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ABSTRACT. In this paper multistep methods for systems of coupled second order Volterra integro-

differential equations are proposed. Stability and convergence properties are studied and an error bound

for the discretization error is given.
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1. INTRODUCTION
Systems of coupled second order integral equations and integro-differential equations have been used

to model problems from a number of application areas including heat transfer solids and gases,

superfluidity theory, mechanical systems, optics, physics of atoms, scattering theory, etc. A few

references are included [4], [5], [7], [10], [16], [19]. Such systems also appear using semidiscretization

techniques for solving scalar partial integro-differential equations [6], 18], [21 Second order integro-

differential systems can be transformed into an extended system of first order integro-differential

equations, 14, p. 188]. Collocation methods for second order Volterra integro-differ.ential equations are

proposed in ]. However, there are still advantages in studying methods for particular classes of second

order systems of integro-differential equations for several reasons:

(a) the transformation of a second order system into an extended first order system increases the

computational cost,

(b) the physical meaning ofthe original magnitudes is lost with the transformation ofthe system,

(c) by requiting less generality we may be able to produce more efficient algorithms,

(d) useful concepts may be identified, leading to a better understanding of what we require of a

numerical method for problems in our chosen class

In this paper we consider multistep methods for matrix coefficients for systems of coupled second

order Volterra integro-differential equations ofthe form

r"(z) F(z,r(z),Z(z)), 0 < :r < a, (1 1)

z(=:) K(z, t, r(t))at r(o) o, r’(o) (1 2)



128 L JODAR, L MORERAANDG RUBIO

which is to be solved for Y(z) in 0 _< z _< a, where F- [0, a]zlRrz]R ]Rr, K [0, a]x[0, a]x]R r
are uniformly continuous in all variables and satisfy the following Lipschitz conditions

[[F(z,l,z) F(:r,,l, z2)[[ <_ L2[[z z2[I (1 4)

Under these hypotheses the problem (1 1)-(1.2) has a unique solution in [0, a], 14, chapter 11

The aim of this paper is to provide error bounds for coupled integro-differential systems using a

matrix approach that avoids the increase of the computational cost and preserves the meaning of the

original magnitudes ofthe problem.
This paper is organized as follows. In section 2 we introduce the concept ofa linear multistep matrix

method for the numerical solution of problem (1.1)-(1.2). Consistency and the concept of zero-stability

intrinsically related to the method, and not expressed in terms of its behavior with respect to any test

equation are also defined in section 2. In section 3 we provide error bounds for the introduced multistep
matrix methods and it is proven that consistent and zero-stable methods are convergent.

If A is a matrix with complex entries, element of Crx, we denote by IIAII its 2-norm, defined in [8,
p. i5]. The set of all eigenvalues of A is denoted by a(A) and the spectral radius of A, denoted by p(A)
is the maximum of the set {Izl; z ,(A)}. In accordance with the definition given in [12], we say that a

matrix A E C is of class N if for every eigenvalue z E a(A) such that Izl p(A) the corresponding
Jordan blocks ofA associated with z have size x or 2 x 2.

2. MULTISTEP MATRIX METHODS
A way to solve (1.1)-(1.2) numerically consists in the application of linear multistep methods for

ordinary differential equations to equation (1.1) and in the approximation of Z(z) by a quadrature
formula (see [3, p. 151 ]). To solve (1.1) we use linear multistep matrix methods recently introduced in

12]. Multistep methods with matrix coefficients have also been studied in 11 ], 13] to solve numerically
first order matrix ordinary differential equations.

DEFINITION 2.1. A linear k-step matrix method for the Volterra integro-differential system (1.1)-
(1.2) is a relationship ofthe form

Y,+k + Ak-IY,.,+-I + + AoY,., h2{BF,+ + + BoF,} n > p > 0, k > 2, (2.1)

where A, e C for 0 < < k 1, Bq C for 0 < q < k, h > 0, IlA0 / IlB0ll > o,

Fn F(x,.,, Y,.,, Zn), Z, hw,.,.,K(:r,,, x,, Y,), rt >_ p (2.2)
t--0

and w,,, is a real number for 0 < < n.

The method (2.1)-(2.2) is said to be consistent if

Ao + A1 +... + Ak- +I O,
A1 + 2A2 + + (k 1)A_1 + kI 0, / (2 3)

2,42 + + (- 1)( 2)4_ + (- 1)z 2(B0 + + -)

and the weigh.ts w,,,, are bounded for all n and < n, [w,,, < W, and are such that

I(t)at- h w,.,l(z,) O(h),
-’0

for any continuous function f(z) where O(h) 0 as h O, n - c, nh z

The method (2.1)-(2.2) is said to be zero-stable if the matrix
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0 I 0 0
0 0 I 0

C (2 5)
0 0 0 I
Ao A1 A2 Ak-

is of class N and p(C) 1.

REMARK 1. The concept of zero-stability introduced here for multistep matrix methods extends
the one of zero-stability for scalar multistep methods given in [2], [3]. To our knowledge the only
discussion of the stability in the case of systems is given in [17]. However, in [17] Matthys uses the
concept of A-stability, that is not intrinsically related to the method but, it depends on a particular test

equation. As we show in the following, the concept of zero-stability given in Definition 2 permits us to

obtain error bounds of consistent and zero-stable matrix methods for systems of Volterra integro-
differential equations.

The next example provides a family of 3-step methods depending on a matrix parameter
EXAMPLE 1. Let A be a matrix in C of class N such that

p(A) < 1 and A + I isinvertible (2.6)

and let us consider the method defined by

Yn/3 + (A 2I)Yn+2 + (I- 2A)Y+I + AY,., h2{BaFr,+3 + B2Fn+2 + B1Fn+I + BoFn} (2.7)

where matrices Bq for 0 _< q _< 3 are matrices in C such that

B0 + B + B2 + B3 I + A. (2 8)

F, is defined by (2.2), where {wn,,}0<,<, is bounded and the condition (2.4) is satisfied. From Theorem

of[12] the method defined by (2.6)-(2.8) is zero-stable and consistent.

DEFINITION 2.2. The method (2.1)-(2.2) is said to be convergent if, for all initial value problem
(1.1)-( 1.2) subject to hypotheses 1.3)-(1.5), we have that

lim Yn =Y(z)
h0

holds for all x E [0, a], and for all solutions {Yn} of the difference sy,stem (2.1) satisfying starting
conditions Y fls (h) for which

IIYs-Y(sh)ll_<h, 0_<s_<p+k, (2.9)

for some positive number .
For the sake of clarity we state a result whose proof is given in [12]
THEOREM 1. [12] Let A E C for 0 _< j <_ k- 1, k _> 2, and let us suppose that matrix C

defined by (2.5) is of class N and p(C) 1. Let the matrix coefficients "r, C be defined by

[I + Ak-lZ + + A0z/-I] -1
7nZ IZl < 1.

n>O

Then there exist two positive constants F and 7 such that

II’r. < nr / -, n 0,1, 2, (2.10)

f
7, + 7,-1A_ + + 7m-kAO 0, m>0

where it is assumed that 7, 0 for m < 0

(2 11)
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We conclude this section with a result that will be used in the next section to study the discretization

error of methods ofthe type (2.1)-(2.2)
THEOREM 2. Let us consider the difference equation

m>p (2.12)

where A, EC for 0<i<k-l, C3.m, B3.mEC for 0<.7<k,A,C and h>0 with

Nh b, N integer. Let us assume that method (2.1)-(2.2) is zero-stable and let B, C, and A be

positive constants such that

IIB.II < B, IIC.,ll < C, IIAmll < A, p _< m < N. (2 3)

If { Z.} is a solution of (2.12) such that

IlZmll _< Z, p<rn_<N (2 14)

and

B. (k + 1)B, C. (k + 1)C, h < [(Nr + 7)(B. + bC.)] -/2 (2.15)

then

IlZmll Koexp(mh2L,), N > m > p (2 16)

where

(NF +-r)(NA + AZk) 1 (br + hT)(bA + AZhk)K.
1 h(NF + 7)(B. + bC.) h- 1 h(bF + hT)(B. + bC.)

(2 17)

(NF + )(B. + bC.) h (br + hT)(B. + bC.)L.
_

h(Nr +7)(B. +bC.) h- 1- h(br +hT)(B. +bC.)
(2 18)

A IIA011 + IIAII +---+ IIm-all + 1, (2 19)

and F, 7 are defined by Theorem 1.

PROOF. Let us write equation (2.12) for m n k, n k 1, p and let us premultiply the

resulting equation by 3’0, 0’1, %-k-,, respectively, obtaining

7-k-r,Zr,+k + %-k-r,A-lZ,+k-1 + + 7,-k-r,AoZr, h2"r,-,-k-r,(Bk.,llZkll + + B0.llZpll}

+ h’r,--, C.,ll/ill + + C0.,’llZ, + n-k-pAp
=0 =0

Adding the lett hand side ofthe above equations (2.20) one gets
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S, 7oZn + (7oAk-1 + 71)Zn-1 + (70Ak-2 + 71Ak-1 + 72)Zn-2 +
+ (7oAo + 71A1 + + 7k-lAk-1 + 7k)Zn-k
+ (71Ao + + 7k+l)Zn-k-1 + + (Tn-2k-pAo + + 7n-k-p)Zp+k
+ (Tn-k-pA-I + + 7n-2-p+lAo)Zp-k-i + + 7,--pAoZp

Taking into account (2.11) we have

S, Z, + (Tn_k_r,A_l + + %-2-p+lAo)Zp.-I + + 7n--pAo2p (221)

and adding the right hand side it follows that

(222)

lrom (2.10) and (2.13) it follows that

n-k

II’0A-k + + "r-k-All _< A (fF + 7) _< A(NF + 7)N. (2.23)

Equating the right hand sides of (2.21) and (2.22) one gets

Zn (Tn-k-pAk-1 + + 7n-2k-r-lAo)Zp+k-1 7n-k-pAoZp
+ h2 {70Bk,n-kliZn]l -t- (70nk-l,n-k "+" 71Bk,n-k-X)llZn-1 /

+ (’roBo,- + + "rB,-)IIZ- + + "--Bo,IIZII }
n-1

/ ha "oCk.--llZ, / (’oC-.- / "aC.--)llZ, /
=0 z=0

n-k P

+ (-roCo,- + + "rc,-2)llZ, + +-r--Co,llZ,
t=0 =0

+ 70An-k + + 7n-k-,Ar,

(2.24)

Taking into accoum that from Theorem 1, 7o I, and from (2.10), (2.14), (2.15), (2 19), (2.21), (2 23)
and (2.24) it follows that

n--p P+3

IIZ.II _< hZ(Nr /’r)B.llZ, / h3(NF + 7)C.E -’llZ,
=p 3=0 t=0

+ N(NF + 7)A + kAZ(NF + 7)

< h2(NF + 7)B.EIIZ,[ + h3(NF + 7)C.NEI[Z,[[ + N(NF + 7)A + kAZ(NF + 7)
=0 =0

n-1 n-1

h2(Nr + ")B.IIZ.II / h(Nr + ")B.IIZ, / h(Nr + "r)C.N-’llZ,
,=0 t=0

+ h3(Nr + ")C.NIIZ,,II + N(NF + 7)A + kAZ(NF + 7).

From the last inequality and from (2 17)-(2.1 $) we can write

n-1

I111 _< h2L.-l12ll + K.. (2 25)
--0
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Note that A > 1, and NF + - > 1 Then from (2 17) we have that K. > Z > IIZ0ll Thus for rn 0

one verifies

IIZmll <_ K.(1 + h2L.) (2.26)

Let us assume that (2 26) holds for m 0, 1, n- 1

(2 25) it follows that

,-1 K.(1 + h2L.)’- 1
IIZll < h2L.E K.(1 + h2L.) + K. h2L.K.

=0 h2L"
g.(l + h2L.)

Substituting (2.26) for 0 < rn < n- 1 into

Using the inequality 1 + h2L. < exp(h2L.) from the last expression one gets

IIZll <_ K.exp(nh2L.), P < n < N.

Thus the result is established.

3. CONVERGENCE AND ERROR BOUNDS
The global truncation error of the method (2.1)-(2.2) is defined by

em=Y,.,.,-Y(x,.,.,), x,=rnh,

where Y(xm) is the value of the theoretical solution Y(x) of problem (1.1)-(1.2) at z,,, and Y, is the

solution ofthe difference equation (2.1).
Let us introduce the operator Lnh defined by

Lnh L[Y(x,.,); hi
Y(xn+k) + Ak-lY(Xn/k-1) + + AoY(x,.,) h2[Bk"ffn+k + + Bo,] (3.2)

where

(Fr, F x,.,,Y(x,),h w,.,K(x,.,,x,,Y(x,))
:0

(3.3)

TItEOREM 3. Let us suppose that the method (2.1)-(2.2) is consistent and let Lmh L[Y(x,,.,); hi
be the corresponding operator defined by (3.2). Then

IIL[Y(x.); h]ll < h2(/ + 1)-BL2110(h)II (3.4)

where O(h) is a C valued vector function such that O(h) 0 as h 0, and

B- rnax{llnll; 0 _< _< ]}.

PROOF. From (3.2)-(3.3) we have

L[Y(x); hi Y(Xm+k) + Ak-lY(Xm+k-1) + + AoY(x,.,.,) h2[Bk"ffm+k + + Bo"ffm]
[Y(zr+)+ + AoY(x,,.,)- h2Bky"(X+k)- h2BoY"(x,,)]

q- h2 BkF(Xm+k,Y(Xrn+k), K(xm+k,t,Y(t))dt) +
dO

+ BoF(zm, Y(zm), K(z,,t,Y(t))at) BF/ Bo-m

(3.6)

From expressions (3.12)-(3.13) of [10] and from the consistency conditions (2.3) it follows that

expression (3.6) is of the form h2n(h) where n(h) is a vector function such that (h) 0 as h 0

From the consistency condition (2.4), the Lipschitz condition (1.4), and from (3.6) it follows that
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IlL[Y(x,);hll <_ h L2IIBII K(x,+k,t,Y(t))dt- h w+,K(x,/,x,,Y(x))

+... + Z,IIBoil K(zm,t,Y(t))dt h m.,l’f(Zm,x,Y(x))

< ( / 1)-Lh-IlO(h)ll

(3 7)

where B is defined by (3 5).
Thus the result is established.

If e, is defined by (3.1), subtracting equation (3.2) from (2.1) it follows that

en+k + A-e+k-1 +... + Aoen h2{Bk(F,+k -ff+k) + + Bo(F, )} Lh. (3 8)

Let us introduce the vector sequences {G, }, {gn }, {dn }, {H,} defined by

=0 t=0

(3 9)

Hn F x,Y(x),h w.,K(x,x,,Y) F x,Y(x),h w.,K(x,x,,Y(x,)) (3 10)
=0 =0

h Ile, a if Ilell > o
llell -x if en # O. d, ,=0 (3 11)g=
0 if e=0’ 0 if 211e, II--0

From (1.3)-(1.5) and (3.11) it follows that

IIg]l _< L and Ildll L2L3W, (3.12)

where Iw,.,[ < W for 0 < < n.

From (3.11), equation (3.8) can be written in the form

en+k + Ak-len+k-1 + + Aoen h2{Bkg+lle+ll + +

/ h3 Sd+ II,ll / / Bo’dZ Ile,
=0 =0

From Theorem 3 we have IlLhll <_ h2(k + 1)L2lle(h)ll, where is given by (3.5) and IIO(h)ll 0 as

h 0 Taking into account this bound of IILhll and by application of Theorem 2 to equation (3 13) it

follows that

I1il K,exp(h2xnL,)

where

B.=(k+I)L1B, C.=(k+I)BL2L:W, N= integer (3 14)

Z h5(h), 5(h) max{llY Y(ah)ll;0 < s < p+ k 1} (3 15)

K, (NF + 7)(Nh2(k + 1)L2119(h)ll + Akh(h))
1 h2(k + 1)(NF + 7)B(L + aWL2L3)
(k + 1)(gr + .r)B(L + aWL2L3)

1- hg(k + 1)(NF + 7)B(L + aWL2Ls)
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Taking into account that N we can write

NF + 7 Fh-lx, + 7,

L. (k + 1)h-(Th + r’x,)(L + aWLL3)(L + aWLL3)
1- h(k + 1)(.yh + x,F)B(L1 + aWLLa)

(3 16)

nh L. xn(k + 1)B(q’h + zF)(L1 + aWLL3)
1- h(k + 1)(’yh + x,F)(L1 + aWL2L3)

(Th + x,F)[x,BLllO(h)ll + kAS(h)]K. (3 7)
1- h(k + 1)(Th + z,,F)B(L + aWL2L3)

Hence the following result has been established.

TItEOREM 4. Let us consider a consistent and stable method of the form (2 1)-(2.2) and let W be
an upper bound of the weights wn,, appearing in (2.4). Let L1, L2 and La be positive constants satisfying
(1.3)-(1.5), let A and B be defined by (2.19) and (3 5) respectively, and let N integer such that

7h2 + aFh < [(k + 1)L1 + aWL2L3] -1 h > O.

If K. is defined by (3.17), where O(h) satisfies (2.4), then the discretization error en Y(x,) Y, at

x, [0, a] satisfies

Ile.[I K.exp
1 h(k + 1)(Th + x.F)(L1 + aWL2L3) J (3 18)

where F and 7 are defined by Theorem 1.

REMARK 2. A scalar version ofthe results of sections 2 and 3 are given in the recent Ph.D Thesis

[20]. The starting values Y0, Y1, Yk+;,-1 ofthe method (2 1)-(2.2) can be obtained by transforming the

problem (1.1)-(1.2) into the first order system

Y2 F(x, Yl (x), fK(x, t, Y (t))dt) 121

Then using Simpson’s rule and quadratic interpolation like in section 3 of [15] for first order scalar
Volterra integro-differential systems, starting values I,-..,Yk+v-1 satisfying condition (2.9) can be

obtained
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