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ABSTRACT. In this paper, we obtain the radiuses of univalence, starlikeness and convexity
for convolutions of starlike functions.
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1. INTRODUCTION

Let A denote the class of functions f(z) =z + ) 32,anz" that are analytic in the unit
disc D = {z: |z| < 1}, and let S denote the subclass of A consisting of univalent functions. Let
S* and K be the usual subclasses of S consisting of starlike and convex functions, respectively,
that is, S* = {f : Re(zf'(z)/f(z)) > 0} and K = {f : Re(1 + 2f"(z)/f'(z)) > 0}. The con-
volution or Hadamard product of two power series f(z) = 3_ 3%0anz" and g(z) = 3_ 7Zobn2"
is defined as the following power series (f * ¢)(z) = 3_ 52 ¢anbnz". Hadamard products have
many interesting properties and important applications, see [3] and [4]. It is well known that
if f(z) = 24+ Y 32,an2" € 8%, then z + 3. 2% 2" = [ {dt € K.

Theorem A (see [1]). If f € K and g € K(g € S*), then f*g € K(f*g € S*).

However, it is also known that if f € S* and g € S*, f*g need not be in S*. Furthermore,
Sheil-Small in [2] showed that f * g need not be in S for f € S* and g € S*.

2. MAIN RESULTS

Lemma 1. Let F(z) = z + 3 52 ,n%z". Then F(z) is starlike in |z| < 2 — V3 ~ 0.268.
The result is sharp.

Proof. Noting that

(z+1)z
F(Z) - (1 z)3 (1)
and differentiating logarithmically both sides of (1), we have
zF'(z)  24+4241 142 1 + 1 @

F(z) (+z)(1-2) 1-z 14z 1-2z
It follows from (2) that
' - 2 _
Re(zF(z))>l r 1 1 rP-dr41

F(z) ‘1+r_1-r+l+r_(1+r)(1—r)’
where r = |z|. Thus, if |z] < 2 — v/3, then Re(zF'(z)/F(z)) > 0. So F(z) is starlike for
|z| < 2 - /3. Since F'(—2 + /3) = 0, we know that the result is sharp.
Lemma 2. Let F(z) = z + Y 32,n%2", then F(2) is convex in |z] < 5 — 2v/6 = 0.101.

The result is sharp.
Proof. Using (1), we have

F"(z)  (1+2)(z2+102+1) 1+z 2 2+V3 2-V3
FG) (-9 +4+1) 1=z 11-: s424v5 1925 ©

1+
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Re(1+ zF"(z)) Sl=r, 2 _ 2+v3  2-V3 _(1=r)r?—10r+1)

Fi(z) )T 14r 1471 24V3-r 2-V3-r (1+7)(r2-4r+1)
for r = |z| < 2— /3. Thus, we have Re(1+ zF"(z)/F'(z)) > 0 for |z] < 5— 2v/6. Hence F(z)
is convex for |z| < 5 — 2V/6. It is clear that the result is sharp.

Theorem 1. Let f € S* and g € S*, then f * g is univalent and starlike for |z] < ro =
2 — /3 and the constant ro cannot be replaced by any larger number.

Proof. Let f(z) = z4+ 3 2,602z € S*, 9(2) = 2+ ) ybnz™ € S* and G(2) =
f(2) * g(2). Then

G(Z) = (z + Zn-dn zu) (z + Zn—2_z ) (z + 20—2_"'2

We know that z+ Y, 32,% 2" € K and z + Y, 2,%2" € K. By Theorem A, we get

CEDI-FEONEEDD ..—2"‘2") € K.
Now, let H(z) =(z+ 3 32,%2")* (2 + . 2,88 2"), then H(z) = 2+ 3 32, 2aba 2", So that
G(z) = (z+ ) 22on*z")* H(z) = F(2) x H(2),

where F(z) = z+Y_ 32,n%z". By Lemma 1, we know that F(z) is starlike for |z| < ry = 2—v/3.
Hence F(roz)/ro € S*. Since H(z) € K, by Theorem A we have

B(z) = (F(roz)[ro)* H(z) =2+ Y _ 22,anbary 2" € S*.

Therefore, G(z) = r9B(z/r0) is starlike for |z| < 1o = 2 — /3.

Finally, we show that ro cannot be replaced by any larger number. Taking T € S*,
for G(z) = mEp*aSr =2+ 3 %2 ,n%2", we have G'(—rg) = 0. Thus, for any r > ro,
G(z) is not univalent for |z| < r. This completes the proof of our theorem.

Theorem 2. Let f € S* and g € S*, then f * g is convex for |z] < r; =5 — 2V/6 and
the constant r; cannot be replaced by any larger number. )

Proof. By the method used in the proof of Theorem 1 and by using Lemma 2, we get
Theorem 2 immediately and the sharpness of the result in Theorem 2 is obtained from (3).

Remark. The constant ry in Theorem 1 is usually refered to as the radius of univalence

and starlikeness, while the constant r; in Theorem 2 is called the radius of convexity.
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