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ABSTRACT. In this paper, we discuss a class of optimal control problems of nonsmooth systems

governed by quasi-linear elliptic partial differential equations, give the existence ofthe problem. Through
the smoothness and the approximation of the original problem, we get the necessary condition, which can

be considered as the Euler-Lagrange condition under quasi-linear case.
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1. INTRODUCTION
Let f be a bounded domain ofR with Lipschitz continuous boundary 1". We consider the Dirichlet

problem
(a, (y=, =, u in

y 0 on

where u E L2(f), a R R are local Lipschitz functions, and VY, z E R, satisfy

a,(y)z/>,,,Iz/l’/C >0, p>2, C>O

(1 la)

(l.lb)

(.2)

(,=(y) ,(z))(z- z) > ,71z- zl ,7 > o

la,()l < C(ll-= + I) p > 2, C > 0 a.e. on R (1.4)

where denote ,(y) the derivative of a/(y).
Consider the following optimal control problem:

(o,) min 2(,) C()+
ueL()

where y is given by (1.1), G(y) is a lower semicontinuous convex function, (u) is a convex function

satisfy

(1) (u) is continuously Frechet differentiable in L2(ft)
(2) (u) is coercive in L2 (f), i.e.

lira (u) oo.

Consider the problem (ocp), Casas and Fernandez [5] studied the special case when a/(1 < < n)
are continuously differentiable and
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J(u - lY Yd dx / -got the necessary condition, Barbu [4] studied the nonsmooth linear systems and got the Euler-Lagrange
condition, etc But for the nonsmooth quasi-linear systems, there are no conclusions yet In this paper,
we discuss this problem, give the existence and get the necessary condition of it through the smoothness

of a(x), G(y) and the approximation of (ocp). Also this way can be used to study the boundary control

problem
2. TIlE EXISTENCE OF SOLUTION OF (ocp)

To get the existence of (ocp), we need to study the Dirichlet problem (1.1) first From

Ladyzhenskaya [2], we get.
LEMMA 2.1. Let u E L2(/) satisfy llUllL2(n) < M, and the Dirichlet problem (1.1) satisfy (1.2),

(1 3), (1 4) Then"

1) There exists a unique y W0’v fq L2(f) be a solution of(1 1) and a constant C > 0 depending

only on M, w, r/, c, such that

2) Vu, L2(f2)(rn N), (1.1) has solutions Yu Y, assume:

u,-u weakly in Lg(f) as mc.

Then,
y - y strongly in Y.

In this paper we denote Y to be W0 (l)) fq L2 (I2)
From the second part ofLemma 2.1 we can define an operator O L2 (12) Y as

() =.

Applying Lemma 2. we can get the existence theorem of (ocp).
THEOREM 2.2. There exists at least one solution ofthe optimal control problem (ocp), we denote

it [, ].
PROOF. Suppose that {u, } is a minimizing sequence of (ocp), because ofthe coercivity ofJ(y, u),

we get the boundness of Ilu, llL2(n), then there exists a subsequence u, (denoted the same way) and

L2 (f2), such that

u---,, weakly in L2(f) as i-,oo.

From Lemma 2.1 we get y, y (denoted ) strongly in Y, and the lower semicontinuity of J(y, u)
shows

J(,) lim inf J(y, u) _< J (y, u), Vu E Lg (f/)

i.e

[,] is a solution of (ocp).

3. NECESSARY CONDITION OF THE SOLUTION OF (ocp)
Before studying the necessary condition of (ocp), we need the definition of the Generalized Gradient

and the Yosida regularization ofthe Lipschitz function (Tiba D. [ 10]).
DEFINITION 3.1. If F(x) is a local Lipschitz function, its Generalized Gradient denoted DF(x) is

the convex hull of the set of cluster points for the sequences grad(x + h,), where h, 0 are chosen

such that grad(x + h,) exist, i.e.

DF(x) conv{w Rr’, :::1 h, O, 3 grad F(x + h,) w}.
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DEFINITION 3.2. G(y) X R, its Yosida regularization denoted G’ is

G (Y)= :exinf { lx Yl---- + G(z) I
Now we study the necessary condition through three steps

3.1 TIlE SMOOTItNESS OF ai(x)
We define

f4-oo() ( )p().

where p(z) is a C (f2) function satisfy

T) > 0 if I1 < 1
(2) p(T) 0 if Irl > 1.

Obviously, a’(z) is a C function and a(z) a,(z) uniformly as e 0, an elementary calculation

shows that.

LEMblA 3.1. a’ (z) satisfy (1.2), (1.3) and (1.4) everywhere (the constant C may be changed).

PROOF. We only prove (1 4); the others are similar

f_4-oa, (y) a, (y .T)p(’r)dT

a(z)p -dz

< C (1 / Izl’-)o ,
< c + Clvl’-.

The smoothness of a, (z) change equation (1.1) into

-(a(y,)).,=u in f2
i=l

y=O on F

(1.1a)*

The same as before, arbitrary u E L2(f), (1.1)* has a unique solution y Y, we also define

L2(12) Y as

e, (,.,) =,,.
Compared with the original operator O, we have:

TItEOREM 3.2. V f, f’ E L2(f), let y O(f), y’ O,(f’), assume

f’---,f weakly in L2(f), as e---,O.

Then,

y’y strongly in H0(f), as -0.

PROOF. For arbitrary Wd’P(f), multiply (1.1), (1.1)* by it, and integrating by parts we have

z-’-’|

(1.1b)*
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’9 a y dx jf .fCdx (32)

Let y y, subtract (3.1) and (3.2), we get

In ew of (1.3), we have

UZ ]y:’ -Yz’]2dx Z (f f)(Y’ -y)dx + Z (a:(yz,)-a,(yz,))(y:, -yz,)dx. (3.4)

Since f f in L2(fl), the first te of fit of (3.4) goes to zero as e 0. The second
because of the boundness of [[y[[v d [[y[[v, d a[(y) a,(y) unifoy, we c obtn it goes to

zero tso, e.

0.

By the equivence no o ()d . IH(), d the Sobolev imbeddin8 theorem, we have

i.e

COOLL%Y 3.3. V f E L(), let ’ ,(f), B(J), then, there ests a consist c > 0

satisn8
II’ ull=(.) C,.

Inw ofB(, we have

EO.4. Let ( be defin before, then,

I) , is teaux derenable in L().
2) or bitr f, g E L(D), denote r V’(f)g, then r is a uque soluon o the follon8

Dific problem

(3.5a)

r=O on F’ (3.5b)

PROOf. V f, g L(), A > 0, denote y (f + Ag), y (f), om Coroll 3.3, we
have

yy stronyin L() A0.

Ne we prove the threm tough 3 steps.
The sequence {} is bound in H ().SP 1.

Sillily to (3.1), multiply (1.1)* by , teating by ps, we get

Let yA y, and subtract them we get



OPTIMAL CONTROL OF NONSMOOTH SYSTEM 3/,3

(3.6)

Thinking about (1 3), we derive

-< CllgllL’(.)[[

Because ofthe equivalence ofthe norm ]]U][Ho(n and ]UlH(n), we know

A

ie

(3.7)

yX_y}, is bounded in H (f2).

STEP 2. We denote zx we will get a subsequence and prove the boundness of rnz" in

From (3.7), we get a subsequence z (denote in the same way) such that zx r, weakly in H (f).
By the mean-value formula, we have

(a’ (y,) a’(y,)) rn)(yX,_ yx,)

where m, depend on y,, , and d:, and furthermore from (1.4) we know rn E L,2--’ (f)
Reconsider (3.6) we know fn rnlzXz, 12dz is bounded with respect to A > 0

By the inequality ofYoung we have

1 . l+v).
B

Here,#=(l+v)/2<l,l<(X-#)c< --_2, c>2, +=1.
So Ilm, 4. (1,) is bounded.

SP 3. z r in L2(fl), r satis the DificNet problem (3.5). z r in L2(fl) is obous from
tin H(fl)
From Step 2 we have

rnXz,x h weakly in LS (f) as , 0.

Next we will prove h d: (y,)r,, a.e. on f

Since

and

Z
A mA

Z

z r, weakly in L2 (f)

From Lemma 2 we get y, y, in L2(f/). By Egorov Theorem we know Va > 0,3f2o C f, such

that rn(f f2o) < a, and y, yx, uniformly in L2(f2).
Then,
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a(y.,) strongly in L(f).

(3 8) and (3.9) show

h a (Yz,)r, a.e

Going to (3 1) we get

Integrating by parts, we obtain

r=0 on F

(3 9)

The uniqueness is obvious from Corollary 3.3

For arbitrary f L(f), we define (VO,(/))" L(S2) L(f) be the adjoint operator of

VO, (f), from Theorem 3.4 we have

COROLLARY 3.5. For arbitrary p, q Lg-(fl), denote/9 (VO,(f))’q
Then, p, q satisfy the following linear boundary-value equation

E(d(y,)pz,),=-q in f2 (3.10a)

p=0 on F (3.10b)

PROOF. Only multiply this equation by r VO,(f)g, integrating by parts and applying Theorem
3 4 we may get it.

3.2 THE APPROXIMATION OF (ocp)
We define

(ocpa) min J’(y, u) G’(y) + (u) + Ilu
ueL2(f’l)

where y is the solution of(1.1)* and is the solution of (ocp), G’ is the Yosida regularization ofG.
Obviously J’(y, u) is coercive, similarly to (ocp) we know there exists at least one solution of

(ocpa), we denote it [y, u’], the relation between Iv’, u’] and [, ] is:

THEOREM 3.6. Suppose [y’, u] is a solution of (ocpa), then, there exist p’, q’ e L2(fl), such
that

E (d (y:,:,)p,),, q’ in f2 (3 la)
Here ,=1

p’=0 on F (3.11b)

q" cgG’(y’),p’ V(u’) + u’ (3 12)

and moreover

y’ ---,, u’ in L2(f) (3.13)

p’-,, q’---, in L2(fl)

where [ff, ] is a solution of (ocp), and

re(n), e OG().

PROOF. Because [y’, u’] is a solution of (ocpa) we have

(3 14)
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ie

Define

Obviously,

(v](, ),=)= o, w L-(f)

(aa(), vo,(’)=) + (v() + , =) 0.

pe V(u) +u , q i:gG(y).

p (VO,(u))-q,.
Apply Corollary 3 5, we get p, q satisfy (3 11)

i.e

Next we prove y’ , u’ , in L2(f2). Because [y’, u’] is a solution of (ocpa), we derive

J’(U’, u’) _< J’(O,(),) G’(e,()) + ,I,() < G() + ,I,() + le,() e()l
2

lira sup J’ (y’, u’) _< G(y) + ().
{--*0

So J’(y, u) is bounded, and the coercivity of J’(y, u) shows that Ilu’ll(.) is bounded Then there

exists a subsequence ofu’ and u0 E L2(Q) such that

u’ uo, weakly in L2 (f)

and moreover

lu’ uol le,(’) e(u0)l _< le,(’) e,(o)l + le,(0) O(uo)l.

From Theorem 3.2 and Corollary 3.3 we know

Ilu’ YOIIL,(.) 0, as E 0

i.e.

Y’-Yo in L2(12) as e0.

Since the lower semicontinuity of J’ (y, u) we get

1
a(uo) + (,o) + 5 I1,,o 11 < a() + ().

But [, ] is the solution of (ocp), so uo, Yo.
And from

1
G,

we get

u’ ---} strongly in L (f).

Because is continuously Frechet differentiable, we get

p’--} strongly in L2(I2)
and

Obviously,

From Tiba D. 10] we have

re(e).

q’ weakly in L(f2).
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3.3 NECESSARY CONDITION OF (ocp)
Through the discussion before we have

THEOREM 3.7. The Dirichlet problem (1.1) satisfies (1.2), (1 3), (1 4), and (ocp) defined as
before Suppose [, ] is the solution of (ocp).

Then, there exist , 6 L (f2) satisfy the following Dirichlet problem

(D,(,)z,), in f (3.16a)
z-’-I

=0 on F. (3 16b)

Here,

p v(), e (). ( ?)

PROOF. Multiply (3 11) by p’, we get the boundness of [[P’[[H(n) Furthermore, d (y:,)IP, [2 is

bounded in L (f2)
Since a (y,) is bounded in L(f2), the same as the proof of Theorem 3.4, using the Young

inequality we have

in L’(f2), Vs6 \(l’p-2 /
and

So

h’6Da,(=,), a.e. f.

Let e -, 0 in (3.11), we know that , satisfy (3.16).
The others are obvious
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