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ABSTRACT. First, we will give all necessary definitions and theorems. Then the definition of a Hilbert
sequence by using a Galois group is introduced. Then by using the Hilbert sequence, we will build tower
fields for extension K /k, where K = k(+/d;, \/d2) and k = Q for different primes in Q.
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1. INTRODUCTION
Let K /k be an extension of degree n. We consider the tower of fields and a tower of integer rings
for this extension

KD2..2L..Dk .
Oxk2..20L.. 20 n

A prime ideal P in K determines a prime Pyin each field of the tower, where each Py is divisible by P.
Let p be a rational prime that is divisible by all these prime ideals P;. Then we have:

PL=P.N0O,, p=PUZ.

If the prime ideal p in k does not split into n distinct factors of P in K, how far can we go in terms of an
intermediate field where splitting occurs? This will be answered later.
First we define what is meant by order and degree
DEFINITION 1.1.
(a) Order P/p = e = P¢|p, p°*![P
(b) Degree P/p = f = Ny P = p/
LEMMA 1.2. Both order and degree are multiplicative
Order P/p = order P/Pp *order P /p
Degree P/p = degree P/Py « degree Py /p
Let us assume here that K /k for [K; k] = n is a normal extension. This makes K /L normal for
each L in the tower but not in L/k. Let p have factors P,(‘J) inLforj=1,23,..g9,

p= ﬁ PP N (Pé”)f = N(p) (1.22)
i=1
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n=e.f.g. (12b)

Let order K /k P = e and degree K /k P = f. Then for P = p, we have order p = degree p = 1 from
ktok.

Thus from k£ to K the order has grown from 1 to e and the degree has grown from 1 to f and the
number of factors in (1.2a) and (1.2b) has grown from 1 to g. We arrange the tower fields in 1.1 in such
a way that will separate the growths for K /k normal.

Let Kz be a maximal L in {L : K 2 L D k}. K is called the "splitting" field of P in K /L and is
such that.

degree P /p=1
order Pr/p=1

Let us assume that K7 is a maximal L in {L : K D L D k}. Kr is called the "inertial" field of P in
K /1 and is such that

degree P /p= fr > 1
order Pr/p=1.

This maximality process can be performed again for all L such that:

degree PL/p= fr > 1
order Pp/p=ep for (er,p) =1.
The maximal field here is called the "first ramification" field K, .

For this field, F; = f and ey, is a part of e prime to p. This part is called "tame ramification " If
order e is divisible by p, the ramification is called "wild." Thus we have the new tower fields for
extension K /k:

KD..2K,2Kr2Kz;2k 12¢)

It is easier to define 1.2c by the Galois group methods.
DEFINITION 1.2. Let K /k be a normal extension. The Hilbert sequence for an ideal P in K is
given by the subgroups of G = Gal(K /k) as follows:

K2O..2K,2Kr2Kz2k

1C..CG,CGrCGzCG (1-32)

kz & {ueG:P*=PorA=0= A*=0modp} =Gz (1.3b)
kr & {ueG: P*= Amodp} = (Gy,) (1.3c)

kv, S {ueG:A* = Amodp™*'} = G,,, (r>0). (1.3d)

Where A is an arbitrary integer in Ok. Since Gz fixes P, then Gr, G,, and so on are invariant
subgroups of Gz. Since Gz preserves P, it is one of g conjugates,

IG/Gzl =g, (1.3¢)
also, since Gt preserves each residue class mod P,

|Gz/Gr| =|(Ok/pP)/(Ok/p)| = lc(f)l = £, (1.36)

which refer to the cyclic Galois group of an extension of a finite field. Furthermore
IGr| =e. (13g)
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If r = egp®, where (e, p) = 1, then there is a cyclic quotient,

IGr/Gw| = e (1.3h)

followed by future quotient groups of type C(p) x C(p) x ... x C(p), with
G,./Gy,.,, =9 (v, 20, Zw, = w). (131)

Here there is only a finite number w, > 0, indeed p*|n More general details of the above can be found
in [1], [2], [3], [4], [5], (6], [7]
2. COMPUTING HILBERT SEQUENCE FOR K = k( Vi, \/ﬁ), FOR k = Q.

Computing Hilbert sequence for K = k(\/z), k = Q, is contained in [1, p 89]. So we process to
KDk = Q(\/d—,) for i =1,2,3. Letds = dy*dy/t? which means dj is square factor free, where d, is
the discriminant of k,.

Let G = {1,u1,us,u3), where u, : /d, — \/d,, \/d, = — /d, fori # j, then we have

k= QW) S G, = {1,u).

Here we will build a tower of fields K 2 ... 2 K,, 2 K1 2 Kz 2 Q by using the Hilbert sequence in

Definition 1.2 for different types of primes p in Q.

a Let p = PP, P3P, (unramified) where the P,'s are primes in K for (d;/p) = (d2/p) = (d3/p) =1
where:

1if 22 = amod p solvable for z integer, a|p
(a/p) = { —1ifz? # amod p for z integer, a|p
0if a|p.

Here f =e=1then g =4by 1.1. From |G/Gz| = g =4 in (1.3¢) we get that, |Kz/k| = 4 and
Kz=K and from |Gz/Gr|=f=1 in (13f), |[Kr/Kz|=1 and so Kr =K. Since
|Gr|=e=1 in (1.3g), and from |G1/G,,| =€y =1 in (1.3h) and (1.3i) for r = 0,1,2,3 then
[Gu./Goi| = |Kory1 /Ko | =1

K,=K,=K,=K, =K.

Thus, we have the following field tower for K /k :
k=QgKZ§KTgKv1 gKvg_C_Kva_c.ngK

QCK=K=K=K=K=K=K=K.

b Let p=P P (unramified) for —(di/p)= —(d2/p) =(ds/p)=1 ~ Here e;=e; =1,
fi=fr=2 and g=2. Again from |G/Gz| =g =2, we have: |Kz/k|=2 and by (1.3b)
Kz = k3 =Q (\/d3). From |Gz/Gr| = f = 1then |Kz/Kr| =2 and then K7 = K Using the
same proof as above: K, = K,, = K,, = K,, = K. This produces the following tower fields for
K/k:

k=Q§KZgKTgKv1gKungvgnggK

QCkCK=K=K=K=K=K.

¢ p=P?-P2 where p is odd and p|d, p|dz, p|lds and (d3/p) =1. Here e; =e; =2 and
fi=fo=1 and so g=2 Since again |G/Gz|=g=2 then |Kz/k| =2 and by (13b)
KZ = k3 = Q(\/d_3) From le/GT‘ = f =1 then KT = Kz = k3 = Q(\/a;) From
|Gr| =e=2=¢ep+p” =1+2! then by (1.3i) |G,,/G,,.,| = p*r = 2! and from here for r = 0:
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|Gr,/Gy,| = |Ky /Kr| =2 and thus K, = K and alsoc K, = K,, = K,, = K, because
|Gy, /Gy, | = | Ky, /Ku,| = 2° = 1 which produces the following tower fields for K /k

k=QCkz Chkr Chky CkyCky Cky CK

QCKi=kyCK=K=K=K=K.

d. p= P} for p odd, p|d, p|dz, plds, (d3/p) = — 1 with the same proof as above, the following
tower fields are produced.
KZ=Q7KT=k31 andK‘ul =sz =Kv:1 =KUA =K

e. P=plp: andd; =dp = 1% (mod 16), d3 = 1 (mod 8) produces the tower
k=Q gkznggKvl (_:KvggKvggngK

Q=QCkCK=K=K=K=K.

f. p=p§for d; =dy =12 (mod 16), d3 =5 (mod 8). Here e =2 and g =1 then f =2. From
IG/Gz| =g9=|Kz/Q|=1, Kz =Q and by |Gz/Gr| = f = |K1/Kz| = 2, Kr is a quadratic
extension over Q, then by (1.3c) Kr = k3, e =2 = €V ¢ p¥ = 1.2¥ and |G,, /G.,,, | = 2%~ where &
w,=w and w, >0. From |Gy/Gy|=|Ky/Kr|=2"=1K, =ks. |Gy,/Gy|=2}
= |K,, /Gy, | = 2, then K,, = K, and with some proof K, = K,, = K,, = K producing

k=QCK;CKrCK,CK,CK,CK,CK

Q=QCki=ksCK=K=K=K.

g p=pipi fordy = dp = 8 (mod 16), d3 = 1 (mod 8) has the same tower fields as e.

h. p=p? ford; = dy, = 8 (mod 16), d3 = 5 (mod 8) also has the same Hilbert sequence as f.

i. p=plford; =dp =8 (mod 16), d; = 12 (mod 8) has the following tower fields
k=QCkzCKrCK,CK,CK,CK, CK

Q=Q=Q=QChk=kCK=K.

We showed in the above cases, if the prime ideal p of k& does not split into n distinct prime factors of K,
how we can build intermediate fields Kz, K, K,,, ... where splitting of prime p occurs.
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