ON X-VALUED SEQUENCE SPACES

S. PEHLIVAN

Department of Mathematics S.D. University, Isparta, Turkey.

(Received January 11, 1995 and in revised form October 7, 1995)

ABSTRACT. Certain spaces of X-valued sequences are introduced and some of their properties are investigated. Köthe- Toeplitz duals of these spaces are examined.

KEY WORDS AND PHRASES: Seminomed vector space, linear operators, X-valued sequence spaces, dual spaces, infinite matrices.

1991 AMS SUBJECT CLASSIFICATION CODES: 40A05, 46A45.

1. INTRODUCTION AND BACKGROUND.

Let c_0, c, l_∞ and s respectively denote the spaces of null sequences, convergent sequences, bounded sequences and all sequences. Let X be a complex linear space with zero element θ and $X = (X, \|.\|)$ be a seminormed space. We may define $c_0(X)$ the null X-valued sequences, c(X) the convergent X-valued sequences, $l_\infty(X)$ the bounded X-valued sequences and s(X) the vector space of all X-valued sequences. If we take X = C the set of complex numbers these spaces reduce to the already familiar spaces c_0, c, l_∞ and s respectively. These spaces of X-valued sequences have been studied by Maddox[2,3], Rath[5], Pehlivan[4] and others. We take X and Y to be complete seminormed spaces and (A_n) to be a sequence of linear operators from X into Y. We denote by B(X,Y) the space of bounded linear operators on X into Y. Throughout the paper S denotes the unit ball in X, that is $S = \{x \in X : ||x|| \le 1\}$ is the closed unit sphere in X.

The α and β -duals of Köthe have been generalized by Robinson [6] who replaced scalar sequences by sequences of linear operators. Accordingly, we define α and β duals of a subspace E of s(X) by

$$E^{\alpha} = \{(A_n) : \sum_n ||A_n x_n|| \text{ converges for all } x = (x_n) \in E\},$$

$$E^{\beta} = \{(A_n) : \sum_n A_n x_n \text{ converges in Y, for all } x = (x_n) \in E\}.$$

Clearly $E^{\alpha} \subset E^{\beta}$ if Y is complete and the inclusion may be strict. X* will denote the continuous dual of X, this is B(X,C).

2. MAIN RESULTS

Before proving the main results we give some definitions. We consider a set D of sequences $d = (d_n)$ of non-negative real numbers with the following properties:

- (i) For each positive integer n there exists $d \in D$ with $d_n > 0$,
- (ii) D is directed in the sense that for $d,h\in D$ there exists $u\in D$ such that $u_n\geq d_n,h_n$ for all n. For $d=(d_n)\in D$ and X a seminormed vector space, we define the following sequence spaces:

$$\begin{split} L_{\infty}(X,d) &= \{x = (x_n) : D_d(x) = \sup_n \|x_n\| d_n < \infty, \quad x_n \in X \text{ for all } n, \quad d \in D\}, \\ C_0(X,d) &= \{x = (x_n) : \lim_n \|x_n\| d_n = 0, \quad x_n \in X \text{ for all } n, \quad d \in D\}. \end{split}$$

PROPOSITION 2.1 $C_0(X,d)$ is a closed subspace of $L_{\infty}(X,d)$.

PROOF. Let $x \in C_0(X, d)$ and $d = (d_n) \in D$. Given $\epsilon > 0$ there exists $x' = (x'_n) \in C_0(X, d)$ such that $D_d(x - x') < \frac{\epsilon}{2}$. If N is such that $|d_n||x'_n|| < \frac{\epsilon}{2}$ for $n \ge N$, then for $n \ge N$ we have

$$|d_n||x_n|| = |d_n||x_n - x_n'| + |x_n'|| \le |d_n(||x_n - x_n'|| + ||x_n'||) \le \epsilon$$

which proves that $x \in C_0(X, d)$.

PROPOSITION 2.2 If X is complete then $C_0(X,d)$ and $L_{\infty}(X,d)$ are FK spaces.

PROOF. Let X be a complete seminormed space. We show that $L_{\infty}(X,d)$ is complete. Let $x=(x_n^i)$ be a Cauchy sequence in $L_{\infty}(X,d)$. Then $\|x_n^i-x_n^j\|\leq d_n^{-1}D_d(x^i-x^j)$ therefore (x_n^i) is Cauchy in X. Let $x_n=\lim_i x_n^i$. Now we will show that $x=(x_n)\in L_{\infty}(X,d)$ and $x^i\to x$. In fact, let $h\in D$ and $\epsilon>0$. Choose N such that $D_h(x^i-x^j)<\epsilon$ if $i,j\geq N$. It follows from this that, we have $\|x_n^i-x_n\|h_n<\epsilon$ for all n and $n\geq N$. Let $H=D_h(x_N)$. If $\|x_n\|\leq \|x_n^N\|$ then $\|x_n\|h_n\leq H$. If $\|x_n\|>\|x_n^N\|$ then

$$||x_n|| = ||x_n - x_n^N + x_n^N||h_n \le ||x_n - x_n^N||h_n + ||x_n^N||h_n < \epsilon + H$$

which shows that $L_{\infty}(X,d)$ is complete. The completeness of $C_0(X,d)$ follows from the completeness of $L_{\infty}(X,d)$ and the Proposition 2.1.

THEOREM 2.3 $C_0(X,d) = L_{\infty}(X,d)$ if and only if for each $d = (d_n) \in D$ there exists $h = (h_n) \in D$ and a sequence (u_n) of non-negative real numbers such that $u_n \to 0$ and $d_n \le u_n h_n$ for all n.

PROOF. Let $x \in L_{\infty}(X,d)$. Given $d=(d_n) \in D$ there exist $h=(h_n) \in D$ and a sequence (u_n) of non-negative real numbers such that $u_n \to 0$ and $d_n \le u_n h_n$ for all n. Now, for $x \in L_{\infty}(X,d)$, we have

$$|d_n||x_n|| \le u_n h_n||x_n|| \le u_n D_h(x).$$

This concludes the proof of the theorem with the Proposition 2.1.

LEMMA 2.4 In order for $C_0(X,d) \subset C_0(X,h)$ it is necessary and sufficient that $\liminf_n \frac{d_n}{h_n} > 0$. **PROOF.** Suppose that $\liminf_n \frac{d_n}{h_n} = \alpha > 0$. Then since $d_n > \alpha h_n$ the inclusion $C_0(X,d) \subset C_0(X,h)$ is obvious. Now we suppose $\liminf_n \frac{d_n}{h_n} = 0$. Then there exists a subsequence (n(p)) of (n) such that $h_{n(p)} > pd_{n(p)}$ for $p = 1, 2, \ldots$ Now define a sequence $x = (x_n)$ by putting $x_{n(p)} = vd_{n(p)}^{-1}p^{-1}$ for $p = 1, 2, \ldots$ and $x_n = \theta$ otherwise where $v \in X$ and ||v|| = 1. Then we have $x = (x_n) \in C_0(X,d)$ but $x \notin C_0(X,h)$ since $||h_{n(p)}x_{n(p)}|| = ||h_{n(p)}d_{n(p)}^{-1}p^{-1}v|| > 1$. The concludes the proof of the theorem.

LEMMA 2.5 In order for $C_0(X,h) \subset C_0(X,d)$ it is necessary and sufficient that $\limsup_n \frac{d_n}{h_n} < \infty$. **PROOF.** Suppose that $\limsup_n \frac{d_n}{h_n} < \infty$. Then there is K > 0 such that $d_n < Kh_n$ for all large values of n. The inclusion $C_0(X,h) \subset C_0(X,d)$ is obvious. Now we suppose $\limsup_n \frac{d_n}{h_n} = \infty$. Then there exists a subsequence (n(p)) of (n) such that $d_{n(p)} > ph_{n(p)}$ for $p = 1, 2, \ldots$. We define a sequence $x = (x_n)$ by putting $x_{n(p)} = vh_{n(p)}^{-1}p^{-1}$ for $p = 1, 2, 3, \ldots$ and $x_n = \theta$ otherwise where $v \in X$ and $\|v\| = 1$. Then we have $x \in C_0(X,h)$ but $x \notin C_0(X,d)$ since $\|d_{n(p)}x_{n(p)}\| = \|d_{n(p)}h_{n(p)}^{-1}p^{-1}v\| > 1$. The concludes the proof of the lemma.

Combining Lemma 2.4. and 2.5. we have following theorem.

THEOREM 2.6 $C_0(X,h) = C_0(X,d)$ if and only if $0 < \liminf_n \frac{d_n}{h_n} \le \limsup_n \frac{d_n}{h_n} < \infty$.

THEOREM 2.7 Let $\liminf_n \frac{d_n}{h_n} > 0$. The identity mapping of $C_0(X,d)$ into $C_0(X,h)$ is continuous.

PROOF. Let $\liminf_n \frac{d_n}{h_n} > 0$. Then $C_0(X, d) \subset C_0(X, h)$. There exists $\alpha > 0$ such that $d_n > \alpha h_n$ for all n. Thus for $x \in C_0(X, d)$ we have $\alpha D_h(x) \leq D_d(x)$ Hence the identity mapping is continuous.

3. GENERALIZED KÖTHE-TOEPLITZ DUALS

Now we determine Köthe-Toeplitz duals in the operator case for the sequence space $C_0(X,d)$. For the more interesting sequence spaces generalized Köthe-Toeplitz duals were determined by Maddox [3]. In the following theorems we suppose in general that (A_n) is a sequence of linear operators A_n mapping

a complete seminormed space X into a complete seminormed space Y. Let $(A_n) = (A_1, A_2, \ldots)$ be a sequence in B(X, Y). Then the group norm of (A_n) is defined by

$$\|(\Lambda_n)\| = \sup \|\sum_{n=1}^k \Lambda_n x_n\|$$

where the supremum is taken over all $k \in N$ and all $x_n \in S$. This argument was introduced by Robinson[6]. This concept was termed as group norm by Lorentz and Macphail [1]. We start with the proposition given by Maddox [3].

PROPOSITION [M][3] If (Λ_n) is a sequence in B(X,Y) and we write $R_k = (\Lambda_k, \Lambda_{k+1}, \ldots)$ then $\|\sum_{n=k}^{k+p} A_n x_n\| \le \|R_k\|$, $\max\{\|x_n\| : k \le n \le k+p\}$, for any x_n and all $k \in N$, and all p > 0 integers.

THEOREM 3.1 Let $(d_n) \in D$. Then $(A_n) \in C_0^{\alpha}(X,d)$ if and only if there exists an integer k such that

- (i) $A_n \in B(X,Y)$ for each $n \ge k$ and
- (ii) $\sum_{n>k} ||A_n|| d_n^{-1} < \infty$.

PROOF. For the sufficiency, let $x=(x_n)\in C_0(X,d)$ and (i), (ii) hold. Then there exists an integer n_1 such that $||x_n||d_n<2\epsilon$ for all $n\geq n_1$ and there exists an integer $n_2\geq k$ such that

$$\sum_{n\geq n_2} \|A_n\| d_n^{-1} < \frac{\epsilon}{2}$$

for a given $\epsilon > 0$. Put $H = \max(n_1, n_2)$ so that

$$\sum_{n \geq H} \|A_n x_n\| = \sum_{n \geq H} \|A_n\| \|x_n\| \leq \sum_{n \geq H} \|A_n\| 2\epsilon d_n^{-1} < \epsilon,$$

and therefore $(\Lambda_n) \in C_0^{\alpha}(X,d)$.

Conversely, suppose that $(A_n) \in C_0^{\sigma}(X,d)$. If (i) does not hold then there exists a strictly increasing sequence (n_i) of natural numbers such that A_{n_i} is not bounded for each i and a sequence (v_n) in S such that $\|A_{n_i}v_{n_i}\| > d_{n_i}i$, for each $i \geq 1$. Define the sequence $x = (x_n)$ by putting $x_{n_i} = v_{n_i}d_{n_i}^{-1}i^{-1}$ for each $i \geq 1$ and $x = \theta$ otherwise. We have $x \in C_0(X,d)$ but $\|A_{n_i}x_{n_i}\| > 1$ for each $i \geq 1$ and so $\sum_n \|A_nx_n\|$ diverges, which gives a contradiction.

Now we suppose $(A_n) \in C_0^{\alpha}(X,d)$ and $\sum_{n \geq k} \|A_n\| d_n^{-1} = \infty$. We choose $k = n_1 < n_2 < n_3 \ldots$ such that $\sum_{n=n_1}^{n_{i+1}-1} \|A_n\| d_n^{-1} > i$ for $i \in N$. Moreover for each $n \geq k$ there exists a sequence (v_n) in S such that $2\|A_nv_n\| \geq \|A_n\|$. Define the sequence $x = (x_n)$ by putting $x_n = v_n d_n^{-1} i^{-1}$ for $n_i \leq n \leq n_{i+1} - 1$ for $i = 1, 2, \ldots$ and $x_n = \theta$ otherwise so that $x \in C_0(X,d)$ since

$$||x_n||d_n = \frac{||v_n||}{i} \to 0 \text{ as } n \to \infty.$$

Then we have

$$\sum_{n} \|A_{n}x_{n}\| = \sum_{i=1}^{\infty} \sum_{n=n_{i}}^{n_{i+1}-1} \|A_{n}v_{n}d_{n}^{-1}i^{-1}\|$$

$$\geq \frac{1}{2} \sum_{i=1}^{\infty} \sum_{n=n_{i}}^{n_{i+1}-1} \|A_{n}\|d_{n}^{-1}i^{-1}\|$$

$$\geq \frac{1}{2} \sum_{i=1}^{\infty} \|A_{n}\|d_{n}^{-1}i^{-1}\|$$

which contradicts our assumption that $\sum_n ||A_n x_n|| < \infty$. This completes the proof.

It is clear that the conditions of the theorem 3.1. are also necessary and sufficient for $(\Lambda_n) \in l_{\infty}^{\alpha}(X,d)$ then we have $C_0^{\alpha}(X,d) = l_{\infty}^{\alpha}(X,d)$.

50 S. PEHLIVAN

COROLLARY 3.2 ([5].Theorem 1.) Let $p_n = O(1)$. Then $(A_n) \in C_0^o(X, p)$ if and only if there exists an integer k such that condition (i) of Theorem 3.1, holds and

(iii) there exists an integer N > 1 such that $\sum_{n > k} ||A_n|| N^{-\frac{1}{p_n}} < \infty$.

COROLLARY 3.3([3], Proposition 3.4.) $(A_n) \in C_0^{\alpha}(X)$ if and only if there exists an integer k such that condition (i) of Theorem 3.1. holds and

(iv) $\sum_{n=k}^{\infty} ||A_n|| < \infty$.

THEOREM 3.4 Let $(d_n) \in D$. Then $(A_n) \in C_0^{\beta}(X,d)$ if and only if there exists an integer k such that condition (i) of Theorem 3.1. holds and

 $(\mathbf{v}) \quad ||R_k(d)|| = ||(d_k^{-1}A_k, d_{k+1}^{-1}A_{k+1}, \ldots)|| < \infty.$

PROOF. For the sufficiency, let $(x_n) \in C_0(X, d)$ and choose $m_1 > m \ge k$. Then, by the proposition [M] we have for $m \ge k$

$$\|\sum_{n=m}^{m_1} A_n x_n\| = \|\sum_{n=m}^{m_1} d_n^{-1} A_n d_n x_n\| \le \max\{d_n \|x_n\| : m \le n \le m_1\} \|R_k(d)\|.$$

That is $\sum_n A_n x_n$ is convergent in Y whence $(A_n) \in C_0^\beta(X,d)$. Conversely (i) can be proved in the way of Theorem 3.1. For the necessity of (v), suppose that $\|R_k(d)\| = \infty$ for all $n \geq k$ then there exists a strictly increasing sequence (n_i) of natural numbers such that $v_{n_i} \in S$ and $\|\sum_{n=n_i}^{n_{i+1}-1} d_n^{-1} A_n v_n\| > i$ for $i \in N$. Define the sequence $x = (x_n)$ by putting $x_n = v_n d_n^{-1} i^{-1}$ for $n_i \leq n \leq n_{i+1} - 1$, $i = 1, 2, \ldots$ and $x_n = \theta$ otherwise. We have $x \in C_0(X, d)$ but for each $i \geq 1$

$$\|\sum_{n=n}^{n_{i+1}-1} A_n x_n\| = \|\sum_{n=n}^{n_{i+1}-1} A_n v_n d_n^{-1} i^{-1}\| > 1$$

Therefore $\sum_n A_n x_n$ diverges, which gives a contradiction. This proves the theorem.

COROLLARY 3.5 ([3], Proposition 3.1.) $d_n = 1$ for all n, $(A_n) \in C_0^{\beta}(X)$ if and only if condition (i) of Theorem 3.1. holds and $||R_k|| < \infty$.

THEOREM 3.6 Y = C and $f_n \in X^*$ for $n \ge 1$ then $C_0^{\alpha}(X, d) = C_0^{\beta}(X, d) = M_0(X^*, d)$ where $M_0(X^*, d) = \{F = (f_n) : f_n \in X^*, \sum_n ||f_n|| d_n^{-1} < \infty \}.$

PROOF. We show that $C_0^\beta(X,d) \subset M_0(X^*,d)$, which is sufficient to prove of the theorem. We suppose $F \not\in M_0(X^*,d)$ then there exists a strictly increasing sequence (n_t) and a sequence (v_n) in S such that $||f_n|| < 2||f_n(v_n)||$ and $\sum_{n=n_1}^{n_{1}+1-1} ||f_n||d_n^{-1}| > i$ for $i \in N$. Define the sequence $x = (x_n)$ by putting $x_n = sgn(f_n(v_n))d_n^{-1}i^{-1}v_n$ for $n_t \leq n \leq n_{t+1}-1$, $i=1,2,\ldots$ and $x_n = \theta$ otherwise. Then $x \in C_0(X,d)$ but $\sum_n f_n(x_n) = \sum_{n=1}^{\infty} \sum_{n=n_1}^{n_{t+1}-1} f_n(x_n)$ diverges and so $F \notin C_0^\beta(X,d)$. Thus $C_0^\beta(X,d) \subset M_0(X^*,d)$ and the proof is complete.

REFERENCES

- [1] G.G. Lorentz and M.S. Macphail, "Unbounded operators and a theorem of A. Robinson," *Trans. Royal Soc. of Canada* XLVI(1952), 33-37.
- [2] I.J. Maddox, "Matrix maps of bounded sequences in a Banach space," Proc. Amer. Math. Soc. 63(1977), 82-86.
- [3] I.J. Maddox, "Infinite Matrices of Operators," Lecture Notes in Mathematics Vol. 786, Springer-Verlag, Berlin, 1980.
- [4] S. Pehlivan, "Certain classes of matrix transformations of X-valued sequences spaces," TU. Journal of Math. 11(1987), 119-124.
- [5] N. Rath, "Operator duals of some sequence space," Indian J. Pure Appl. Math. 20(1989), 953-963.
- [6] A. Robinson, "On functional transformations and summability," Proc. London Math. Soc. 52(1950), 132-160.