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ABSTRACT. In this paper, we obtain the radiuses of univalence, starlikeness and convexity
for convolutions of starlike functions.
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1. INTRODUCTION

Let .A denote the class of functions f(z) z + =2a,z" that are analytic in the unit

disc D z Izl < 1 }, and let S denote the subclass of .A consisting of univalent functions. Let
S" and K be the usual subclasses of S consisting of starlike and convex functions, respectively,

that is, S" {f: Re(zf(z)/f(z)) > 0} and K {/: Re(1 + zf"(z)/f’(z)) > 0}. The con-

volution or Hadamard product of two power series f(z) ffioa,,z" and g(z) ,ffiobnz"
is defined as the following power series (f g)(z) =oa,b,z". Hadamard products have

many interesting properties and important applications, see [3] and [4]. It is well known that

iff(z)=z+ ’=ES" thenz+ =_=_. =nf2aaz n=0,z fo dt E K.

Theorem A (see [1]). If f E K and g E K(g E S*), then f g E K(f g E S’).
However, it is also known that if f E S* and g E S*, f,g need not be in S*. Furthermore,

Shell-Small in [2] showed that f g need not be in S for f E S* ad g E S.
MAIN RESULTS

Lemma 1. Let F(z) z + E n----2t2zn" Then F(z) is starlike in I1 < 2- J 0.2as.

The result is sharp.

Proof. Noting that

F(z) (z 4- 1)z
(1_ z)s (1)

and differentiating logarithmically both sides of (1), we have

1zF’(z) z2+4z+1 l+z 1 + (2)F(z) (1 + z)(1 z) 1 z 1 + z 1 z

It follows from (2) that

(zF’(z) 1 r 1 1 r2 4r + Ie F() )
> +l/r l-r l+r (1+ r)(1 r)

where r Izl. Thus, if Izl < 2- /, then Re(zF’(z)/F(z)) > 0. So F(z) is starlike for

Izl < 2- /. Since F’(-2 + ,Cry) 0, we know that the result is sharp.

Lemma 2. Let F(z) z + _, ffi2n2z", then F(z) is convex in Iz < 5- 2V 0.101.
The result is sharp.

Proof. Using (1), we have

zF"(z) (1 + z)(z + lOz + 1) 1 + z 2 2 + v 2-1+
F’(z) (1 z)(z + 4z + 1) 1 z 1 z z + 2 + z + 2- r, (3)



404 . LING AND S. DING

zF"(z) 1--r 2 2-F 2--V (1--r)(r:--lOr-I-1)
:+---] >+-:+ :+ 2+- =-- (:+)(’-+:)

for r z < 2-. Thus, we have Re(1 + zf"(z)/F’(z)) > 0 for z] < 5- 2. Hence F(z)
is convex for z < 5- 2. It is cle that the reset is shp.

Theorem 1. Let f G S" d g S’, then f g is unient d stlike for ]z < r0

2 d the constt r0 cnot be replaced by y lger number.

Proof. t f(z) z + =az e S’, g(z) z + =bz e S" d G(z)
f(z) g(z). Then

b,
n=2 Z , *

Weknowthatz+ znKdz+n= zn K. By Threm A, we getn=2

z + an zn z

Now, +t () =( +E +.:’),(.++.:+-), ta+ H(:) + E

() F(:), (),G(:)=(:+ .:),

where F(z) z+E=nz". By mma 1, we know that E(z)is stlike for [z[ < r0 2-.
Hence F(roz)/ro S*. Since H(z) K, by Threm A we have

Th+:+fo:+, e(:) oB(:/0) i: :tnk+ fo [ < o 2 .
FinMly, we show that r0 cnot be repled by y lger number. Ting

for G(z) (_), z + ",,=n z wehaveG(-r0) 0. Thus, foryr > r0,

G(z) is not unient for z] < r. This complet the prf of our threm.

Theorem 2. Let f S* dg*, then f . g is convex for [z[ < r =5-2d
the constt r cnot be replaced by y lger number.

ProoL By the method ud in the prf of Threm 1 d by using ma 2, we get

Threm 2 immediately d the shpns of the rt in Threm 2 is obtned kom (3).
Remark. The constt r0 in Threm 1 is usuMly refered to the radius of unice

d stlikeness, wle the cott r in Threm 2 is ced the radius of convexity.
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