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ABSTRACT. This paper is concerned with the global solvability of a class of fourth-order nonlinear

boundary value problems that govern the deformation of an elastic beam which is acted upon by axial

compression, lateral forces and is in contact with a semi-infinite medium acting as a foundation For
certain ranges of the acting axial compression force, the solvability of the equations follows from the

coerciVity of their linear parts. Beyond these ranges this coercivity is lost It is shown here that the

coercivity which ensures the global solvability can be generated by the nonlinear parts ofthe equations for

a certain type offoundation.
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1. INTRODUCTION
In this paper we are concerned with the global solvability of the fourth-order nonlinear boundary

value problems which govern the equilibrium states of a beam-column. The source of the nonlinearity

comes from a nonlinear lateral constraint (foundation). The equilibrium equation is formulated as a

fourth-order nonlinear differential equation. Different boundary conditions, corresponding to various

ways in which the ends of the beam may be supported, will be considered. The progf ofthe existence of

solution is based upon a corollary ofLeray-Schauder Fixed Point Theorem, which we will state in Section

2 ofthis paper, together with an idea which originated in [2].
Existence of solutions of the boundary value problems considered in this paper has been the subject

of several recent papers. The reader is referred to [1], [3] and [4] and the references therein for an

extensive account on the subject. In all these works the necessary coercivity condition, which ensures the

existence of solutions, was derived from the linear parts of the equations. Since this coercivity is lost

beyond certain critical value of the compressive force, these papers failed to obtain any existence theorem

of global nature. In this paper, on the other hand, the coercivity is generated by the nonlinear part of the

equations and the existence results we obtain are global in nature.

Following the differential equation which governs the lateral displacement y(x) is

Y’’ + ,kS/" + ky -+- C(x, y, y’, y") f(x), (1.1)

where A and k are real parameters representing the axial compression and the modulus ofthe foundation,

respectively, ky + G(x,y,y’,y") represents the nonlinear foundation, and f(x) represents the acting

lateral force. We consider (1.1) along with one ofthe following six sets ofboundary conditions.
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u(o) u"(o) u() u"() o;
u(o) u"(o) u() u’() o;
y(o) y"(o) y’(1) y’"(1) o;
y(O) y’(O) y(1) y’(1) O;
(o) ’(o) "() ’"() o;
(o) ’(o) ’(1) ’"() o,

(1 2)
(13)
(1 4)
(1 5)
(1 6)
(1 7)

which represent the following cases: both ends are simply-supported, one end is simply-supported and

the other is fixed; one end is simply-supported and the other is sliding clamped; both ends are fixed; one

end is fixed and the other is free and one end is fixed and the other is sliding clamped.
The rest of this paper is organized in three sections. In Section 2 we state the conditions and the

Lemmas, on which the proof of the main result of this paper will be based, and we obtain some

preliminary results In Section 3 we state and prove the main result of the paper. In Section 4 some

results concerning the uniqueness ofthe solutions are obtained.

2. ASSUMPTIONS AND PRELIMINARY RESULTS
Throughout the rest ofthis paper we will use the following notations

Wk (y: [0,1] R: yO) e AC[O, 1], j O,l,...,k 1 and y(k) e L2(O, 1)},

L2’ YEWk’
3=0

D(L,) {y W4: y satisfies the ith boundary conditions (1.i), 2,3 ,7,
L, D(L,) L2(0,1) is defined by L,(y) y’"’.

We make the following assumptions.

H(). I e L(0,
H(2). G(x,y,y,y") g(y) / h(x,y, ff,y"), where both g and h are continuous, and the map

H [0,1] W --, L2(0,1) defined by H(x,y) h(x,y,y,y") is continuous Furthermore, we

assume:

a. there exists p > 1 such that g(rx) rPg(x), for r, x E R with r > 0;

b. for any y W2, fg(y)ydx >_ 0; and f0g(y)ydx 0 iffy 0;. ]h(,,’,")4 >_ 0, e W.
The proof of our main result of the next section consists of verifying the conditions of a corollary of

Leray-Schauder Fixed Point Theorem which we state here as the foil?wing lemma.
LEMMA 2.1. Let B be a Banach xpace and K B -- B be a compact operator. Suppose that

there exists a priori bourn1 m > 0 such that every solutmn of y tKy O, for [0,1], satisfies
[[YI[ <- m. Then K has afixedpoint y with [lY]] < m.

We collect some preliminary results which we will use in Section 3 in the following lemma.

LEMMA 2.2. For each L3, j 2, 3, 7, thefollowing are true:

A. La, as an operator on L (0,1), is densely defined and self-adjoint;
2. 7r2

B. IIilz, -< CXllff’ll, for D(L,), U C --7Y; C3- -; C4- , C --7Y; C- "and CT "c. /or any u D(L,), L,U 0 ffU O:
D. there exist unique 3" L2(O, 1) W such that L3(b(h)) h for any h L2(0,1), and

3 :L2(0,1) -- W is bounded;

E. K’-- L2(0,1) W defined by -3 i. q23, where D(L3) -, W denotes the idenuty map,

is compact.

The proofs of (A)-(E) are direct and are therefore omitted. For some of the estimates in (B), one

needs to use Wirtinger’s Inequalities [5].
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3. GLOBAL EXISTENCE OF SOLUTIONS
In this section we consider the global solvability of the six boundary value problems consisting of the

differential equation (1.1) and one of the six sets of boundary conditions (1.2)-(1 7) in the following
theorem.

THEOREM 3.1. Under the assumptzon H(1) and H(2), the boundary value problem conszstmg of
(1.1) and (l.j), j 2, 3, 7, has at least one solutionfor each k >_ 0 and each A >_ O.

PROOF. The boundary value problem (1.1), (1 .j), 2 _< < 7, can be written as

y-- Ky (3 l)

where

K.y K--:[Ay" + ky + a(x, y, y’, y") f(x)],

K W W is compact, and is as in Lemma 2.2 We prove the existence of a solution of (3 l)
by verifying the conditions ofLemma 2.1.

Assume that the solutions of y- tKy are not uniformly bounded with respect to [0,1]
Then there exist sequence {.} C (0, 1) and {y, } C W such that

y, ,K.yr,, n >_ 1 (3 2)

and Ilyll2 oo as n oo.

From (3.2), it follows that each y, satisfies

" + + + a(,,’,) f(/,

with Yn E D(Lj), which in turn implies (upon multiplying both sides ofthe e.luation by yn, integrating by

parts and using the boundary conditions)

II"ll " az ")dz , laz.

Set z, then {z,} C W is a bounded sequence, and since a bounded set of W is weakly-II’
relatively compact, it follows that there exists a subscquence of {z}, which we call {z}, that converges
weakly in W. By the fact that the imbedding i" D(L) C W C[0,1] is compact, it follows that

there exists a subsequence of { z,}, which we call {z, } again, that converges strongly in C [0,1] to some

0 c [0, ]
From (3.3) and assumption H(2) we obtain

A" " (3 4)< t,,C IlY,llL, +

Using (3.4) and homogeneity ofg we obtain (since p > 1)

,Xll’ IIz,
0 < ()zd <

Cll.llT + 11.llT
0 ( )

as n oo Since g is continuous, it follows from (3.5) that

g(zo)zodx O,
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which, in view ofassumption H(2)(b), implies that z0 0, and z -- 0 in C [0, 1].
On the other hand, from (3.3) we have

IIfIIL21IYIIL2

which implies that (by the fact z --, 0 in C [0,1])

0. (3 6)

However, (from part (B) ofLemma 2.2 and [lY’IIL_ [lYI[L2 for y E D(L)) we have

Ilyllg Ilyll + Ily’ll < (2 + c-2) IIIIL,"

and this contradicts (3.6). This completes the proof

4. UNIQUENESS
Assuming that G(z, y, y’, y") satisfies the condition

H(3). fd[G(x,y,y’,y")- G(x,z,z’,z")](y- z)dx > 0, for all y, z e W2,
we obtain the following result on the uniqueness ofthe solution.

TitEOREM 4.1. Assume H(3), the solution of the boundary value problem (1.1) and (l.j),
k V/o2 < j < 7, ts unique, provided that k < C2 and A < C+ or k > C and A < 2

PROOF, Let and z be two solutions of the boundary value problem. Set w z and assume

that w : 0 w satisfies the equation

w" + aw" + w + G(z, u, u’, u") G(z, z, z’, z") 0 (4 )

and the boundary condition (1.j). Let A Ilw"llL
w and integrating by parts, using the boundary conditions, Htlder’s inequality and H(3), we obtain

A2-AAB+kB<0
If k < C and A < Ca+, we have

A AAB + kB

> A C + AB + kB

A(A CaB

(A- C,B)(A-

and B [IWllL2. Upon multiplying equation (4.1) by

>0,

since w D(L), A > CaB, and k < C. This contradicts the inequality (4.2)
If k > C and A < 2V/, we have

(4 2)
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A AAB + kB

>0,

since A < 2X/ implies k ()2 > 0 This again contradicts (4.2).
Thus w 0 This proves the theorem

REMARKS. 1. From the proof of Theorem 3 1, we can see that the assumptions k _> 0 and A _> 0

are not needed. It is due to the physics nature ofthe problem, we assume k > 0 and A _> 0.

2. When the foundation ofbeam is not uniform, k could depend on x, say, k k(x). Assume
is continuous. Theorem 3 is still true. Let km min(k(x), z E [0, 1]}, Theorem 4.1 is also true, with

k replaced by k,.

3. With a trivial modification of the proof, we can replace assumption H(2) () by the following
condition

H(2) c’ fG(z, y, y’, y")ydx >_ 0 and

f (,,,’)/d
0 as IlyllIIII

4. It is quite clear that most of the functions G which are of interest physically satisfy our

assumption H(2) (a), (b) and (c) or (c’), and H(3). For example, G(x,y,y’,y")= y3 satisfies all

these assumptions. More generally, G(x,y,y,y") c3y + csy + %y’: + + c2,+y
’/ with

G(x, y, y, !/’)y _> 0 and c_,,+ > 0, (c are constants, 3, 5, 2n + 1) satisfies our assumptions H(2)
(a), (b) and (d), if we take g(y) c,,+y+. If we further assume c _> 0 for 3, 5, 2n 1, G
also satisfies H(3).
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