvalues (1 1) are known exactly for the eigenvalue equation (1.2) together with the following
piecewise smooth impedance boundary conditions

(6?1, +7,)u =0 on AN(GE=1,..m), (16)
where the boundary 92 of Q consists of a finite number of the parts 9Q, ( = 1,...,m) such that

0N = | 99,, while % denote differentiations along the inward pointing normals to 952, and ~, are

=1
assumed to be smooth functions defined on 952, which are not strictly positive.
The basic problem is that of determining the geometry of the manifold 2 as well as the impedance
functions 7,(¢ = 1, ..., m) from the asymptotic expansion of the spectral function

O(t) =Y exp(—t),) as t—0. an
7=1
Note that the main problem (1.2) and (1.6) has been discussed recently by Zayed and Younis [4] and
Zayed [5-7] in the case where £ is a general simply connected bounded domain in R*(k = 2 or 3) with a
smooth boundary 992 and «, ( = 1, ..., m) are positive constants

2, STATEMENT OF RESULTS

THEOREM. Let |8Q,(i=1,..,m) be the (Riemannian) surface areas of the parts
80, (i = 1, ...,m) of the boundary 9 respectively. Let K% (z), (i = 1,...,m) be the scalar curvatures
of the parts 8%, (2 = 1, ...,m) of 85 respectively. Let Ric(n,)(z) be the Ricci curvatures of 952, at z in
the normal directions n, of the parts 3%, (i = 1,...,m) of Q2. Then the results of problem (1 2) and
(1 6) can be written in the form
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(4mt)*?O(t) = ag + art"? + agt + azt*? + 0(£?) as t— 0, @

where

ap = |Q|

1 m
@=; ﬁ;wm,
ay = 1 /K(a:)da:— 1 i / [tr H(z) + 67,(2)]d2
2 6 A 3 2 Joo, Y2 y

and

=73 /m {11—2 K (z) - %{trH(z)]z + z—i tr H2(2)
=1 J

+ % Ric(n))(z) + % v(2)tr H(z) + —y?(z)}dz.

Note that the results of Neumann conditions on 85, are obtained from (2 1) by setting v, = 0
(i =1,...,m) which are in agreément with the results (1 5) of Neumann conditions on 99

REMARK 1. If Q is a bounded domain in R? with a smooth boundary 82, then K% (z) = 0,
Ric(n,)(2) =0, tr H%(2) = ¢(2), tr H(z) = — ¢(2) where c(2) is the curvature of 89 at z and if 7,
are positive constants then, we get the result of Zayed [5] when ¢ = 1,2 and the result of Zayed and
Younis [4] wheni =1,...,m.

REMARK 2. If Q is a bounded domain in R® with a smooth surface 8Q, then K (z) = 2k ks,
Ric(n,)(2) =0, tr H%(z) = k¥ + k%, tr H(z) = — k; — ky, where k; and k; are the two principal
curvatures of the boundary surface Q2 at z and if ~, are positive constants, then we get the resuit of
Zayed [6] when i = 1,2 and also the result of Zayed [7] wheni = 1,..,m

3. CONSTRUCTION OF RESULTS
Following the method of Kac [2] and Hsu [1], it is easily seen that ©(t) associated with problem
(1.2) and (1 6) is given by

o(t) = /f;G(t,x,z:)dz, (€R))

where the heat kernel G(t, z,y) is defined on (0,0) x € x £, which satisfies the following
For fixed z € (), it satisfies in ¢, y the heat equation

(5- )tz =0, 62
and the piecewise impedance boundary conditions
(o +70)| 620 =0 on GG=1,0m) ¢
on,y
and the initial condition
mG(t,z,y) = 8z - v), (34)

where 6(z — y) is the Dirac delta function located at the source point z = y Note that in (3 2)-(3 3) the
subscript "y" means that the derivatives are taken in y-variables.
Thus by the superposition principle of the heat equation, we write

G(t,z,y) = Gy(t,z,y) + x(t,z,9) (35
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where Gy (t, z,y) is the Neumann heat kernel on 2 which satisfies the heat equation

a
(5 _Ay)GN(trz’y) =0v (3 6)
and the piecewise Neumann boundary conditions
iGN(t,:r:,y) =0 on AN(:=1,..m), 37
on,,
and the initial condition
tl"% GN(t) z, y) = 6(1 - y)v (3 8)

while x(t, z, y) satisfies the heat equation

0
(a —Ay)X(t,x,y) =01 (3 9)
and the piecewise boundary conditions
0 .
aTx(t,z,y) = —7(@)G(,z,y) on 9N(GE=1,..,m), (3 10)
1y

and the initial condition

lim x(¢,2,y) = 0. 311
Now, the solution of problem (3.9), (3.10) and (3 11) is given by
m t
xtzw) = =3 [(d [ G- oz 2605 (312)
=1 Y0 N,

From (3.5) and (3.12) we have the integral equation

m t
G(t,z,y) =Gn(t,z,y)~ ) /0 ds /m Gn(t — 5,2, 2)%(2)G(s, 2, y)dz. (313)
=1 1

On applying the iteration method (see [5]) to the integral equation (3 13) we obtain the series

o0

G(t’ z, y) = Z ( - l)rFr(t, zyy)v (314)
r=0 '
where
FO(t’Iry) = GN(t1xry)1
and

m t
F.(t,z,y) = Z /0 ds o Gn(t— s,z,2)7(2)Fro1(s, 2,y)d2z, (r=1,2,..). (3.15)
1=1 g

From (3.1), (3 5), (3.14) and with the help of the following well known estimate (see [1], [3])

(47rt)"/2f: / |Fo(t,z,z)|dz = 0(¢%) as t—0, (3 16)
r=3 JQ

we deduce as ¢ — 0 that

o(t) = On(t) — /n Fi(t,z,z)dz + /n Fy(t,z,z)dz +0(t4572), (317
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where Oy (t) = fQ Gn(t, z, z)dz, which has the same asymptotic expansion (2 1) with y, = 0
The problem now is to study the integrals of F,.(¢,z, z), (r = 1,2) over the manifold 2
LEMMA 1. Wehaveast — 0,

(47|'t)k/2\/s; Fl (tv zv‘t)dz = Zti /ag ’)‘,(Z)dz
=1 3
1 m
-3 N t3/2; /m‘ 7.(2)tr H(z)dz + 0(t?). (3 18)

PROOF. The definition of F;(t,z,z) and the Chapman-Kolmogorov equation of the heat kernel
imply

/S;Fl(t,:c,z)da: = t; /39’ Gn(t, 2, 2)7(2)dz. (319

Let us now introduce the following well known estimate of the Neumann heat kernel (see [1])
1
(Amt)*2G N (t, 2, 2) = 2[1 -3 Vit tr H(z)] +0(t) as t—0, (3 20)

which is valid uniformly in z € 9Q, (i = 1, ..., m).
On inserting (3.20) into (3.19) we arrive at the proof of Lemma 1
LEMMA 2. Wehaveast — 0

(4mt)*72 /ﬂ Fy(t,z,z)dz = \/7 t3/2f: /m 72 (2)dz +0(¢%). @321
1=1 J

PROOF. From the definition of F3(t,z,z) and with the help of the expression of Fi(t,z,z) we
deduce that

m t
/Q Alte2dz =3 /0 (t - u)du /m‘ i (2)dz /an. G (t — w2 ¥ 1) G, 2)dy. (3 22)

We replace 7,(y) in the above integral by «,(2) + 0(|]z — y|) and split the integral into two integrals
accordingly Using the following estimate for the Neumann heat kernel There exist positive constants
to, 1 such that for all ¢ < to, (z,y) € 2 x Q,

a2
Gn(t,z,y) < clt"‘”exp{ - %} (3.23)
1
we deduce that
2
t
[ 12 31Gn -~ 0,3, 2)6n (200w < cfue - 0] [ wlewpd - 2L oy, 6 24)
a0, RA-1 u(t —u)

Since the integral in the right-hand side of (3.24) is bounded by c3t ~*/? where c; and c; are positive
constants, we deduce as ¢ — 0 that

/QFQ(t,I,a:)d:c = ; /m, g9(t, 2)v.(2)dz + O(t““‘)/z), (3 25)

where

¢
g(t,z) = /0 (t —u)du /an Gn(t —u,y,2)Gn(u, 2,y)dy. (3.26)
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The right-hand side of (3.26) can be computed by taking the first term in the series expansion of the
Neumann heat kernels (see [1])

Gy(t—u,v,2) =2q(t—u,y,2) and Gn(u,2,y) =2¢(y, z,y),

where

2
q(t,y,2) = (47rt)"‘/2exv{ - %} (327)

The explicit computation can be carried out with the help of a suitably chosen local coordinate system
and the localization principle (see [1]). We leave the details of this computation to the interested reader
and we content ourselves with the statement that the leading term of g(t, z) is equal to the same integral
in the Euclidean space, i.e,

gy [ [—t 1" 2=y _ fy—al’
(4mt)*“g(t,2) = 4/0 [47ru(t—u)] (t—u)du/m_lexp{ - m “ dy +0(t?). (328)

After some reduction, we deduce that
2t r_u\ M2
(4mt)*2g(t, 2) = 2(—) / (———) du +0(¢£?) (3.29)
™ 0 u
= /7 2 +0(£%).
On inserting (3.29) into (3.25) we arrive at the proof of Lemma 2.

Finally, our result (2.1) follows immediately from (3.17), (3.18), (3 21) and the expansion of © y (t)
for the Neumann conditions on 89, (i = 1,...,m).
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