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ABSTRACT. In this paper, we discuss a class of optimal control problems of nonsmooth systems
governed by quasi-linear elliptic partial differential equations, give the existence of the problem. Through
the smoothness and the approximation of the original problem, we get the necessary condition, which can
be considered as the Euler-Lagrange condition under quasi-linear case.
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1. INTRODUCTION

Let 2 be a bounded domain of R™ with Lipschitz continuous boundary I'. We consider the Dirichlet
problem

=Y (@@ =u in Q (1 1a)
=t y=0 on T (1.1b)
where u € L2(), a, : R — R are local Lipschitz functions, and Vy, z € R, satisfy
ay2uwyl+C w>0, p22, C>0 12)
(a(v) —a(2)y—2) 2nly—2F n>0 (1.3)
la.@)| < C(wlP2+1) p>2, C>0 aeonR (1.4)

where denote &, (y) the derivative of a;(y).
Consider the following optimal control problem:

i =G ®
(ocp) min J(y,u) =Gy)+2(u)

where y is given by (1.1), G(y) is a lower semicontinuous convex function, ®(u) is a convex function
satisfy

(1) ®(u) is continuously Frechet differentiable in L?(R2)

(2) ®(u) is coercive in L?(R2), i.e.

®(u) = oo.
Nl 20y 00

Consider the problem (ocp), Casas and Fernandez [5] studied the special case when a;(1 < i < n)

are continuously differentiable and
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1 1
1w =3 [ w-vade+3 [ u)ids,

got the necessary condition, Barbu [4] studied the nonsmooth linear systems and got the Euler-Lagrange
condition, etc But for the nonsmooth quasi-linear systems, there are no conclusions yet In this paper,
we discuss this problem, give the existence and get the necessary condition of it through the smoothness
of a,(z), G(y) and the approximation of (ocp). Also this way can be used to study the boundary control
problem
2. THE EXISTENCE OF SOLUTION OF (ocp)

To get the existence of (ocp), we need to study the Dirichlet problem (1.1) first From
Ladyzhenskaya [2], we get.

LEMMA 2.1. Let u € L?(Q) satisfy |jul| e < M, and the Dirichlet problem (1.1) satisfy (1.2),

(13),(14) Then
1) There exists a unique y, € Wol"’ N L*(R) be a solution of (1 1) and a constant C' > 0 depending
only on M, w, n, ¢, such that

llya "wol-Pnp(Q) <C.

2) Vun, € L2(Q)(m € N), (1.1) has solutions y,, € Y, assume:
un —u weaklyin L?(Q) as m — oo.

Then,
Yu, — Yu Stronglyin Y.

In this paper we denote Y to be W (Q) N L%(Q)
From the second part of Lemma 2.1 we can define an operator © : L?(Q) — Y as’

O(u) = yu.

Applying Lemma 2.1 we can get the existence theorem of (ocp).

THEOREM 2.2. There exists at least one solution of the optimal control problem (ocp), we denote
it [7,3).

PROOF. Suppose that {u,} is a minimizing sequence of (ocp), because of the coercivity of J (y, u),
we get the boundness of ||u.||2q), then there exists a subsequence u, (denoted the same way) and

T € L*(R), such that

u, =7, weaklyin L*(Q) as i— oo.

From Lemma 2.1 we get y,, — yg (denoted ) strongly in Y, and the lower semicontinuity of J (y, u)
shows

J(7,T) = liminf J(y,,,u,) < J(y,u), Vu € L*(Q)
ie
[¥,1] is a solution of (ocp).

3. NECESSARY CONDITION OF THE SOLUTION OF (ocp)

Before studying the necessary condition of (ocp), we need the definition of the Generalized Gradient
and the Yosida regularization of the Lipschitz function (Tiba D. [10]).

DEFINITION 3.1. If F(z) is a local Lipschitz function, its Generalized Gradient denoted DF'(z) is
the convex hull of the set of cluster points for the sequences grad(z + h,), where h, — 0 are chosen
such that grad(z + h,) exist, i.e.

DF(z) = conv{w € R*,3h, — 0,3 grad F(z + h,) = w}.
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DEFINITION 3.2. G(y) : X — R, its Yosida regularization denoted G¢ is
G*(y) = inf ol G(z)}.
zeX 2¢

Now we study the necessary condition through three steps
3.1 THE SMOOTHNESS OF q;(z)
We define

ae)= [ " oz — en)p(r)dr.

where p(z) is a C§°(2) function satisfy’ o

M pr)=p(=7), [ plriar=1.
p(r) >0 if |711<1
) {p(‘r):O if 7] > 1.

Obviously, af(z) is a C§° function and af(x) — a,(z) uniformly as e — 0, an elementary calculation
shows that.

LEMMA 3.1. af(z) satisfy (1.2), (1.3) and (1.4) everywhere (the constant C may be changed).
PROOF. We only prove (1 4), the others are similar

s = [ " by~ en)p(r)dr

0

v [ s e

0 €

+00 -
sc/_ (1+121P2)p (y z) %dr

€
< C+Clyf2.

The smoothness of a,(z) change equation (1.1) into

—Zn:(af(yz.)),, =u in Q (1.1a)*
B y=0 on T 1.1b)*

The same as before, arbitrary u € L?(f2), (1.1)* has a unique solution ¥ € Y, we also define
O, L*(Q)—Yas

0. (u) =4

Compared with the original operator ©, we have:
THEOREM 3.2. V f, f¢ € L?(Q), let y = O(f), ¥ = O(f¢), assume

f¢—f weaklyin L*(), as €—0.
Then,

Y -y stronglyin H}(Q), as e— 0.

PROOF. For arbitrary ¢ € Wol" (€2), multiply (1.1), (1.1)* by it, and integrating by parts we have

iLaf(yi_)qS,ﬁz =/ﬂf‘¢dz. G
=1
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i/ﬂa,(yz,)%d:c =/nf¢dﬂ=~ 32
=1

Let ¢ = y* — y, subtract (3.1) and (3.2), we get
> /ﬂ (a5 (45.) — @u(ya)) (v, — v )dz = /Q (f - D - v)da. 33)
In view of (1.3), we have
7 [l - wnla < [ (- - vpdn+ /Q (@) - (=) (4, — v2)dz.  (34)

Since f¢ — f in L?(Q), the first term of right of (3.4) goes to zero as € — 0. The second part,
because of the boundness of ||y|ly and ||y¢||y, and af(y) — a.(y) uniformly, we can obtain it goes to
zero also, i e.

/ |y;. - yz.sz —0, as e€—0.
Q

By the equivalence norm of || - || 3 q) and | - | (), and the Sobolev imbedding theorem, we have

v = vllgyey =0 as e—0,
ie
y* -y stronglyin HE(R).

COROLLARY 3.3. V f € L3(Q), let y* = ©.(f), y = ©(f), then, there exists a constant ¢ > 0

satisfying
llv = yll L) < Ce-

In view of ©, we have

THEOREM 3.4. Let ©, be defined as before, then,

1) ©. is Gateaux differentiable in L?(f2).

2) For arbitrary f, g € L?(Q), denote r = VO*(f)g, then r is a unique solution of the following
Dirichlet problem

- E (a':(yz.)):‘ =g in (3.5a)
1=1
r=0 on I[" (3.5b)
PROOF. Vf, g€ L*(Q), A >0, denote y* = O.(f + Ag), y = ©.(f), from Corollary 3.3, we

have
y» >y stronglyin L2(2) as A —0.

Next we prove the theorem through 3 steps.
STEP 1. The sequence {ﬁ;l} is bounded in H} ().

Similarly to (3.1), multiply (1.1)* by ¢, integrating by parts, we get

n ] A B
; /9“1 (v2,)¢zdz = /n (f +Ag)pdz
; /Q af (Y, )bz, dz = /9 fodz.

Let ¢ = y* — y, and subtract them we get
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> /Q (af (v2) = 0i(32)) (v* — ). dz = A /n 9(y* - y)dz. 3.6)
=1
Thinking about (1 3), we derive

77/n |y;‘ - yz.|2d$ < )‘”9”1,2(9)”1/* - y”wm
< Cligll o llv* = y“H,}(Q)'

Because of the equivalence of the norm ||ul| g o) and |u|g;(q), we know
v -y
A

vV -y
)

< Cllgll 2y (3.7
Hy(Q)

} is bounded in  H{(Q).

STEP 2. We denote 2* = %ﬂ, we will get a subsequence and prove the boundness of m}z} in
@), se (1,2)
From (3.7), we get a subsequence z* (denote in the same way) such that 2* — r, weakly in H} (Q).
By the mean-value formula, we have
(af (42.) — @ (¥2)) = md (82, — v=,)

where m? depend on y2 , y., and a;, and furthermore from (1.4) we know m} € L (2)
Reconsider (3.6) we know [, m}|2} |2d:z: is bounded with respect to A > 0
By the inequality of Young we have

mdzd| < [m2|(1+]22]"), v>0

_ 1 - B
[ma 1227 = fm " (jm 122 *) < = Jm2| % 4 5 (21221

@I+

Here,u=(1+v)/2<1,1<(1-pla<;b,a>2, §+%=1.

So [[m}23 || 1.y s € (1, ;;L,_,) is bounded.

STEP 3. z — rin L?(Q), r satisfy the Dirichlet problem (3.5). z — r in L2(Q) is obvious from
2 — rin HY(Q) '

From Step 2 we have

m;\z;"—-h weaklyin L°(2) as A —0.

Next we will prove h = a;(y,,)r;,, a.e.onQ

Since
(a: (y;:\,) - a’f(yz.)) - (a': (y;\,) - a:(y:.)) z;\ — m:\z;
A y;\. = Yz, ' '
and
z} —r, weaklyin L*(Q). (3.8)

From Lemma 2 1 we get y;‘, — y,, in L*(Q). By Egorov Theorem we know* Vo > 0,3Q, C Q, such
that m(Q - Q,) < 0, and y} — y., uniformly in L2(2).
Then,
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a; (y;\.) - a;(yz,)

& —af(ys,) stronglyin L%(Q). 39
yz, = Yz,

(3 8) and (3.9) show
h=a(y;,)rz:, ae Q.

Going to (3 1) we get
Z/ (; Yz, )72, )Tz dz = / grdz.
=1 Y8 Q

Integrating by parts, we obtain

= (@ @a)ra),, =g in 0
1=1

r=0 on T

The uniqueness is obvious from Corollary 3.3

For arbitrary f € L?(Q), we define (VO.(f))": L*() — L?*(?) be the adjoint operator of
VO.(f), from Theorem 3.4 we have

COROLLARY 3.5. For arbitrary p, g € L?(2), denote p = (VO(f))"¢q

Then, p, g satisfy the following linear boundary-value equation

i:(f'zf(yz.)pz.),,= ~q in Q (3.102)
1=1

p=0 on T (3.10b)

PROOF. Only multiply this equation by r = VO, (f)g, integrating by parts and applying Theorem
3 4 we may get it.

3.2 THE APPROXIMATION OF (ocp)

We define

. ¢ 1 2
(ocpa) _min J(y,w) = G*(4) +B(w) + 5 lu ~ Ty

where y is the solution of (1.1)* and 7 is the solution of (ocp), G¢ is the Yosida regularization of G.

Obviously J¢(y,u) is coercive, similarly to (ocp) we know there exists at least one solution of
(ocpa), we denote it [y, u¢], the relation between [y¢, u] and [7, T] is:

THEOREM 3.6. Suppose [y¢,u¢] is a solution of (ocpa), then, there exist p¢, ¢¢ € L?(f2), such

that
n
> (65 (w=)p5), = —¢° in Q (3 11a)
Here =1
=0 on T (3.11b)
¢° =0G(y),p* = VO(u') +u -7 (3 12)
and moreover
¥ =7 u—T in LYQ) (3.13)
P —B ¢¢—g in LXQ) (G 14)

where [, T] is a solution of (ocp), and
= Ve(u), 7€ IG()- (3.15)

PROOF. Because [y, u] is a solution of (ocpa) we have
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(VI u),v) =0, Yve L}(Q)

ie
(0G*(¥%), VO (u)v) + (VO (u®) + v — T,v) = 0.
Define
P =Ve(u)+u -1, ¢ =aG ).
Obviously,

p = — (VO (u))q".
Apply Corollary 3 5, we get p¢, ¢¢ satisfy (3 11)
Next we prove y¢ — 7, u¢ — 1, in L2(Q). Because [y¢, u¢] is a solution of (ocpa), we derive

1©(@) — 6(w)|

Iy u) < J(O.(T), 7)) = G(6.()) + 2(w) < G(T) + 2(T) + %

lim sup J*(y, u*) < G(y) + ®(u).
=0

So J¢(y, u) is bounded, and the coercivity of J¢(y,u) shows that ||u¢| r2q) is bounded  Then there

exists a subsequence of u¢ and uy € L?(Q) such that
uf —uy, weaklyin L%(Q)
and moreover
1" = 3ol = [©c(u) = O(uo)| < [B(u’) — Bc(uo)| + [Oc(uo) — O(uo)l-
From Theorem 3.2 and Corollary 3.3 we know

ly* - y0||L2(Q) —0, as e—0

¥ >y in LX(Q) as €—0.
Since the lower semicontinuity of J¢(y, u) we get

Glaw) + (o) + 5 lluo — T < G@) + 2(@).

But [, T is the solution of (ocp), s0 T = ug, ¥ = ¥o.
And from
€ 1 € — =3 .
G (¥) + @ (u) + 5 llu’ — tljxq) < G@) + 2(@)
we get
u¢ -7 stronglyin L*(Q).

Because ® is continuously Frechet differentiable, we get
p* — P stronglyin L*(Q)
and
p= V().
Obviously,
¢ =7 weaklyin L*(Q).
From Tiba D. [10] we have
G € 0G(9).
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3.3 NECESSARY CONDITION OF (ocp)

Through the discussion before we have

THEOREM 3.7. The Dirichlet problem (1.1) satisfies (1.2), (1 3), (14), and (ocp) defined as
before Suppose [, 7] is the solution of (ocp).

Then, there exist p,§ € L?(Q) satisfy the following Dirichlet problem

n

Y (De(7.)7.), 27 in Q (3.163)
=1
p=0 on T. (3 16b)
Here,
p=Ve(w), 7€dG(®). (317)

PROOF. Multiply (3 11) by p*, we get the boundness of ||p*|| gy, Furthermore, a5 (v, ) |75, |2 is

bounded in L!(Q)
Since a; (y¢, ) is bounded in L7 (€2), the same as the proof of Theorem 3.4, using the Young

inequality we have
a; (¥S,)ps, = b in L°(Q), Vse€ (1, 1%2)
and
v, =¥, in L*Q)
a(ye) — v in L#3(Q).
So

v* € Da, (ﬂz‘)

k' € Da,(7,)P., ae Q.

Let € — 01in (3.11), we know that B, g satisfy (3.16).
The others are obvious
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