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The monoidal category of Soergel bimodules categorifies the Hecke algebra of a finite Weyl group.
In the case of the symmetric group, morphisms in this category can be drawn as graphs in the
plane. We define a quotient category, also given in terms of planar graphs, which categorifies
the Temperley-Lieb algebra. Certain ideals appearing in this quotient are related both to the 1-
skeleton of the Coxeter complex and to the topology of 2D cobordisms. We demonstrate how
further subquotients of this category will categorify the irreducible modules of the Temperley-Lieb
algebra.

1. Introduction

A goal of the categorification theorist is to replace interesting endomorphisms of a vector
space with interesting endofunctors of a category. The question is what makes these functors
interesting? In the pivotal paper of Chuang and Rouquier [1], a fresh paradigm emerged.
They noticed that by specifying structure on the natural transformations (morphisms)
between these functors one obtains more useful categorifications (in this case, the added
utility is a certain derived equivalence). The categorification of quantum groups by Rouquier
[2], Lauda [3], and Khovanov and Lauda [4] has shown that categorifying an algebra A itself
(with a categoryA) will specify what this additional structure should be for a categorification
of any representation of that algebra: a functor fromA to an endofunctor category. That their
categorificationsA provide the “correct” extra structure is confirmed by the facts that existing
geometric categorifications conform to it (see [5]) and that irreducible representations of A
can be categorified in this framework (see [6, 7]). The salient feature of these categorifications
is that, instead of being defined abstractly, the morphisms are presented by generators and
relations, making it straightforward to define functors out ofA.

In the case of the Hecke algebraH, categorifications have existed for some time, in the
guise of category O or perverse sheaves on the flag variety. In [8] Soergel rephrased these
categorifications in a more combinatorial way, constructing an additive categorification ofH
by a certain full monoidal subcategoryHC of graded R-bimodules, where R is a polynomial
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ring. Objects in this full subcategory are called Soergel bimodules. There are deep connections
between Soergel bimodules, representation theory, and geometry, and we refer the reader to
[8–11] for more details. Categorifications using category O and variants thereof are common
in the literature, and often Soergel bimodules are used to aid calculations (see, e.g., [12–14]).

In [15], Elias and Khovanov provides (in type A) a presentation ofHC by generators
and relations, where morphisms can be viewed diagrammatically as decorated graphs
in a plane. To be more precise, the diagrammatics are for a smaller category HC1, the
(ungraded) category of Bott-Samelson bimodules, described in Section 2.1. Soergel bimodules
are obtained fromHC1 by taking the graded Karoubi envelope. This is in exact analogy with
the procedures of Khovanov and Lauda in [4] and related papers.

The Temperley-Lieb algebra TL is a well-known quotient of H, and it can be
categorified by a quotient TLC of HC, as this paper endeavors to show. Thus, we have a
naturally arising categorification by generators and relations, and we expect it to be a useful
one. Objects in TLC can no longer be viewed as R-bimodules (though their Hom spaces will
be R-bimodules), so that diagrammatics provide the simplest way to define the category.

The most complicated generator of HC is killed in the quotient to TLC, making
TLC easy to describe diagrammatically in its own right. Take a category where objects
are sequences of indices between 1 and n (denoted i). Morphisms will be given by (linear
combinations of) collections of graphs Γi embedded in R × [0, 1], one for each index i ∈
{1, . . . , n}, such that the graphs have only trivalent or univalent vertices, and such that Γi
and Γi+1 are disjoint. Each graph will have a degree, making Hom spaces into a graded vector
space. The intersection of the graphs with R×{0} and R×{1} determines the source and target
objects, respectively. Finally, some local graphical relations are imposed on these morphisms.
This defines TLC1, and we take the graded Karoubi envelope to obtain TLC.

The proof that TLC categorifies TL uses a method similar to that in [15]. We
show first that TLC1 is a potential categorification of TL, in the sense described in
Section 2.2. Categorifications and potential categorifications define a pairing on TL given by
([M], [N]) = gdimHomTLC1(M,N), the graded dimension which takes values in Z[[t, t−1]].
Equivalently, it defines a trace on TL via ε([M]) = gdimHom(1,M) where 1 is the monoidal
identity (see Section 2.1). The difficult part is to prove the following lemma.

Lemma 1.1. The trace induced on TL from TLC1 is the map εcat defined in Section 2.2.

Given this lemma, it is surprisingly easy (see Section 3.3) to show the main theorem.

Theorem 1.2. Let TLC2 be the graded additive closure of TLC1, and let TLC be the graded Karoubi
envelope of TLC1. Then TLC2 is Krull-Schmidt and idempotent closed, so TLC2

∼= TLC, and TLC
categorifies TL.

To prove the lemma, we note that there is a convenient set of elements in TL, the
nonrepeating monomials, whose values determine any pairing; hence, there is a convenient set
of objects whose Hom spaces will determine all Hom spaces. If i is a nonrepeating sequence,
the Hom space we must calculate is (up to shift) a quotient of R by a two-sided ideal Ii. We
use graphical methods to determine these rings explicitly, giving generators for the ideals in
R which define them. As an interesting side note, these ideals also occur elsewhere in nature.

Proposition 1.3. Let V be the reflection representation of Sn+1, and identify R with its coordinate
ring. Let Z be the union of all the lines in V which are intersections of reflection-fixed hyperplanes,
and let I ⊂ R be the ideal which gives the reduced scheme structure onZ. Then Hom spaces inTLC are
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R/I-bimodules, and the ideals Ii cut out subvarieties of Z given by lines with certain transverseness
properties (see Section 3.7 for details).

Also in Section 3.7, we give a topological interpretation of the ideals Ii, using a functor
defined by Vaz [16].

Now, let TLJi be the parabolic subalgebra of TL given by ignoring the index i, and
let V i be the induced (right) representation from the sign representation of TLJi . Such an
induced representation is useful because it is a quotient ofTL and also contains an irreducible
module Li of TL as a submodule. All irreducibles can be constructed this way.

We provide a diagrammatic categorification of V i as a quotient Vi of TLC, and a
categorification of Li as a full subcategory Li of Vi, in a fashion analogous to quantum
group categorifications. Having found a diagrammatic categorification C of the positive
half U+ of the quantum group, Khovanov and Lauda in [17] conjectured that the highest
weight modules (naturally quotients of U+) could be categorified by quotients of C by the
appearance of certain pictures on the left. This approach was proven correct by Lauda and
Vazirani [6] (for the U+-module structure), and then used by Webster to categorify tensor
products [18]. Similarly, to obtain Vi, we mod out TLC by diagrams where any index except
i appears on the left. The proof that this works is similar in style to the proof of Theorem 1.2:
one calculates the dimension of all Hom spaces by calculating enough Hom spaces to specify
a unique pairing on V i and then uses simple arguments to identify the Grothendieck group.

Theorem 1.4. The category Vi is idempotent closed and Krull-Schmidt. Its Grothendieck group is
isomorphic to V i. Letting Li be the full subcategory generated by indecomposables which decategorify
to elements of Li, one has that Li is idempotent closed and Krull-Schmidt, with Grothendieck group
isomorphic to Li.

A future paper will categorify all representations induced from the sign and
trivial representations of parabolic subalgebras of H and TL. Induced representations
were categorified more generally in [13] in the context of category O, although not
diagrammatically. We believe that our categorification should describe what happens in [13]
after applying Soergel’s functor.

Soergel bimodules are intrinsically linked with braids, as was shown by Rouquier in
[19, 20], who used them to construct braid group actions (these braid group actions also
appear in the category O context, see [21]). As such, morphisms between Soergel bimodules
should correspond roughly to movies, and the graphs appearing in the diagrammatic
presentation of the category HC should be (heuristically) viewed as 2-dimensional
holograms of braid cobordisms. This is studied in [22]. The Temperley-Lieb quotient is
associated with the representation theory of Uq(sl2), for which all braids degenerate into
1-manifolds, and braid cobordisms degenerate into surfaces with disorientations. There is a
functor F from TLC to the category of disorientations constructed by Vaz [16]. The functor
F is faithful (though certainly not full), as we remark in Section 3.7. This in turn yields a
topological motivation of the variety Z and its subvarieties Z′. Because F is not full, there
might be actions ofTLC that do not extend to actions of disoriented cobordisms. Cobordisms
have long been a reasonable candidate for morphisms in Temperley-Lieb categorifications,
although we hope TLC will provide a useful substitute, with more explicit and computable
Hom spaces.

Categorification and the Temperley-Lieb algebra have a long history. Khovanov in
[23] constructed a categorification of TL using a TQFT, which was slightly generalized
by Bar-Natan in [24]. This was then used to categorify the Jones polynomial. Bernstein
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et al. in [25] provide a categorical action of the Temperley-Lieb algebra by Zuckerman and
projective functors on category O. Stroppel [14] showed that this categorical action extends
to the full tangle algebroid, and also investigated the natural transformations between
projective functors. Recent work of Brundan and Stroppel [26] connects these Temperley-
Lieb categorifications to Khovanov-Lauda-Rouquier algebras, among other things. We hope
that our diagrammatics will help to understand the morphisms in these categorifications.

The organization of this paper is as follows. Section 2 will provide a quick overview
of the Hecke and Temperley-Lieb algebras, and the diagrammatic definition of the category
HC. Section 3 begins by defining the quotient category diagrammatically in its own right
(which makes a thorough understanding of the diagrammatic calculus forHC unnecessary).
Section 3.3 proves Theorem 1.2, modulo Lemma 1.1 which requires all the work. The
remaining sections of that chapter do all the work, and starting with Section 3.6 one will
not miss any important ideas if one skips the proofs. Section 4 begins with a discussion of cell
modules for TL and certain other modules, and then goes on to categorify these modules,
requiring only very simple diagrammatic arguments.

This paper is reasonably self-contained. We do not require familiarity with [15] and
do not use any results other than Corollary 2.20. We do quote some results for motivational
reasons, but the difficult graphical arguments of that paper can often be drastically simplified
for the Temperley-Lieb setting, so that we provide easier proofs for the results we need.
Familiarity with diagrammatics for monoidal categories with adjunction would be useful,
and [3] provides a good introduction. More details on preliminary topics can be found in [15].

2. Preliminaries

Notation 1. Fix n ∈ N, and let I = 1, . . . , n index the vertices of the Dynkin diagram An. We
use the word index for an element of I, and the letters i, j always represent indices. Indices
i /= j are adjacent if |i − j| = 1, and distant if |i − j| ≥ 2, and questions of adjacency always refer to
the Dynkin diagram, not the position of indices in a word or picture.

Notation 2. Let W = Sn+1 with simple reflections si = (i, i + 1). Let k be a field of characteristic
not dividing 2(n + 1); all vector spaces will be over this field. Let R = k[x1, . . . , xn+1]/e1,
where e1 = x1 + x2 + · · · + xn+1; it is a graded ring, with deg(xi) = 2. We will abuse notation
and refer to elements of k[x1, . . . , xn+1] and their images in R in the same way, and will refer
to both as polynomials. Note that R = k[f1, . . . , fn], where fi = xi − xi+1, since x1 = (nf1 + (n −
1)f2 + · · · + fn)/(n + 1) modulo e1. The ring R arises as the coordinate ring of V , the reflection
representation of W (the span of the root system), and fi are the simple coroots.

There is an obvious action of Sn+1 on R, which permutes the generators xi. For each
index we have a Demazure operator ∂i, a map of degree −2 from R to the invariant subring Rsi ,
which is Rsi-linear and sends Rsi to 0. Explicitly, ∂i(f) = (f − si(f))/(xi − xi+1).

Notation 3. Let (·) be the Z-linear involution of Z[t, t−1] switching t and t−1. Given a Z-linear
map β of Z[t, t−1] modules, we call it antilinear if it is Z[t, t−1]-linear after twisting by (·), or in

other words if β(tm) = t−1β(m). We write [2] def= t + t−1.
Let A be a Z[t, t−1]-algebra. In this paper we always use the word trace to designate a

Z[t, t−1]-linear map ε : A → Z[[t, t−1]] satisfying ε(xy) = ε(yx). We use the word pairing or
semilinear pairing to denote a Z-linear map A ×A → Z[[t, t−1]] which is Z[t, t−1]-linear in the
second factor and Z[t, t−1]-antilinear in the first factor.



International Journal of Mathematics and Mathematical Sciences 5

2.1. The Hecke Algebra and the Soergel Categorification

We state here without proof a number of basic facts about the Hecke algebra, its traces,
and Soergel’s categorification. For more background, see Soergel’s original definition of his
categorification [8], or an easier version [11]. A similar overview with more discussion can
be found in [15]. A more in-depth introduction, connecting Soergel bimodules to other parts
of representation theory, can be found in [13].

Definition 2.1. Denote by H the Hecke algebra for Sn+1. It is a Z[t, t−1]-algebra, specified here
by its Kazhdan-Lusztig presentation: it has generators bi, i ∈ I and relations

b2
i =
(
t + t−1

)
bi (2.1)

bibj = bjbi for distant i, j (2.2)

bibjbi + bj = bjbibj + bi for adjacent i, j. (2.3)

Definition 2.2. Given two objects in a graded k-linear (possibly additive) category C, where
{1} denotes the grading shift, the graded hom space between them is the graded vector space
HOM(M,N) =

⊕
n∈ZHomC(M,N{n}). Given a class of objects {Mα} in C, we can define

a category with morphisms enriched in graded vector spaces, whose objects are {Mα} and
whose morphisms are HOM(Mα,Mβ). Let us call this an enriched full subcategory, which we
often shorten to the adjective enriched. While the enriched subcategory is neither additive nor
graded, it has enough information to recover the hom spaces between grading shifts and
direct sums of objects Mα in C.

Let R-bim denote the category of finitely-generated graded (resp., ungraded) R-
bimodules. Then HOM spaces in R-bim will be graded R-bimodules. For i ∈ I, let Bi ∈ R-bim
be defined by Bi = R

⊗
Rsi R{−1}, where Rsi is the invariant subring. A Bott-Samelson bimodule

is a tensor product Bi1 ⊗Bi2 ⊗· · ·⊗Bid in R-bim, where here and henceforth ⊗ denotes the tensor
product over R. Let HC1 be the enriched full subcategory generated by the Bott-Samelson
bimodules; it is a monoidal category, but is neither additive nor graded. LetHC2 denote the
full subcategory of R-bim given by all (finite) direct sums of grading shifts of Bott-Samelson
bimodules; it is monoidal, additive, and graded. Finally, letHC denote the category of Soergel
bimodules or special bimodules, the full subcategory of R-bim given by all (finite) direct sums
of grading shifts of summands of Bott-Samelson bimodules; it is monoidal, additive, graded,
and idempotent closed.

One can observe that all bimodules inHC are free and finitely generated when viewed
as either leftR-modules or rightR-modules, and therefore the same is true of any HOM space.
The following proposition parallels the Kazhdan-Lusztig presentation forH.

Proposition 2.3. The categoryHC2 is generated (as an additive, monoidal category) by objects Bi, i ∈
I which satisfy

Bi ⊗ Bi ∼= Bi{1} ⊕ Bi{−1}, (2.4)

Bi ⊗ Bj ∼= Bj ⊗ Bi for distant i, j, (2.5)

Bi ⊗ Bj ⊗ Bi ⊕ Bj ∼= Bj ⊗ Bi ⊗ Bj ⊕ Bi for adjacent i, j. (2.6)
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From this we might expect the next result.

Proposition 2.4. The Grothendieck ring [HC2] ofHC2 is isomorphic toH, with [Bi] being sent to
bi, and [R{1}] being sent to t. The Grothendieck ring [HC] ofHC is isomorphic toH as well.

Remark 2.5. The proof of this statement is not immediately obvious. There is clearly a
surjective morphism fromH to [HC2]. When one takes the idempotent closure of a category,
one adds new indecomposables and can potentially enlarge the Grothendieck group. Soergel
showed, via a support filtration, that all the new indecomposables in HC have symbols in
[HC] which can be reached from certain symbols in [HC2] by a unitriangular matrix (see
[11]). Therefore, the Grothendieck rings ofHC andHC2 are equal. SinceHC is idempotent
closed and is embedded in R-bim, it has the Krull-Schmidt property and the Grothendieck
group behaves as one would expect: it has a basis given by indecomposables. By classifying
indecomposables and using the unitriangular matrix, Soergel showed that the map fromH
to [HC2] is actually an isomorphism.

It is important to note that one does not know what the image of the indecomposables
of HC in H is. The Soergel conjecture, still unproven in generality, proposes that the
indecomposables ofHC descend to the Kazhdan-Lusztig basis ofH (see [11]).

Notation 4. We write the monomial bi1bi2 · · · bid ∈ H as bi, where i = i1 · · · id is a finite sequence
of indices; by abuse of notation, we sometimes refer to this monomial simply as i. If i is as
above, we say the monomial has length d = d(i). We call a monomial nonrepeating if ik /= il
for k /= l, and increasing if i1 < i2 < · · · . The empty set is a sequence of length 0, and b∅ = 1.
Similarly, in HC1, write Bi1 ⊗ · · · ⊗ Bid as Bi. Note that B∅ = R, the monoidal identity. For an
arbitrary index i and sequence i, we write i ∈ i if i appears in i.

Given two objects M,N ∈ R-bim we say they are biadjoint if M ⊗ − and N ⊗ − are
left and right adjoints of each other, and the same for − ⊗M and − ⊗ N. If M and N are
biadjoint, so areM{1} andN{−1}. We often want to specify additional compatibility between
various adjunction maps, but we pass over the details here (see [3] for more information on
biadjunction).

Proposition 2.6. Each object inHC (resp.,HC1,HC2) has a biadjoint, and Bi is self-biadjoint. Let
ω be the t-antilinear anti-involution onH which fixes bi, that is, ω(tabi) = t−abσ(i), where σ reverses
the order of a sequence. There is a contravariant functor onHC sending an object to its biadjoint, and
it descends on the Grothendieck ring to ω.

Definition 2.7. An adjoint pairing on H is a pairing where each bi is self-adjoint, so that
(x, biy) = (bix, y) and (x, ybi) = (xbi, y) for all x, y ∈ H and all i ∈ I. Equivalently, for
any m ∈ H, (mx, y) = (x,ω(m)y) and (xm, y) = (x, yω(m)).

There is a bijection between adjoint pairings (, ) and traces ε, defined by letting
(x, y) = ε(ω(x)y), or conversely ε(y) = (1, y). Adjoint pairings appear often in the literature,
for instance [27] (although they are usually Z[t, t−1]-linear in both factors, unlike our current
semilinear definition). Semilinear adjoint pairings will be crucially important, due to the
following remark.

Remark 2.8. Let C be a monoidal category with objects Bi, such that Bi are self-biadjoint.
We assume that C is additive and graded and has isomorphisms (2.4)–(2.6). We call such
a category a potential categorification ofH. In this case, there is a map of rings fromH to [C]
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sending bi to [Bi], and (under suitable finite-dimensionality conditions) we get an adjoint
semilinear pairing onH via (bi, bj) = gdimHOMC(Bi, Bj) ∈ Z[[t, t−1]], the graded dimension
as a vector space. Denote the pairing and its associated trace map as (, )C and εC.

Instead, we may assume C is an enriched monoidal subcategory, containing objects Bi.
The isomorphisms (2.4)–(2.6) typically have no meaning in this context, since there are no
grading shifts or direct sums, but we can require that they Yoneda-hold; that is, they hold after
the application of any Hom(−, X) functor (to graded vector spaces). There is no definition of a
Grothendieck ring in this case, but we still get an induced adjoint semilinear pairing induced
by Hom spaces. We call this an enriched potential categorification.

We may use pairings to distinguish between different potential categorifications. The
next proposition allows us to specify the pairing induced by a categorification by only
investigating certain HOM spaces.

Proposition 2.9. Traces onH are uniquely determined by their values ε(bi) on increasing monomials
i. Equivalently, adjoint pairings are determined by (1, bi) for increasing i. If i is nonrepeating and j is
a permutation of i, then ε(bi) = ε(bj).

We quickly sketch the proof. Moving an index from the beginning of a monomial to
the end, or vice versa, will be called cycling the monomial. It is clear, using biadjointness
or the definition of trace, that the value of ε is invariant under cycling. It is not difficult to
show that any monomial in W (in the letters si) will reduce, using the Coxeter relations and
cycling, to an increasing monomial. When the monomial is already nonrepeating, one needs
only use cycling and sisj = sjsi for distant i, j. Finally, using induction on the length of the
monomial, the same principle shows that any monomial inH reduces to a linear combination
of increasing monomials, and therefore ε is determined by these.

The upshot is that, given a potential categorification, one knows the dimension of all
HOM(Bi, Bj) so long as one knows the dimension of HOM(B∅, Bi) for increasing i. Note that
not every choice of (1, bi) for all increasing i will yield a well-defined trace map.

Consider the adjoint pairing given by εstd(bi) = (1, bi) = td for nonrepeating i of length
d. This is the semilinear version of the pairing found in [27] which picks out the coefficient
of the identity in the standard basis of H and is called the standard pairing. Soergel showed
that HOM(Bi, Bj) is a free graded left (or right) R-module of rank (bi, bj) using this pairing. In
particular, for increasing i, HOM(R,Bi) is generated by a single element in degree d(i). Since
the graded dimension of R is 1/(1 − t2)n we have that (1, bi)HC = td/(1 − t2)n is a rescaling of
the standard pairing.

Now let ε be the quotient map H → Z[t, t−1] by the ideal generated by all bi. It is a
homomorphism to a commutative algebra, so it is a trace. The corresponding pairing satisfies
(1, 1) = 1 and (x, y) = 0 for monomials x, y if either monomial is not 1. We call this the trivial
pairing, εtriv.

2.2. The Temperley-Lieb Algebra

Here again we state without proof some basic facts about Temperley-Lieb algebras. They were
originally defined by Temperley and Lieb in [28], and were given a topological interpretation
by Kauffman [29]. There are many good expositions for the topic, such as [30, 31].
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Definition 2.10. The Temperley-Lieb algebra TL is the Z[t, t−1]-algebra generated by ui, i ∈ I
with relations

u2
i = [2]ui, (2.7)

uiuj = ujui for
∣∣i − j∣∣ ≥ 2, (2.8)

uiujui = ui for adjacent i, j. (2.9)

Proposition 2.11. For adjacent i, j ∈ I, consider the element of H defined by cij
def= bibjbi − bi =

bjbibj − bj , where the equality arises from relation (2.3). There is a surjective mapH → TL sending
bi to ui for all i ∈ I, and whose kernel is generated by cij for adjacent i, j ∈ I.

Once again, write ui for a monomial in the above generators, with all the same
conventions as before. The map ω descends fromH to TL, and we define an adjoint pairing
on TL in the same way, with ui replacing bi everywhere. The results of Proposition 2.9 apply
equally to TL.

Definition 2.12. A categoryC as in Remark 2.8 is a potential categorification ofTL if it has objects
Ui satisfying

Ui ⊗Ui
∼= Ui{1} ⊕Ui{−1},

Ui ⊗Uj
∼= Uj ⊗Ui for distant i, j,

Ui ⊗Uj ⊗Ui
∼= Ui for adjacent i, j.

(2.10)

We call it an enriched potential categorification if it is an enriched category with objects
Ui such that these isomorphisms Yoneda-hold.

A permutation σ ∈ Sn+1 is called 321-avoiding if it never happens that, for i < j < k,
σ(i) > σ(j) > σ(k). It turns out that, using the Temperley-Lieb relations, every monomial
uj is equal to a scalar times some ui where i is 321-avoiding; that is, if viewed as a word
in the symmetric group, it represents a reduced expression for a 321-avoiding permutation.
Moreover, between 321-avoiding monomials, the only further relations come from (2.8), and
hence it is easy to pick out a basis from this spanning set. See [30] for more details.

The Temperley-Lieb algebra has a well-known topological interpretation where an
element ofTL is a linear combination of crossingless matchings (isotopy classes of embedded
planar 1-manifolds) between n + 1 bottom points and n + 1 top points. Multiplication of
crossingless matchings consists of vertical concatenation (where ab is a above b), followed
by removing any circles and replacing them with a factor of [2]. In this picture, ui becomes
the following:

(2.11)

The basis of 321-avoiding monomials agrees with the basis of crossingless matchings.
Any increasing monomial is 321-avoiding. Increasing monomials are easy to visualize
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Figure 1: An example of the closure of a crossingless matching.

topologically, as they have only “right waves” and “simple cups and caps.” For example:

u1u2u3u6u7u9 �−→ (2.12)

As an example of a monomial which is not increasing:

u4u3u1u2 �−→ (2.13)

Given a crossingless matching, its closure is a configuration of circles in the punctured
plane obtained by wrapping the top boundary around the puncture to close up with the
bottom boundary, as in Figure 1. Circle configurations have two topological invariants: the
number of circles and the nesting number which is the number of circles which surround the
puncture and is equal to n + 1 − 2l ≥ 0 for some l ≥ 0. Given a scaling factor for each possible
nesting number, one constructs a trace by letting ε(ui) = ck[2]

m where m is the number of
circles in the closure of ui and ck is the scaling factor associated to its nesting number k. To
calculate (x, y), we place y below an upside-down copy of x (or vice versa), and then take
the closure. All pairings/traces on TL can be constructed this way, so they are all topological
in nature.

The Temperley-Lieb algebra has a standard pairing of its own for which ck = 1 for all
nesting numbers k: εstd(ui) = [2]m as above. One can check that εstd(ui) = [2]n+1−d(i) for
an increasing monomial. This is not related to the standard pairing on H, which does not
descend to TL. On the other hand, εtriv clearly does descend to a pairing trivial pairing on
TL, which only evaluates to a nonzero number when the nesting number is n + 1.

It turns out that the pairing onTL arising from our categorification will satisfy (1, 1) =
(tn/(1 − t2))[2]n − (t2/(1 − t2)) and (1, ui) = (tn/(1 − t2))[2]n−d. We will call the associated
trace εcat. Clearly εcat = (tn/(1 − t2)[2])εstd − (t2/(1 − t2))εtriv. In particular, on any monomial
x /= 1, our trace will agree with a rescaling of the standard trace. When n = 1, the algebras TL
andH are already isomorphic, and εcat agrees with the rescaling of the standard trace onH
discussed at the end of Section 2.1.
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Figure 2: An example of a planar graph in the strip, with colored edges.

Figure 3: An example of tree reduction.

2.3. Definition of Soergel Diagrammatics

We now give a diagrammatic description of the category HC1, as discovered in [15]. Since
the category to be defined will be equivalent to the category of Bott-Samelson bimodules, we
will abuse notation temporarily and use the same names.

Definition 2.13. In this paper, a planar graph in the strip is a finite graph with boundary (Γ, ∂Γ)
embedded in (R × [0, 1],R × {0, 1}). In other words, all vertices of Γ occur in the interior
R×(0, 1), and removing the vertices, we have a 1-manifold with boundary whose intersection
with R × {0, 1} is precisely its boundary. This allows for edges which connect two vertices,
edges which connect a vertex to the boundary, edges which connect two points on the
boundary, and edges which form circles (closed 1-manifolds embedded in the plane).

We generally refer to R× {0, 1} as the boundary, which consists of two components, the
top boundary R × {1}, and the bottom boundary R × {0}. We refer to a local segment of an edge
which hits the boundary as a boundary edge; there is one boundary edge for each point on
the boundary of the graph. We use the word component to mean a connected component of a
graph with boundary.

This definition clearly extends to other subsets of the plane with boundary, so that we
can speak of planar graphs in a disk or planar graphs in an annulus. The annulus has two
boundary components, inner and outer. When we do not specify, we always mean a planar
graph in the strip.

We will be drawing morphisms in HC1 as planar graphs with edges labelled in I.
Instead of putting labels everywhere, we color the edges, assigning a color to each index in I.
Henceforth, we use the term “color” and “index” interchangeably.

We now define HC1 anew. Let HC1 be the monoidal category, with hom spaces
enriched over graded vector spaces, which is defined as follows.

Definition 2.14. An object inHC1 is given by a sequence of indices i, which is visualized as d
points on the real line R, labelled or “colored” by the indices in order from left to right. These
objects are also called Bi. The monoidal structure on objects is concatenation of sequences.
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Definition 2.15. Consider the set of isotopy classes of planar graphs in the strip whose edges
are colored by indices in I such that only four types of vertices exist: univalent vertices or
“dots”, trivalent vertices with all three adjoining edges of the same color, 4-valent vertices
whose adjoining edges alternate in colors between distant i and j, and 6-valent vertices whose
adjoining edges alternate between adjacent i and j. This set has a grading, where the degree
of a graph is +1 for each dot and -1 for each trivalent vertex; 4-valent and 6-valent vertices are
of degree 0. The allowable vertices, which we call “generators,” are pictured here:

(2.14)

(2.15)

The intersection of a graph with the boundary yields two sequences of colored points
on R, the top boundary i and the bottom boundary j. In this case, the graph is viewed as a
morphism from j to i. For instance, if “blue” corresponds to the index i and “red” to j, then
the lower right generator is a degree 0 morphism from jij to iji. Although this paper is easiest
to read in color, it should be readable in black and white: the colors appearing are typically
either blue, red, green, or miscellaneous and irrelevant. We throughout use the convention
that blue (the darker color) is always adjacent to red (the middle color) and distant from
green (the lighter color).

We let HomHC1(Bi, Bj) be the graded vector space with basis given by planar graphs
as above which have the correct top and bottom boundary, modulo relations (2.16) through
(2.30). As usual in a diagrammatic category, composition of morphisms is given by vertical
concatenation (read from bottom to top), the monoidal structure is given by horizontal
concatenation, and relations are to be interpreted monoidally (i.e., they may be applied
locally inside any other planar diagram).

The relations are given in terms of colored graphs, but with no explicit assignment
of indices to colors. They hold for any assignment of indices to colors, so long as certain
adjacency conditions hold. We will specify adjacency for all pictures, although one can
generally deduce it from the fact that 6-valent vertices only join adjacent colors, and 4-valent
vertices only join distant colors.

For example, these first four relations hold, with blue representing a generic index.

=

(2.16)

= =

(2.17)
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= 0

(2.18)

+ = 2
(2.19)

We will repeatedly call a picture looking like (2.18) by the name “needle.” Note that a
needle is not necessarily zero if there is something in the interior. Note that a circle is just a
needle with a dot attached, by (2.17), so that an empty circle evaluates to 0.

Remark 2.16. It is an immediate consequence of relations (2.16) and (2.17) that any tree
(connected graph with boundary without cycles) of one color is equal to

(i) if it has no boundary, two dots connected by an edge. Call the entire component a
double dot.

(ii) if it has one boundary edge, a single dot connected by the edge to the boundary.
Call the component a boundary dot.

(iii) if it has more boundary edges, a tree with no dots and the fewest possible number of
trivalent vertices needed to connect the boundaries. Moreover, any two such trees
are equal. Call the component a simple tree.

We refer to this as tree reduction.
This applies only to components of a graph which are a single color. Even if the blue

part of a graph looks like a tree, if other colors overlap, then we may not apply tree reduction
in general.

In the following relations, the two colors are distant

= (2.20)

= (2.21)

= (2.22)

= (2.23)
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In this relation, two colors are adjacent, and both distant to the third color.

= (2.24)

In this relation, all three colors are mutually distant.

= (2.25)

Remark 2.17. Relations (2.20) through (2.25) indicate that any part of the graph colored i and
any part of the graph colored j “do not interact” for distant i and j, that is, one may visualize
sliding the j-colored part past the i-colored part, and it will not change the morphism. We call
this the distant sliding property.

In the following relations, the two colors are adjacent.

= +

(2.26)

= −

(2.27)

=

(2.28)

− = −
(2.29)

In this final relation, the colors have the same adjacency as {1, 2, 3}

= (2.30)



14 International Journal of Mathematics and Mathematical Sciences

This concludes the list of relations definingHC1.

Remark 2.18. We chose here to describe HC1 in terms of planar graphs with relations, with
the notion of isotopy built-in, rather than in terms of generators and relations. Note, however,

that using isotopy and (2.17), we get = . Therefore, all “cups” and “caps” can be
expressed in terms of the generators. By adding new relations corresponding to isotopy, one
could give a presentation of the category where the “generators” above (and their isotopy
twists) are really generators. This is how the category is presented in [15].

We will occasionally use a shorthand to represent double dots. We identify a double
dot colored i with the polynomial fi ∈ R, and for a linear combination of disjoint unions of
double dots in the same region of a graph, we associate the appropriate linear combination of
products of fi. For any polynomial f ∈ R, a square box with a polynomial f in a region will
represent the corresponding linear combination of graphs with double dots.

For instance,
= f2

i fj .

Relations (2.19), (2.29), and (2.23) are referred to as dot forcing rules, because they
describe at what price one can “force” a double dot to the other side of a line. The three
relations imply that, given a line and an arbitrary collection of double dots on the left side
of that line, one can express the morphism as a sum of diagrams where all double dots are
on the right side, or where the line is “broken” (as illustrated next). Rephrasing this, for any
polynomial f there exist polynomials g and h such that

f = g h+ (2.31)

The polynomials appearing can in fact be found using the Demazure operator ∂i, and
in particular, h = ∂i(f). One particular implication is that

f = f (2.32)

whenever f is a polynomial invariant under si (and blue represents i). As an exercise, the
reader can check that f2

i slides through a line colored i. These polynomial relations are easy
to deduce, or one can refer to [15] (see page 7, pages 16-17, and relation 3.16).

We have an bimodule action of R on morphisms by placing boxes (i.e., double dots) in
the leftmost or rightmost regions of a graph. Now we can formulate the main result of [15].

Theorem 2.19. There is a functor from this diagrammatic category HC1 to the earlier definition in
terms of Bott-Samelson bimodules. This functor sends i to the bimodule Bi and a planar graph to a
map of bimodules, preserving the grading and the R-bimodule action on morphisms. This functor is an
equivalence of categories.

Corollary 2.20. The R-bimodules HomHC1(Bi, Bj) are free as left (or right) R-modules. In other
words, placing double dots to the left of a graph is a torsion-free operation.
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Now, we have justified our abuse of notation. In this paper, we will never need to know
explicitly what map of R-bimodules a planar graph corresponds to, so the interested reader
can see [15] for details. In fact, we will not use Theorem 2.19 at all, preferring to work entirely
with planar graphs. However, we do use Corollary 2.20, a fact which would be difficult to
prove diagrammatically.

The proof of Theorem 2.19 can be quickly summarized: first, one explicitly constructs
a functor from the diagrammatic category to the Bott-Samelson category. Then, using the
observations of the next section, one shows that the diagrammatic category is a potential
categorification of H and that the diagrammatic category, the Bott-Samelson category, and
the image of the former in the latter all induce the same adjoint pairing onH. Therefore, the
functor is fully faithful.

2.4. Understanding Soergel Diagrammatics

Let us explain diagrammatically why the category HC1 is a potential categorification of H,
and induces the aforementioned adjoint pairing.

Definition 2.21. Given a category C whose morphism spaces are Z-modules, one may take its
additive closure, which formally adds direct sums of objects and yields an additive category.
Given C whose morphism spaces are graded Z-modules, one may take its grading closure
which formally adds shifts of objects, but restricts morphisms to be homogeneous of degree
0. Given C an additive category, one may take the idempotent completion or Karoubi envelope,
which formally adds direct summands. Recall that the Karoubi envelope has as objects pairs
(B, e) where B is an object in C and e an idempotent endomorphism of B. This object acts
as though it were the “image” of this projection e and behaves like a direct summand. When
taking the Karoubi envelope of a graded category (or a category with graded morphisms) one
restricts to homogeneous degree 0 idempotents. We refer in this paper to the entire process
which takes a category C, whose morphism spaces are graded Z-modules, and returns the
Karoubi envelope of its additive and grading closure as taking the graded Karoubi envelope.
All these transformations interact nicely with monoidal structures. For more information on
Karoubi envelopes see [32].

We letHC2 be the graded additive closure ofHC1, and letHC be the graded Karoubi
envelope ofHC1.

We wish to show that the isomorphisms (2.4) through (2.6) hold in HC2. Relation
(2.20) immediately implies that Bi ⊗ Bj ∼= Bj ⊗ Bi for i, j distant, with the isomorphism being
given by the 4-valent vertex.

We have the following equality:

=
1
2

+ . (2.33)

To obtain this, use (2.17) to stretch two dots from the two lines into the middle, and then use
(2.19) to connect them. The identity idii decomposes as a sum of two orthogonal idempotents,
each of which is the composition of a “projection” and an “inclusion” map of degree ±1, to
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and from Bi (explicitly, idii = i1p1 + i2p2 where p1i1 = idi, p2i2 = idi, p1i2 = 0 = p2i1). This
implies thatBi⊗Bi ∼= Bi{1}⊕Bi{−1} and is a typical example of how direct sum decompositions
work in diagrammatic categories.

Similarly, the two color variants of relation (2.27) together express the direct sum
decompositions in the Karoubi envelope

Bi ⊗ Bi+1 ⊗ Bi = Cij ⊕ Bi

Bi+1 ⊗ Bi ⊗ Bi+1 = Cji ⊕ Bi+1.
(2.34)

Again, the identity idi(i+1)i is decomposed into orthogonal idempotents. The second
idempotent factors through Bi, and the corresponding object in the Karoubi envelope will
be isomorphic to Bi. The first idempotent, which we call a “doubled 6-valent vertex,”
corresponds to a new object Cij in the idempotent completion. It turns out that the doubled
6-valent vertexCij for “blue red blue” is isomorphic in the Karoubi envelope to the doubled 6-
valent vertexCji for “red blue red” (i.e., their images are isomorphic). We may abuse notation
and call both of these new objects Cij ; it is a summand of both i(i + 1)i and (i + 1)i(i + 1). The
image of Cij in the Grothendieck group is cij .

We can also understand the induced pairing on H using diagrammatic arguments.
The theorems below are proven in [15], and we will not use them in this paper (except
motivationally), proving their analogs in the Temperley-Lieb case directly.

Theorem 2.22 (Color Reduction). Consider a morphism ϕ : ∅ → i, and suppose that the index i
(blue) appears in i zero times (resp.,: once). Then ϕ is in the -span of graphs which only contain blue
in the form of double dots in the leftmost region of the graph (resp., as well as a single boundary dot).
This result may be obtained simultaneously for multiple indices i.

Corollary 2.23. The space HomHC1(∅, ∅) is precisely the graded ring R. In other words, it is freely
generated (over double dots) by the empty diagram. The space HomHC1(∅, i) for i nonrepeating is a
free left (or right) R-module of rank 1, generated by the following morphism of degree d(i).

(2.35)

The proof of the theorem does not use any sophisticated technology, only convoluted
pictorial arguments. It comprises the bulk of [15]. The corollary implies that εHC1(bi) = t

d/(1−
t2)n for nonrepeating i of length d, as stated in Section 2.1.

2.5. Aside from Karoubi Envelopes and Quotients

Return to the setup of Definition 2.21. If C is a full subcategory of (graded) R-bimodules for
some ring R, then the transformations described above behave as one would expect them
to. In particular, the Karoubi envelope agrees with the full subcategory which includes all
summands of the previous objects. The Grothendieck group of the Karoubi envelope is in
some sense “under control” if one understands indecomposable R-bimodules already. On
the other hand, the Karoubi envelope of an arbitrary additive category may be enormous,
and to control the size of its Grothendieck group, one should understand and classify all
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idempotents in the category, a serious task. Also, arbitrary additive categories need not have
the Krull-Schmidt property, making their Grothendieck groups even more complicated.

The Temperley-Lieb algebra is obtained from the Hecke algebra by setting the elements
cij to zero, for i = 1, . . . , n − 1. These elements lift in the Soergel categorification to objects
Cij . The obvious way one might hope to categorify TL would be to take the quotient of the
categoryHC by each object Cij .

To mod out an additive monoidal category C by an object Z, one must kill the monoidal
ideal of idZ in Mor(C), that is, the morphism space Hom(X,Y ) in the quotient category is
exactly HomC(X,Y ) modulo the submodule of morphisms factoring through V ⊗ Z ⊗W for
any V,W . If the category is drawn diagrammatically, one needs to only kill any diagram
which has idZ as a subdiagram.

We have not truly drawnHC diagrammatically, onlyHC1. The object we wish to kill is
not an object inHC1; the closest thing we have is the corresponding idempotent, the doubled
6-valent vertex. However, this is not truly a problem, due to the following proposition, whose
proof we leave to the reader.

Proposition 2.24. Let C1 be an additive category, and let B be an object in C1, and let e be an
idempotent in End(B). Let D1 be the quotient of C1 by the morphism e. Let C and D be the respective
Karoubi envelopes. Finally, let D′ be the quotient of C by the identity of the object (B, e). Then, there
is a natural equivalence of categories from D to D′.

The analogous statement holds when one considers graded Karoubi envelopes.

Remark 2.25. Note that D′ has more objects than D, but they are still equivalent. For instance,
(B, e) and (B, 0) are distinct (isomorphic) objects in D′, but are the same object in D.

So to categorify TL, one might wish to take the quotient of HC1 by the doubled 6-
valent vertex, and then take the Karoubi envelope. This is easy to do diagrammatically, which
is one advantage to the diagrammatic approach over the R-bimodule approach. The quotient
ofHC1 will no longer be a category which embeds nicely as a full subcategory of bimodules.
One might worry that Krull-Schmidt fails, or that to understand its Karoubi envelope one
must classify all idempotents therein. Thankfully, our calculation of HOM spaces will imply
easily that its graded additive closure is Krull-Schmidt and is already idempotent closed, so it
is equivalent to its own Karoubi envelope (see Section 3.3).

3. The Quotient Category TLC

3.1. A Motivating Calculation

As discussed in the previous section, our desire is to take the quotient ofHC1 by the doubled
6-valent vertex, and then take the graded Karoubi envelope.

An important consequence of relations (2.26) and (2.18) is that

= 0 (3.1)
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from which it follows, using (2.27), that

= (3.2)

so the (monoidal) ideal generated in HC1 by a doubled 6-valent vertex is the same as the
ideal generated by the 6-valent vertex.

Claim 1. The following relations are all equivalent (the ideals they generate are equal)

= 0 (3.3)

= 0+ (3.4)

= − (3.5)

= − (3.6)

= 0 (3.7)

Proof. (3.3)⇒(3.4): add a dot, and use relation (2.26).
(3.4)⇒(3.5): add a dot to the top, and use (2.17).
(3.5)⇒(3.4): apply to the middle of the diagram.
(3.5)⇒(3.6): stretch dots from the blue strands towards the red strand using (2.17), and

then apply (3.5) to the middle.
(3.6)⇒(3.7): use relation (2.27).
(3.7)⇒(3.3): use (3.2).
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Modulo 6-valent vertices, the relations (2.26) and (2.27) become (3.4) and (3.6) above.
All other relations involving 6-valent vertices, namely, (2.28), (2.30), and (2.24), are sent to
zero modulo 6-valent vertices. Relation (3.5) implies both (3.4) and (3.6) without reference to
any graphs using 6-valent vertices. So, if we wish to rephrase our quotient in terms of graphs
that never have 6-valent vertices, the sole necessary relation imposed by the fact that 6-valent
vertices were sent to zero is the relation (3.5).

Suppose, we only allow ourselves univalent, trivalent, and 4-valent vertices, but no 6-
valent vertices, in a graph Γ. Then, the i-graph of Γ, which consists of all edges colored i and
all vertices they touch, will be disjoint from the i+ 1- and i− 1-graphs of Γ. The distant sliding
property implies that the i-graph and the j-graph of Γ do not interact effectively, when i and
j are distant. This will motivate the definition in the next section.

3.2. Diagrammatic Definition of TLC

Definition 3.1. We let TLC1 be the monoidal category, with hom spaces enriched over graded
vector spaces, defined as follows. Objects will be sequences of colored points on the line R,
which we will call i or Ui. Consider the set whose elements are described as follows:

(1) for each i ∈ I, consider a planar graph Γi in the strip, which is drawn with edges
colored i (see Definition 2.13);

(2) the only vertices in Γi are univalent vertices (dots) and trivalent vertices;

(3) the graphs Γi and Γi+1 are disjoint. All graphs Γi are pairwise disjoint on the
boundary;

(4) we consider isotopy classes of this data, so that one may apply isotopy to each Γi
individually so long as it stays appropriately disjoint.

This set has a grading, where the degree of a graph is +1 for each dot and −1 for each
trivalent vertex, and the degree of an element of this set is the sum of the degrees for each
graph Γi. Just as in Definition 2.15, each element of the set has a top and bottom boundary
which is an object in TLC, and will be thought of as a map from the bottom boundary to the
top. We let HomTLC1(Ui, Uj) be the graded vector space with basis given by elements of the
set above with bottom boundary j and top boundary i, modulo the relations (2.16) through
(2.19), (2.29), and the new relation (3.5). As a reminder, the new relation is given here again.

= − (3.8)

As before, composition of morphisms is given by vertical concatenation, the monoidal
structure is given by horizontal concatenation, and relations are to be interpreted monoidally.
This concludes the definition.

Phrasing the definition in this fashion eliminates the need to add distant sliding rules,
for these are now built into the notion of isotopy. Note that as we have stated it here, Γi and
Γj may have edges which are embedded in a tangent fashion, or even entirely overlapped.
However, such embeddings are isotopic to graph embeddings with only transverse edge
intersections, which arise as 4-valent vertices in our earlier viewpoint.
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Proposition 3.2. The category TLC1 is isomorphic toHC1 modulo the 6-valent vertex.

Proof. Due to the observations of Section 3.1, this is obvious.

Hom spaces inTLC1 are in fact enriched over graded R-bimodules, by placing double
dots as before. However, they will no longer be free as left or right R-modules, as we will see.

Remark 3.3. Note that tree reduction (see Remark 2.16) can now be applied to any tree of a
single color in TLC, regardless of what other colors are present, since the only colors which
can intersect the tree are distant colors which do not actually interfere.

We denote by TLC the graded Karoubi envelope of TLC1, and by TLC2 the graded
additive closure of TLC1. However, we will show that TLC2 is already idempotent closed,
so that TLC2 and TLC are the same.

It is obvious that

Ui ⊗Ui+1 ⊗Ui
∼= Ui,

Ui+1 ⊗Ui ⊗Ui+1
∼= Ui+1

(3.9)

in TLC1, and from the relation (3.6) and the simple calculation (using dot forcing rules) that

= − (3.10)

For the same reasons as in Section 2.4, we still have Ui ⊗Uj
∼= Uj ⊗Ui for distant i, j,

and Ui ⊗Ui
∼= Ui{1} ⊕Ui{−1} in TLC2. Therefore, TLC is a potential categorification of TL,

and induces an adjoint pairing and a trace map εTLC onTL. At this point, we have not shown
that the category TLC1 is nonzero, so this pairing could be 0.

3.3. Using the Adjoint Pairing

Proposition 3.4. Let C1 be an enriched category which is a potential categorification of TL, whose
objects are Ui for sequences i. Let C2 be its additive graded closure, and let C be its graded Karoubi
envelope. Suppose that the induced trace map εC1 on TL is equal to εcat. Then, the set of Ui{n} for
n ∈ Z and 321-avoiding i forms an exhaustive irredundant list of indecomposables in C2. In addition,
C2 is Krull-Schmidt and idempotent closed (so C2 and C are equivalent), and C categorifies TL.

This proposition is an excellent illustration of the utility of the induced adjoint pairing.
We prove it in a series of lemmas, which all assume the hypotheses above.

Lemma 3.5. The object Ui in C1 has no nontrivial (homogeneous) idempotents when i is 321-
avoiding. Moreover, if both i and j are 321-avoiding, thenUi

∼= Uj{m} in C2 if and only ifm = 0 and
ui = uj in TL.

Proof. Two 321-avoiding monomials in TL are equal only if they are related by the relation
(2.8). Since this lifts to an isomorphism Ui ⊗Uj

∼= Uj ⊗Ui in C2, we have ui = uj ⇒ Ui
∼= Uj.
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If an object has a 1-dimensional space of degree 0 endomorphisms, then it must be
spanned by the identity map, and there can be no nontrivial idempotents. If an object has
endomorphisms only in nonnegative degrees, then it can not be isomorphic to any nonzero
degree shift of itself. If two objects X and Y are such that both Hom(X,Y ) and Hom(Y,X) are
concentrated in strictly positive degrees, then no grading shift of X is isomorphic to Y , since
there can not be a degree zero map in both directions.

Therefore, we need only show that (for 321-avoiding monomials) Ui has endomor-
phisms concentrated in nonnegative degree, with a 1-dimensional degree 0 part, and that
when ui /=uj, Hom(Ui, Uj) is in strictly positive degrees. This question is entirely determined
by the pairing on TL, since it only asks about the graded dimension of Hom spaces.

When i is empty, we already know that (1, 1) = (tn/(1 − t2))[2]n − (t2/(1 − t2)), which
has degree 0 coefficient 1, and is concentrated in nonnegative degrees.

We know how to calculate (x, y) in TL when x and y are monomials, and either x
or y is not 1 (see Section 2.2). We draw x as a crossingless matching, draw y upside-down
and place it below x, and close off the diagram: if there are m circles in the diagram, then
(x, y) = tn[2]m−1/(1 − t2). In particular, if m = n + 1, then the Hom space will be concentrated
in nonnegative degrees, with 1-dimensional degree 0 part. If m < n + 1, then the Hom space
will be concentrated in strictly positive degrees.

We leave it as an exercise to show that, if x is a crossingless matching (i.e., a 321-
avoiding monomial) then the closed diagram for (x, x) has exactly n+1 circles. The following
example makes the statement fairly clear, where x̃ is x upside-down:

x

x̃

(3.11)

In this example x has all 3 kinds of arcs which appear in a crossingless matching:
bottom to top, bottom to bottom, and top to top. Each of these corresponds to a single circle
in the diagram closure.

Similarly, there are fewer than n + 1 circles in the diagram for (x, y) whenever the
crossingless matchings x, y are nonequal. Consider the diagram above but with the region x
removed. One can see that no circles are yet completed, and each boundary point of x’s region
is matched to the other by an arc. The number of circles is maximized when you pair these
boundary points to each other, and this clearly gives the matching x. For any other matching
y, two arcs will become joined into one, and fewer than n + 1 circles will be created.

Lemma 3.6. C2 is idempotent closed, and its indecomposables can all be expressed as grading shifts of
Ui for 321-avoiding i. It has the Krull-Schmidt property.
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Proof. Since the Temperley-Lieb relations allow one to reduce a general word to a 321-
avoiding word, one can show that every Ui is isomorphic to a direct sum of shifts of Uj for
321-avoiding j, using isomorphisms and direct sum decompositions instead of the analogous
Temperley-Lieb relations. Clearly these shifted Uj are all indecomposable, since they have no
nontrivial idempotents; these are then all the indecomposables. Since every indecomposable
in C2 has a graded local endomorphism ring (with maximal ideal given by positively graded
morphisms), C2 is idempotent closed and Krull-Schmidt (see [33], Section 2.2).

The Krull-Schmidt property implies that isomorphism classes of indecomposables
form a basis for the Grothendieck group.

Proof of Proposition 3.4. There is a Z[t, t−1]-linear map of rings TL → [C2], which is evidently
bijective because it sends the 321-avoiding basis to the 321-avoiding basis. Since C = C2, we
are done.

This proposition shows that Lemma 1.1 implies Theorem 1.2.

Remark 3.7. In analogy to the paper [15], the bulk of the proof of Theorem 1.2 lies in proving
that hom spaces induce a particular adjoint pairing. Beyond that, we have mostly stated
the obvious. Let us note that what is obvious for TL and TLC is not obvious at all when
dealing with H and HC. In particular, if we are given a category C1 which is a potential
categorification of H as in Proposition 3.4, we can not conclude that C categorifies H. We
summarize the differences here.

It is clear (for both Hecke and Temperley-Lieb) that the map H → [HC2] is well
defined and surjective. The two main subtleties are (1) the difference betweenHC2 andHC,
and (2) the injectivity of the map.

In general, one likes to examine the additive Grothendieck group only of idempotent
closed categories with the Krull-Schmidt property, because this guarantees that indecompos-
ables form a basis for the Grothendieck group. Thus it is convenient that TLC2 is already
idempotent closed. Thankfully, we have a result of Soergel [11] that proves that [HC2] ∼=
[HC], as was discussed in Remark 2.5.

To show injectivity of the map in the TL case, we can identify a basis for TL which
is sent to a complete set of indecomposables, and then we can evaluate the trace map to
show that these indecomposables are pairwise nonisomorphic. ForHC, we do not currently
know what the indecomposables (i.e., idempotents) are, nor do we know their preimage
in H. If we knew a class of indecomposables which decategorified to the Kazhdan-Lusztig
basis, then we could use a similar argument to the above to show that they and their shifts
form an exhaustive irredundant list of indecomposables in HC, and therefore that the map
H → [HC] is injective. Soergel discusses this in the last chapter of [11]. This is actually
a deep question, shown by Soergel ([34], see also [8, 11]) to be equivalent to proving a
version of the Kazhdan-Lusztig conjectures. In any case, the result depends on the base
field k, and no simple proof has been found. In particular, to prove that the graded Karoubi
closure of the diagrammatic categoryHC1 categorifies the Hecke algebra (for certain k), we
must pass to the world of bimodules where Soergel’s powerful geometric techniques will
work. In particular, there is currently no proof of injectivity if one defines the category HC
diagrammatically over k = Z.

It should be emphasized that the story of TL is a particularly easy one (as is its
Kazhdan-Lusztig theory). No high-powered technical machinery is needed, and the proofs
of idempotent closure and injectivity are self-contained and diagrammatic. In fact, the
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Figure 4: An arbitrary innermost blue cycle. The dotted line encapsulates the subgraph on the interior
which may contain colors adjacent to blue.

arguments in this paper do work entirely over Z[1/2], as can be checked. Dividing by two
must be allowed in order to split the identity of Uii into idempotents, as in (2.33); however,
it is likely that the arguments would work over Z as well. Working over Z is discussed more
extensively in [22].

Remark 3.8. A category O analog of the fact that 321-avoiding monomials lift to indecompos-
able Soergel bimodules, which remain indecomposable upon passage to the Temperley-Lieb
quotient, can be found in Lemma 5.2 of [14].

3.4. Reductions

When we say that a graph or a morphism “reduces” to a set of other graphs, we mean that
the morphism is in the k-span of those graphs. We refer to a one-color graph, each of whose
(connected) components is either a simple tree with respect to its boundary or a double dot,
as a simple forest with double dots. If there are no double dots, it is a simple forest without double
dots. Tree reduction implies that any graph Γi without cycles reduces to a simple forest with
double dots. Note also that circles in a graph are equal to needles with a dot attached, and
can be treated just like any other cycle.

If there were only one color, we could iterate the following rule (which is an
implication of the dot forcing rules and (2.18)) to break cycles:

=f ∂if (3.12)

We do something similar for the general case.

Proposition 3.9. In TLC1, any morphism reduces to one where, for each i, the i-graph is a simple
forest with double dots. Moreover, we may assume that all double dots are in the lefthand region.

Proof. We use induction on the total number of cycles (of any color) in the graph. Suppose
there is a blue colored cycle: choose one so that it delineates a single region (i.e., there are
no other cycles inside). There may be blue “spokes” going from this cycle into the interior,
but no two spokes can meet, lest they create another region. By tree reduction on the spokes,
we can assume that any blue appearing inside the cycle is in a different blue component
than the cycle. Other colors may cross over the cycle, into the interior. If we view the interior
of the cycle as a graph of its own, it has fewer total cycles so we may use induction. Since
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the boundary of the interior contains no blue color or colors adjacent to blue, they may be
assumed to appear in the interior only in the form of double dots next to the cycle. Using
dot-forcing rules, we reduce to two graphs: one with the cycle broken, and one with all these
double dots on the exterior of the cycle. The former reduces by induction. For the latter, only
distant colors enter the cycle, so they can be slid out of the way to leave an empty blue cycle,
which is 0 by the rule above.

We need to only do the base case, where the graph has no cycles. The dot-forcing rules
imply that double dots may be moved to any region of the (multicolored) graph, at the cost
of breaking a few lines. Breaking lines will never increase the number of cycles. Therefore,
if we have a graph without cycles, tree reduction implies that we actually have a simple
forest with double dots, and dot forcing allows us to move these double dots to the left. The
breaking of lines may require more tree reduction, yielding more double dots, but this process
is finite.

Remark 3.10. This proposition and its proof will apply to graphs in any connected simply
connected region in the plane.

Corollary 3.11. For any nonrepeating i, HomTLC1(∅, i) is generated (as a left or right R-module) by
a single element ϕi of degree d(i), pictured below

(3.13)

Proof. A simple forest with double dots and at most one boundary edge is no more than a
boundary dot with double dots. Thus, any morphism reduces to a boundary dot for each
color, accompanied by double dots.

To show Lemma 1.1, we need to only investigate Hom(∅, i) for increasing i, since we
have already shown that the values of ε(ui) are determined by their values for increasing
i. This space will be an R-bimodule where the left and right action are the same (since the
lefthand and righthand regions are the same in any picture with no bottom boundary), so we
view it as an R-module, and we have just shown that it is cyclic. Let Ii be the ideal which is
the kernel of the map R → HOM(∅, i) sending 1 �→ ϕi; we call it the TL ideal of i. Proving the
Lemma 1.1 is to find Ii and show that the graded dimension of R/Ii{d} is εcat(ui).

Remark 3.12. Since the space HomHC1(∅, i) is a free R-module, all polynomials in Ii must have
arisen from reducing to some morphism which contained the relation (3.5) to a “nice form,”
that is, ϕi plus double dots. In other words, letting αi be the morphism pictured below, we
want to plug αi into a bigger graph, reduce it to a nice form, and see what we get.

αi = + (3.14)

Remember that αi is actually just a 6-valent vertex with two dots attached (one red
and one blue). This bigger graph, into which αi is plugged, will actually be a graph on the
punctured plane or punctured disk with specified boundary conditions on both the outer and
inner boundaries. The difficult graphical proofs of this paper just consist in analyzing such
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graphs. This is done by splitting the punctured plane into simply connected regions and using
the above proposition.

3.5. Generators of the TL Ideal

The sequence i is assumed to be nonrepeating.

Proposition 3.13. The TL ideal of ∅ contains yi,j
def= fifj(fi + 2fi+1 + 2fi+2 + · · ·+ 2fj−1 + fj) over all

1 ≤ i < j ≤ n.
The TL ideal of i contains zi,j,i

def= yi,j/gigj , where gi = fi if i ∈ i, gi = 1 otherwise.

We will prove that these actually generate the ideal in Proposition 3.24 but postpone
the proof as it is long and unenlightening.

Proof. Adding 4 dots to αi, or 6 dots to a 6-valent vertex, we get

+ = 0 . (3.15)

This is yi,i+1 = fifi+1(fi + fi+1) = (xi − xi+1) (xi+1 − xi+2) (xi − xi+2). Even though we are
not allowing 6-valent vertices in our diagrams, we will sometimes express yi,i+1 as

or (3.16)

to avoid having to consider sums of graphs (it’s easier for me to draw!).
To obtain the other yi,j , note the following equalities under the action of Sn+1 on R:

sifi+1 = fi + fi+1,

si+1fi = fi + fi+1,

sifi = −fi,

sifj = fj for
∣∣i − j∣∣ > 1.

(3.17)

From this it follows by explicit calculation that

si−1yi,j − yi,j = yi−1,j ,

sj+1yi,j − yi,j = yi,j+1.
(3.18)
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Now, when we surround a polynomial f with a j-colored circle and use (3.12), we are
left with a j-colored double dot times ∂j(f), so we get f − sjf = ∂j(f)fj .

=f f − sjf (3.19)

Combining this with the calculations we just made, we see that a j + 1 circle around
yi,j will yield yi,j+1 up to sign, and so forth. We now have numerous ways to express ±yi,j : for
any i ≤ k ≤ j − 1, take αk with 4 dots to get yk,k+1, and then surround it with concentric circles
whose colors, from inside to out, are k + 2, k + 3, . . . , j and then k − 1, k − 2, . . . , i

(3.20)

Clearly the colors of the increasing sequence and those of the decreasing sequence are
distant, so a sequence like k − 1, k + 2, k + 3, k − 2, . . . is also okay, or any permutation which
preserves the order of the increasing and the decreasing sequence individually.

For very similar reasons, zi,j,i is in the TL ideal of i. Adding two or three dots to (3.5),
we get several more equations.

= 0+
(3.21)

= 0+

(3.22)

= 0+

(3.23)

Again, for a variety of these pictures, we use shorthand like

or (3.24)

These give you zi,i+1,i in the case where at least one of i, i + 1 ∈ i. Again by (3.12),
putting a polynomial f in the eye of a j-colored needle will yield ∂j(f) = (f − sjf)/fj next to



International Journal of Mathematics and Mathematical Sciences 27

a j-colored boundary dot.

=f ∂jf
(3.25)

This gives us several ways to draw zi,j,i.
If neither i nor j are in i, then zi,j,i = yi,j and is pictured as above, but with additional

boundary dots being put below to account for ϕi. Since these extra dots are generally
irrelevant, we often do not bother to draw them.

If i ∈ i and j /∈ i, we have two ways of drawing zi,j,i. One can take αi, connect one i
input to the outer boundary, add dots, and surround it with circles colored i + 2, i + 3, . . . , j

(3.26)

Alternatively, take some i < k < j, add dots to αk, and surround it with circles forming
an increasing sequence k + 2 · · · j and a decreasing sequence k − 1 · · · i, except that the final
i-colored circle is a needle

(3.27)

The case of j ∈ i and i /∈ i is obvious.
If both i, j ∈ i, then we have several choices again. If j = i + 1, then we must use

(3.28)
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but in general, we may either repeat (3.26) with a j-needle instead of a j-circle

(3.29)

or repeat (3.27) with a j-needle instead of a j-circle

(3.30)

In any case, it is clear that the polynomials above are in the TL ideal, and the claim is
proven.

Let us quickly consider the redundancy in this generating set of the ideal. When i > j

let yi,j
def= yj,i and zi,j,i

def= zj,i,i.

Corollary 3.14. Suppose that i is nonempty, and fix an index k ∈ i. Then, Ii is generated by zk,j,i for
1 ≤ j ≤ n, j /= k. None of these generators are redundant.

None of the generators yi,j of I∅ are redundant.

Proof. We leave the checks of irredundancy to the reader, but a proof will also arise as a
byproduct in the next section (see Remark 3.17).

Suppose that k ∈ i but i, j /∈ i. If k < i < j, then zi,j,i = yi,j = fizk,j,i − fjzk,i,i so that zi,j,i is
redundant. If i < k < j, then zi,j,i = fizk,j,i + fjzi,k,i. A similar statement holds for i < j < k. In
the same vein, if k, l ∈ i but i /∈ i, then for a given zk,l,i, only one of zk,i,i or zl,i,i is needed, and
if k, l,m ∈ i, then any two of the three pairwise relations will imply the third.
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3.6. Graded Dimensions

In this section, fix a nonrepeating sequence i. We assume in this section that the generators of
Ii are precisely the polynomials described in Proposition 3.13.

Notation 5. An element of R can be written as a polynomial in fi, so let x = fa1
1 · · · f

an
n be a

general monomial. Choose any i, possibly empty. Given a monomial x, let Jx ⊂ {1, . . . , n} be
the subset containing i and all indices j such that aj /= 0. For a fixed subset J , let RJ be the
subset of all monomials x with Jx = J . This inherently depends on the choice of i.

Under the map R → HOM(U∅, Ui), the image of RJ will be graphs where the
colors appearing are precisely J . Every color in i appears as a boundary dot, and every fj
corresponds to a double dot of that color. The case J = ∅ only occurs when i = ∅ and R∅ = {1}.

To find a basis for R/Ii, we will use the Bergman Diamond Lemma [35] for
commutative rings.

Definition 3.15. Let A be a free commutative polynomial ring, where monomials are given
a partial order with the DCC, compatible with multiplication in that x < y ⇒ ax < ay.
Let I be an ideal generated by relations r of the form xr = yr , where xr is a monomial and
yr is a linear combination of monomials which are each less than xr in the partial order.
A reduction is an application of a relation r to replace xr with yr , but not the other way
around (a reduction always lowers the partial order on each term in a polynomial). One says
a polynomial x reduces to y if y can be obtained from x by a series of reductions applied
to monomials in x. A monomial is called irreducible if it does not have xr as a factor for
any relation r. An inclusion ambiguity is a monomial x = ab, where x = xr for some r, and
b = xr ′ for some r ′ /= r. An overlap ambiguity is a monomial x = abc, where ab = xr for some
r and bc = xr ′ for some r ′ /= r. Each ambiguity has two natural reductions, and one says the
ambiguity is resolvable if the two reductions are then jointly reducible to the same element.

Lemma 3.16 (Bergman Diamond Lemma for Commutative Rings, [35]). With these definitions
in place, if every inclusion and overlap ambiguity is resolvable, then the images of the irreducible
monomials form a basis for A/I.

This process may become more transparent from the example below; in addition,
Bergman’s paper has a number of nice examples for the trickier, noncommutative version.
We treat two separate cases, when i = ∅ and when i/= ∅.

Claim 2. Let i = ∅. We place the lexicographic order on monomials in R, so that f1 < f2 < · · · .
The relation yi,j = 0 for i < j will be rewritten as fif2

j = −fifj(fi + 2
∑

i<k<j fk), which replaces
fif

2
j with a sum of monomials all lower in the order. For each J /= ∅, the irreducible monomials

in RJ are precisely fm
k

∏
i∈Jfi, where k is the minimal index in J and m ≥ 0 (note: the exponent

of fk is m + 1 ≥ 1). When J = ∅, 1 is irreducible. Irreducibles form a basis for R/I∅.

Proof. A monomial is irreducible if fif2
j never appears as a factor for any i < j. Because of

this, the classification of irreducible monomials in each RJ is obvious. There are no inclusion
ambiguities between relations, since they are all homogeneous and degree 3. There are two
kinds of overlap ambiguities, both labelled by a choice of i < l < j.

For the first ambiguity, one can reduce x = fiflf
2
j by either reducing flf

2
j or fif2

j .
Applying the former reduction, x �→ fiflfj(−fl − 2

∑
l<k<j fk) which has a term given by
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−fif2
l fj that can be further reduced, yielding fiflfj(fi+2

∑
i<k<l fk −2

∑
l<k<j fk). Applying the

latter reduction, x �→ fiflfj(−fi−2
∑

i<k<j fk) = fiflfj(−fi−2
∑

i<k<l fk−2fl−2
∑

l<k<j fk), which
has a term given by −2fif2

l
fj that can be further reduced, yielding fiflfj(−fi − 2

∑
i<k<l fk −

2
∑

l<k<j fk + 2fi + 4
∑

i<k<l fk) = fiflfj(fi + 2
∑

i<k<l fk − 2
∑

l<k<j fk). Since these agree, the
ambiguity is resolvable.

For the second ambiguity, one can reduce x = fif
2
l
f2
j by either reducing fif

2
l

or flf2
j .

A very similar calculation shows that this ambiguity is resolvable as well. Therefore, the
Bergman diamond lemma implies that irreducibles form a basis for the quotient.

Remark 3.17. This also proves that none of the yi,j is redundant. Removing yi,j from the ideal,
we may apply the same Bergman diamond lemma argument to say that irreducibles form
a basis for the quotient. However, with no yi,j , the monomial fif2

j is irreducible, and the
quotient is larger than before. A similar statement can be made about the zk,j,i below.

When J /= ∅, the graded rank of the irreducibles in RJ is t2|J |/(1 − t2). When J is empty,
the only element of RJ is 1. So the graded rank of R/I∅ is 1+

∑
J /= ∅(t

2|J |/(1− t2)), but
∑

J t
2|J | =

(1 + t2)n since every fi may either appear or not appear, independently of every other. Hence∑
J /= ∅ t

2|J | = (1 + t2)n − 1. Putting it all together, the graded rank is ((1 + t2)n − t2)/(1 − t2) =
(tn[2]n − t2)/(1 − t2). Hence we have proven the following claim.

Claim 3. The graded dimension of R/I∅ is exactly εcat(u∅).

Claim 4. Let i/= ∅, and fix k ∈ i. We choose a different order on indices, where k < k + 1 <
k − 1 < k + 2 < k − 2 < · · · , and then place the lexicographic order on monomials. The relation
zk,j,i for j /= k will be rewritten in decreasing order format as either f2

j = −fj(fk + 2
∑

l fl) for
j /∈ i, or fj = −(fk + 2

∑
l fl) for j ∈ i, where the sum is over l between k and j. Then, the

irreducible monomials in RJ are precisely fm
k

∏
j∈J\ ifj for m ≥ 0. Irreducibles form a basis for

R/Ii.

Proof. An irreducible polynomial will be a polynomial which does not have f2
j as a factor, for

k /= j /∈ i, and does not have fj as a factor for k /= j ∈ i. The classification of irreducibles in RJ is
now obvious. There are no ambiguities whatsoever, so we are done by the Bergman diamond
lemma.

The graded rank of irreducibles in RJ is t2|J |−2d/(1− t2), for d the length of i (remember
that i ⊂ J). Thus, the graded rank of R/Ii is

∑
i⊂J(t

2|J |−2d/(1 − t2)) = (1 + t2)n−d/(1 − t2), and

the graded rank of R/Ii{d} is td(1 + t2)n−d/(1 − t2) = tn[2]n−d/(1 − t2). Hence, one considers
the following.

Claim 5. The graded dimension of R/Ii{d(i)} is exactly εcat(ui).

This is clearly sufficient to prove Lemma 1.1, modulo Proposition 3.24.

3.7. Weyl Lines and Disoriented Tubes

We now give two alternate interpretations of the TL ideals Ii. We continue to assume that i is
nonrepeating and zi,j,i generates Ii.

Definition 3.18. Let V be the reflection representation of Sn+1, such that R = C[f1, . . . , fn]
is the coordinate ring of V . Note that the linear equations which cut out reflection-fixed



International Journal of Mathematics and Mathematical Sciences 31

hyperplanes are precisely wi,j = fi + fi+1 + · · · + fj = xi − xj+1 for i ≤ j. A Weyl line is a line
in V through the origin which is defined by the intersection of reflection-fixed hyperplanes;
it is given by a choice of n − 1 transversely intersecting reflection-fixed hyperplanes. Given a
nonrepeating sequence i, one says that a Weyl line is transverse to i if it is transverse to (i.e.,
not contained in) the hyperplanes fk = 0 for each k ∈ i.

Proposition 3.19. The TL ideal of i is the ideal associated with the union of all Weyl lines transverse
to i (with its reduced scheme structure).

Example 3.20. Let n = 3. One can check that f1f2(f1+f2) = f2f3(f2+f3) = f1f3(f1+2f2+f3) = 0
cuts out 7 lines in V , namely,

(1) f1 = f2 = f1 + f2 = 0,

(2) f1 = f3 = 0,

(3) f2 = f3 = f2 + f3 = 0,

(4) f1 = f2 + f3 = f1 + f2 + f3 = 0,

(5) f1 + f2 = f3 = f1 + f2 + f3 = 0,

(6) f2 = f1 + f2 + f3 = 0,

(7) f1 + f2 = f2 + f3 = 0,

These 7 lines are precisely the 7 lines cut out by the intersection of pairs of reflection-fixed
hyperplanes. There are 6 reflection-fixed hyperplanes, given by equations f1, f2, f3, f1 + f2,
f2 + f3, and f1 + f2 + f3, or alternatively, by xi − xj for 4 ≥ j > i ≥ 1. Intersecting pairs of
hyperplanes will give a line, and occasionally this line is forced to lie in a third hyperplane,
as in the list above. One can check that this list covers all pairs of hyperplanes which give
distinct lines as their intersection.

Proof. This is not difficult to show, but since we have not seen it elsewhere, we provide a
complete proof. First, we show by induction on n that the ideal I∅ cuts out the Weyl lines with
the reduced scheme structure. The case n = 1 is trivial (and n = 2 is also obvious).

For any 1 ≤ k ≤ n, consider the hyperplane fk = 0 as an n − 1-dimensional space
V ′, with an action of Sn+1/〈sk〉 ∼= Sn. Giving Sn a Coxeter structure with simple reflections
si for i /= k (note that sk+1 = (k + 1, k + 2) = (k, k + 2) in the quotient), it is quite easy to
see that V ′ is the reflection representation of Sn. Moreover, the Weyl hyperplanes are cut
out by w′i,j = fi + fi+1 + · · · + fj (where fk = 0 so it may be left out of the sum) for i, j /= k,
and the equivalent polynomials y′i,j also have the same formulae, and are indexed by i, j /= k.
Therefore, for i, j /= k, the images of wi,j are just w′i,j , and the same for yi,j and y′i,j . Moreover,
if either i or j equals k, then yi,j = 0 on fk = 0, and wi,j is redundant on fk = 0, being equal to
some wi′,j ′ . By induction, y′i,j cut out the Weyl lines with the reduced scheme structure on V ′,
and therefore the vanishing set of yi,j agrees with the Weyl lines on fk = 0.

If all fk /= 0, then it is easy to see that the yi,j cut out a single line with the reduced
scheme structure, namely, −f1 = f2 = −f3 = · · · = (−1)nfn. This is a Weyl line, the intersection
of all wi,i+1. We wish to show that this is the only Weyl line transverse to all fk = 0. We can
show this by induction as well (again, the base case n = 2 is easy). Suppose we are given n−1
transverse hyperplaneswi,j . If any two involve the index n, that is,wi,n andwj,n, then we may
replace the pair withwi,n andwi,j since they have the same intersection (andwi,j is not already
in the set, or the intersection would not be transverse). So, we may assume that at most one of
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the chosen hyperplanes involves the index n, but then we have n − 2 transverse hyperplanes
which only involve indices {1, . . . , n − 1}, which must then be mutually transverse to fn = 0.
Letting V ′ be the hyperplane fn = 0 viewed as a reflection representation as above, we have
n−2 transverse hyperplanes which cut out a Weyl line transverse to fk = 0 for all 1 ≤ k ≤ n−1.
By induction, that Weyl line is −f1 = f2 = −f3 = · · · = (−1)n−1fn−1 (which holds true modulo
fn = 0), but repeating the same argument for the index k instead, we leave out the kth term

and get −f1 = f2 = · · · = ̂(−1)kfk = · · · = (−1)nfn modulo fk = 0. Together, all these equalities
imply that −f1 = f2 = · · · = (−1)nfn everywhere.

One might be worried, because of the restrictions used in the induction step, that
Ii does not give the reduced structure on the Weyl lines at the origin. However, Ii is a
homogeneous ideal which cuts out a reduced 0-dimensional subscheme of P(V ), so that its
vanishing on V is the cone of a reduced scheme, and hence is reduced. This concludes the
proof that I∅ cuts out the Weyl lines with the reduced scheme structure.

For i/= ∅, I∅ ⊂ Ii and the vanishing of Ii is contained in that of I∅. Choose k ∈ i. If fk = 0
then zk,k+1,i is equal to fa

k+1, where a = 1, 2 depending on whether k + 1 ∈ i, but either way we
get that fk+1 = 0. Then zk,k+2 = fak+2 for a = 1, 2, and so forth. Therefore fk = 0 only intersects
the vanishing of Ii at the origin (as sets). It is clear that, on the open set where fk /= 0 for all
k ∈ i, the polynomials zi,j,i and yi,j have the same vanishing (as schemes), since they differ by
a unit. The same cone argument shows that Ii gives the reduced structure at the origin.

Remark 3.21. In particular, I∅ is contained in every ideal, and the category TLC1 is manifestly
R/I∅-linear.

Remark 3.22. Let Z be the union of all Weyl lines in V . The previous results should lead one to
guess that the Temperley-Lieb algebra should be connected to the geometry of the Sn+1 action
on Z via TLC, in much the same way that the Hecke algebra is connected to the reflection
representation viaHC (see [11]). However, at the moment, we have no way to formulate the
category TLC in terms of coherent sheaves on Z × Z (i.e., R/I∅-bimodules) or the derived
category thereof. Describing TLC using sheaves on Z seems like an interesting question.

As an example of the difficulties, let Ui be the bimodule R/Ii ⊗ R/Ii{−1}, where the
tensor is over Rsi ; this should be the equivalent of the Soergel bimodule Bi. Then, there is a
degree-1 map R/I∅ → Ui sending 1 to xi ⊗ 1 − 1 ⊗ xi+1 (the boundary dot on the top), but
there is no degree-1 map Ui → R/I∅ (the boundary dot on the bottom); such a map should
send 1 ⊗ 1 to 1. There is only a degree-3 map, sending 1 ⊗ 1 to fi (the boundary dot with a
double dot). A similar problem occurs again: the trivalent vertex seems to be defined only in
one direction.

Now, we describe briefly the topological intuition associated with the category TLC,
and another way to view Ii. These remarks will not be used in the remainder of the paper,
nor will we give a proof. The reader should be acquainted with the section on sl2-foams in
Vaz’s paper [16].

Remark 3.23. Let F be the functor from TLC1 to the category of disoriented cobordisms
Foam2, as defined in Vaz’s paper. If fi is the double dot colored i, then one can easily see
that F sends fi to a tube connecting the ith sheet to the (i+1)th sheet, with a disorientation on
it. If the double dot appears in a larger morphism ϕ, such that in F(ϕ), the ith sheet and the
(i + 1)th sheet are already connected by a saddle or tube, then adding another tube between
them does nothing more than adding a disoriented handle to the existing surface. Note that
the map ϕi previously defined will connect the ith sheet to the (i + 1)th sheet for any i ∈ i.
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Suppose that the ith, (i + 1)th, and (i + 2)th sheets are all connected in a cobordism.
Then fi adds a handle on the left side of the (i + 1)th sheet, fi+1 adds a handle on the right
side, and these two disoriented surfaces are equal up to a minus sign in Foam2. This fact is
essentially the statement that:

+ = 0
(3.31)

In other words, the algebra k[f1, . . . , fn] maps to Foam2, sending fi to the disoriented
tube between the ith and (i + 1)th sheet. The ideal Ii is clearly in the kernel of this action
when applied to the cobordism F(ϕi). In fact, it is precisely the kernel, using the argument of
Proposition 4.2 in [36]: for any distinct monomials in a basis for R/Ii, their image in Foam2

will have independent evaluations with respect to some closure of the cobordism. We do
not do the calculation here. The usual arguments involving adjoint pairings imply that the
faithfulness of the functor F can be checked on Hom(∅, i). Therefore, the functor F is faithful.

3.8. Proof of Generation

Proposition 3.24. The TL ideal I∅ is generated by yi,j
def= fifj(fi + 2fi+1 + 2fi+2 + · · · + 2fj−1 + fj)

over all 1 ≤ i < j ≤ n.
The TL ideal Ii is generated by all zi,j,i

def= yi,j/gigj , where gi = fi if i ∈ i, gi = 1 otherwise.

We wish to determine the ideal generated by αk inside HOM(∅, i), for nonrepeating
i. As discussed in Remark 3.12 (where αk is defined), our goal is to take any graph Γ on the
punctured plane, with i as its outer boundary and k(k + 1) k(k + 1) as its inner boundary,
plug αk into the puncture, and reduce it to something in the ideal generated by the pictures
of Section 3.5.

αk

Γ

(3.32)

Our coloring conventions for this chapter will be that blue always represents the index
k, red represents k + 1, and other colors tend to be arbitrary (often, the number of other
colors appearing is also arbitrary). However, it will often happen that colors will appear in
increasing or decreasing sequences, and these will be annotated as such. Note that blue or
red may appear in the outer boundary as well, but at most once each.

Let us study Γ, and not bother to plug in αk. The only properties of αk which we need
are the following:

= 0 (3.33)
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This follows from (3.1), or just from isotopy. The same holds with colors being switched.

= 0
(3.34)

This is because the diagram reduces to a k-colored needle, with f = fk+1(fk +fk+1) inside, but
f is fixed by sk, so it slides out of the needle, and the empty needle is equal to 0. A similar
equality holds with colors switched.

= 2
(3.35)

This follows from the above and the dot forcing rules.
The final property we use is that any graph only using colors < k − 1 or > k + 2 can

slide freely across the puncture.
Note however that, say, an arbitrary k − 3 edge cannot automatically slide across the

puncture, because a k − 2 edge might be in the way, and this could be in turn obstructed by a
k − 1 edge, which cannot slide across the blue at all.

The one-color reduction results apply to any simply connected planar region, so we
may assume (without even using the relation (3.5)) that in a simply connected region of our
choice, the i-graph for each i is a simple forest with double dots. Any connected component of
an i-graph that does not encircle the puncture will be contained in a simply connected region,
and hence can be simplified; this will be the crux of the proof. The proof is simple, but has
many cases.

Remark 3.25. We will still need to use relation (3.5) as we simplify graphs.

We will treat cases based on the “connectivity” of Γ that is, how many of the blue
and red boundary lines in the inner and outer boundary are connected with each other. We
will rarely perform an operation which makes the graph more connected. At each stage, we
will reduce the graph to something known to be in the ideal or break edges to decrease the
connectivity. We call an edge coming from the puncture an interior line and one coming from
the outer boundary an exterior line.

Note also that any double dots that we can move to the exterior of the diagram become
irrelevant, since the picture with those double dots is in the ideal generated by the picture
without double dots. Also, any exterior boundary dots are irrelevant, since they are merely
part of the map ϕi and do not interfere with the rest of the diagram at all.

Step 1. Suppose that the two interior red lines are in the same component of Γk+1. Then, there
is some innermost red path from one to the other, such that the interior of this path (the region
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towards the puncture) is simply connected. Applying reductions, we may assume that the k-
graph in this region consists of a blue boundary dot with double dots, and the k + 1-graph
and k + 2-graph each consists only of double dots. We may assume all double dots occur
right next to one of the red lines coming from the puncture. The current picture is exactly like
that in (3.33), except that there may be double dots inside and other colors may be present
(also, there could be more red spokes emanating from the red arc, but these can be ignored or
eliminated using (2.16) and tree reduction). However, the double dots may be forced out of
the red enclosure at the cost of potentially breaking the red edge, and breaking it will cause
the two red interior lines to be no longer in the same connected component. If there are no
double dots, then all the remaining colors (which are < k − 2 or > k + 1) may be slid across
the red line and out of the picture. Hence, we are left with the exact picture of (3.33), which
is zero.

Thus, we may assume that the two red lines coming from the puncture are not in the
same component. The same holds for the blue lines.

Step 2. Suppose that the component of one of the interior blue lines wraps the puncture,
creating an internal region (which contains the puncture). Again, reducing in that internal
region, the other interior blue line cannot connect to the boundary so it must reduce to a
boundary dot (with double dots), the reds may not connect to each other so each reduces
to a boundary dot, and as before we are left in the picture of (3.34) except possibly with
double dots and other colors. If there are no double dots, all other colors may be slid out,
and the picture is zero by (3.34). Again, we can put the double dots near the exterior, and
forcing them out will break the blue arc. It is still possible that some other cycle still allows
that component to wrap the puncture; however, this process needs to only be iterated a finite
number of times, and finitely many arcs broken, until that component no longer wraps the
puncture.

So, we may assume that the component of any interior line, red or blue, does not
wrap the puncture. That component is contained in a simply connected region, so it reduces
to a simple tree. Hence, we may assume that the components of interior lines either end
immediately in boundary dots, or connect directly to an external line of the same color (at
most one as such exists of each color).

Step 3. Suppose that there is a blue edge connecting an internal line directly to an external
one. Consider the region Γ′:

Γ′
(3.36)

Then Γ′ is simply connected. Other colors in Γ may leave Γ′ to cross through the blue
line; however, the colors k − 1, k, k + 1 may not. Therefore, reducing within Γ′, we may end
the internal blue line in a boundary dot and eliminate all other instances of the color blue
(since they become irrelevant double dots on the exterior), reduce red to a simple forest
where the two interior lines are not connected (again, ignoring irrelevant double dots), and
reduce k−1 to either the empty diagram or an external boundary dot (depending on whether
k + 1 ∈ i). Once this has been accomplished, the absence of the color k − 1 implies that we
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may slide k − 2 freely across the puncture! The color k − 2 can be dealt with in the entire
disk, which is simply connected, so it reduces to the empty diagram or an external boundary
dot (depending on whether k + 2 ∈ i), with extraneous double dots. Then we may deal with
color k − 3, and so forth.

Thus, the existence of the blue edge implies that all colors < k can be ignored: they
appear in irrelevant double dots, in irrelevant boundary dots, or not at all. Similarly, the
existence of a red edge allows us to ignore all colors > k + 1.

Step 4. Let us consider only the components of graphs which do not meet the internal
boundary.

Lemma 3.26. Consider a component of a graph on a punctured disk which does not meet the internal
boundary and which meets the external boundary at most once. Then it can be reduced to one of the
following, with double dots on the exterior: the empty graph, a boundary dot, a circle around the
puncture, a needle coming from the external boundary, with its eye around the puncture.

Proof. Suppose that the component splits the punctured plane into m regions. If the
component is contained in a simply connected part of the punctured plane, we are done.
This is always true for m = 1. So we may suppose that m ≥ 2 and, we have two distinguished
regions: the external region, and the region containing the puncture. Any other region is one
of two kinds, as illustrated in the following equality (due to (2.16):

= (3.37)

On the right side we have a region which is contained in a simply connected part and
thus can be eliminated by reduction (see Proposition 3.9). On the left side the region is not
contained in a simply connected part nor does it contain the puncture. However, any such
region can be altered, using (2.16) as in the heuristic example above, into a cycle of the first
kind. Therefore, we may assume there are exactly 2 regions.

In the event that there are two regions, we have a cycle which surrounds around
the puncture and may have numerous branches into both regions, internal and external.
However, each branch must be a tree lest another region be created. These trees reduce in
the usual fashion, and therefore the internal branches disappear, and the external branches
either disappear or connect directly to the single exterior boundary. Thus, we have either a
needle or a circle. Double dots, as usual, can be forced out of the way possibly at the cost of
breaking the cycle, and reducing to the case m = 1.

Let us now examine the remaining cases. We will ignore all parts of a graph which are
double dots on the exterior, or are external boundary dots.

Case 1. Both a blue edge and a red edge connect an internal line to an external line. Then, as
in Step 3, all other colors can be ignored, and the entire graph is

(3.38)
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This, as explained in Section 3.5, is zk,k+1,i.

Case 2. A blue edge connects an internal line to an external line, and both red internal lines
end in boundary dots. As discussed in Step 3, we may ignore all colors < k, and both colors
k and k + 1 do not appear in a relevant fashion outside of what is already described. We may
ignore the presence of any double dots. However, there may be numerous circles and needles
colored ≥ k + 2 which surround the puncture and cross through the blue line, in an arbitrary
order.

(3.39)

Claim 6. The sequence of circles and needles can be assumed to form an increasing sequence
of colors, from k + 2, k + 3, . . . until the final color, and assuming that only the final color may
be a needle.

Proof. If the innermost circle/needle is not colored k + 2, then it may slide through the
puncture, and will evaluate to zero by (2.18). So, suppose the innermost is k + 2. If it is a
needle, not a circle, then there can be no more k + 2-colored circles, and no k + 3-colored
circles. Color k + 4 can be pulled through the middle so resolved on the entire disk and hence
can be ignored, and so too with k+5 and higher. This is the “needle” analogy to the conclusion
of Step 3: the existence of an m-colored needle around the puncture and the lack of m or m+1
on the interior of the needle will allow us to ignore all colors ≥ m + 1.

So, suppose it is a k + 2-colored circle. If the next circle/needle is colored ≥ k + 4 then it
slides through the k+2 circle and the puncture and evaluates to zero. If the next circle/needle
is also colored k + 2, then we may use the following calculation to ignore it. The calculation
begins by using (2.33)

= = = 2 (3.40)

Thus, we may assume that the next circle/needle is colored k+3. Again, if it is a needle,
then we can ignore all other colors, and our picture is complete.

Similarly, the next circle/needle can not be colored ≥ k + 5 lest it slide through, and it
can not be colored k + 3 lest we use (3.40). If it is colored k + 2, then we may use the following
calculation to ignore it. The calculation begins by using (3.5), and assumes green and purple
are adjacent
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= − = − = (3.41)

Thus, we can assume the next circle/needle is colored k + 4. If it is a needle, then all
colors k + 5 and higher can be ignored. Additional circles of color k + 2 could run through the
needle, but these could be slid inwards and reduced as before. So, if it is a needle, our picture
is complete.

Finally, the next circle/needle can not be colored ≥ k + 6 lest it slide, k + 4 lest we use
(3.40), k + 3 lest we use (3.41), or k + 2 lest we slide it inside and reduce it as above. Hence
it is colored k + 5, and if it is a needle, we are done. This argument can now be repeated ad
infinitum.

Thus, our final picture yields zk,j,i as in (3.26) or (3.29).
Note that the case of a red edge works the same way, with a decreasing sequence

instead of an increasing sequence.

Case 3. All the internal lines end in boundary dots. We may assume that the remainder of
the graph consists of circles/needles around this diagram, but we have no restrictions at the
moment on which colors may appear.

Claim 7. We may assume that the colors in circles/needles form an increasing sequence from
k + 2 up, and a decreasing sequence from k − 1 down (these sequences do not interact, so
without loss of generality. we may assume the increasing sequence comes first, then the
decreasing one). Only the highest and lowest color may be a needle.

Proof. The method of proof will be the same as the arguments of the previous case.
Consider the innermost circle/needle. If it is colored k or k+1, then we may use (3.35)

to reduce the situation to a previous case. If it is colored ≥ k+3 or ≤ k−2 then it slides through
the puncture. So we may assume it is k + 2 or k − 1. If it is a k + 2-colored (resp., k − 1-colored)
needle, then the usual arguments imply that all colors > k + 2 (resp., < k − 1) can be ignored.
This same argument with needles will always work, so we will not discuss the circle/needle
question again, and speak as though everything is a circle.

Assume that the first colors appearing are an increasing sequence from k + 2 to i and
then a decreasing sequence from k − 1 to j. Note that either sequence may be empty. If the
next color appearing is ≤ j − 2 then it slides through the whole diagram and the puncture,
and evaluates to zero. If the decreasing sequence is nonempty and the next color is j then we
use (3.40); if it is ≥ j + 1 and ≤ k − 1 then we slide it as far in as it will go and use (3.41). If the
decreasing sequence is nonempty and the next color is k then one can push it almost to the
center, and use the following variant of (3.41):

= − = = (3.42)
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In this picture, green is k − 1 and is the only thing in the way of the blue circle. The
first equality uses (3.5), and the second equality uses (2.29), and eliminates the terms which
vanish due to (3.34).

Continuously, if the decreasing sequence is empty and the next color is k, then we may
use (3.35) as above. Any colors which are ≥ k + 1 do not depend on the increasing sequence,
and instead use the exact analogs for the increasing sequence.

Hence, in any case in which the next color appearing is not i+1, or j−1, or the beginning
of a new increasing/decreasing series, we may simplify the diagram to ignore the new circle.
Induction will now finish the proof.

Therefore, the resulting diagram is equal to zi,j,i, matching up either with (3.27) or
(3.30).

Since every possible graph can be reduced to a form which is demonstrably in the ideal
generated by zi,j,i, we have proven that these elements do in fact generate the TL ideal Ii.

4. Irreducible Representations

In this section, we may vary the number of strands appearing in the Temperley-Lieb algebra.
When TL appears, it designates the Temperley-Lieb algebra on n + 1 strands, but TLk
designates the algebra on k strands.

4.1. Cell Modules

The Temperley-Lieb algebra has the structure of a cellular algebra, a concept first defined
by Graham and Lehrer [37]. One feature of cellular algebras is that they are equipped with
certain modules known as cell modules. Cell modules provide a complete set of nonisomorphic
irreducible modules in many cases (such as TL in type A). Cell modules come equipped
with a basis and a bilinear form, making them obvious candidates for categorification. We
will not go into detail on cellular algebras here, or even use their general properties; instead
we will describe the cell modules explicitly and pictorially for the case of TL, where things
are unusually simple. Nothing in this section or the next is particularly original, and we state
some standard results without proof.

Notation 6. Consider a crossingless matching in the planar strip between n points on the
bottom boundary and m points on the top. We call this briefly an (n,m) diagram. In the
terminology of [30], there are two kinds of arcs in a diagram: horizontal arcs which connect
two points on the top (let us call it a top arc), or two points on the bottom (bottom arc) and
vertical arcs which connect a point on the top to one on the bottom. Elsewhere in the literature,
vertical arcs are called through-strands. An (n, k) diagram with exactly k through-strands (and
therefore no top arcs) has an isotopy representative with only “caps” (local maxima) and no
“cups” (local minima) so it is called an (n, k) cap diagram. A (k, n) diagram with k through-
strands is called a (k, n) cup diagram.

The set of all (n,m) diagrams can be partitioned by the number of through-strands.
Any (n,m) diagram with k through-strands can be expressed as the concatenation of an (n, k)
cap diagram with a (k,m) cup diagram in a unique way. For an illustration of this concept,
see Figure 5.
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Figure 5: On the left side, a (7, 7) diagram with k = 3 through-strands and l = 2 top arcs (resp., bottom
arcs) is decomposed into a (7, 3) cap diagram a-composed with a (3, 7) cup diagram z. On the right side,
an element of TL3 is obtained by composing a and z in the opposite order.

In an (m,m) diagram the number l of top arcs equals the number of bottom arcs, and if
k is the number of through-strands, then k + 2l = m. We will typically use k and l to represent
the number of through-strands and top arcs in an (m,m) diagram henceforth.

Notation 7. Let X be the set of all (n + 1, n + 1) diagrams. Let ω be the endomorphism of X
sending each diagram to its vertical flip. We will write the operation on diagrams of reduced
vertical concatenation by ◦: a ◦ b places a above b and remove any circles. Let Xk be the set of
crossingless matchings with exactly k through-strands. Let Mk be the set of all (n + 1, k) cap
diagrams, so that ω(Mk) is the set of all (k, n + 1) cup diagrams.

Definition 4.1. Let Lk be the free Z[t, t−1] module spanned by Mk, the (n + 1, k) cap diagrams.
We place a right TL-module structure on Lk by concatenation, where circles become factors
of [2] as usual, and any resulting diagram with fewer than k through-strands is sent to 0. This
is the cell module for cell k, and it is irreducible.

Example 4.2. The only diagram in Xn+1 corresponds to the identity map in TL. The cell
module Ln+1 has rank 1 over Z[t, t−1], and its generator is killed by all ui. We will take this as
the definition of the sign representation of TL.

Example 4.3. The next cell module Ln−1 has rank n over Z[t, t−1], having generators vi, i =
1 · · ·n (see Figure 6), such that

vjui =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[2]vj if i = j,

vi if i and j are adjacent,

0 if i and j are distant.

(4.1)

Given a (n+1, k) cap diagram a and a (k, n+1) cup diagram z, there are two things we
can do: take the composition z◦a to obtain an element called cz,a ofXk or take the composition
a ◦ z to get an element of TLk (there may be additional circles created, and the final diagram
may have fewer than k through-strands). Both compositions have the same closure on the
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punctured plane. Note that ω(cz,a) = cω(a),ω(z). The seemingly extraneous use of the notation
c·,· is standard for cellular algebras.

Proposition 4.4. There is, up to rescaling, a unique pairing (, ) : Lk × Lk → Z[[t, t−1]] for which ui
is self-adjoint, that is, (aui, b) = (a, bui). Given cup diagrams a and b inMk, one evaluates (a, b) by
considering the closure of cω(a),b ∈ TL, or equivalently the closure of b ◦ω(a) ∈ TLk. If the diagram
has nesting number k, one returns a scalar times [2] raised to the number of circles; if it has nesting
number < k, one returns zero. This is precisely the evaluation ε(cω(a),b) for some well-defined trace on
TL supported on nesting number k (which are unique up to rescaling).

4.2. Some Induced Sign Representations

Cell modules are naturally subquotients of the cellular algebra itself, viewed as a free module
(see [37]). For our purposes, we will describe the cell modules as subquotients of TL in
a different way, which will be more convenient to diagrammatically categorify. Taking the
inclusionTLJ → TL for some sub-Dynkin diagram J , we can induce the sign representation
ofTLJ up toTL. This is the quotient ofTL by the right ideal generated by ui, i ∈ J . In a future
paper, we will describe, for both the Hecke and Temperley-Lieb algebras, a diagrammatic way
to categorify the induction of both the “sign” and “trivial” representations of sub-Dynkin
diagrams, but for this paper we restrict to a specific case. For the sub-Dynkin diagram which
contains every index except i, let Ii be the corresponding ideal (generated by uj for j /= i),
and consider the induced sign representation V i = TL/Ii. Let li = min(i, n + 1 − i) and let
ki = n + 1 − 2li. It turns out that we can embed Lki inside V i, as shown explicitly below, and
we will categorify both modules accordingly. For this reason, we use Li to denote Lki . Note
that every possible Lk can be achieved as some Li with the exception of Ln+1.

For the rest of this section, fix an index i ∈ I. We define a module V i overTL abstractly,
and then prove that this module is isomorphic to TL/Ii.

Definition 4.5. For 0 ≤ l ≤ li (and letting k = n + 1 − 2l as always), let aik be the following
(k, n + 1) cup diagram with l top arcs, where the innermost top arc always connects i to i + 1:

l = 0 l = 1

(4.2)

l = 2 l = 3

(4.3)

Let Xi
k ⊂ Xk consist of all matchings of the form cai

k
,b for b ∈Mk. Let Xi be the disjoint

union of all Xi
k for 0 ≤ l ≤ li, and let V i be the free Z[t, t−1]-module with basis Xi. There is

a distinguished element 1 of this basis, the unique member of Xi
n+1. Let TL act on V i on the
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Figure 6: A basis for the cell module Ln−1, consisting of (n + 1, n − 1) cap diagrams (here, n = 4).

right by viewing elements of V i as though they were inTL, using the standard multiplication
rules, and then killing any terms whose diagrams are not in Xi.

The elements of Xi exhaust those elements of X where the only simple top arcs (those
connecting j to j + 1 for some j) connect i to i + 1. Any crossingless matching with a simple
top arc connecting j to j + 1 has an expression in TL as a monomial ui which begins with
uj . The converse is also true. Thus, Xi are the elements of X for which every expression of the
matching begins with ui. This motivates the definition.

While something does need to be checked to ensure that this defines a module action, it
is entirely straightforward. In the Temperley-Lieb algebra, things are generally easy to prove
because products of monomials always reduce to another monomial (with a scalar), not a
linear combination of multiple monomials. Therefore, checking the associativity condition for
being a module, say, involves showing that both sides of an equation are the same diagram
in Xi, or that both sides are 0. This module is cyclic, generated by 1, and Ii is clearly in the
annihilator of 1, so that TL/Ii surjects onto V i. One could prove the following by bounding
dimensions.

Claim 8. The modules V i and TL/Ii are isomorphic.

There is a (cellular) filtration on V i, given by the span of Xi
≤k, diagrams with at most

k through-strands (call it V i
≤k). Clearly, each subquotient in this filtration has a basis given

by Xi
k, or in other words by the elements cai

k
,b for b ∈ Mk. It is an easy exercise that this

subquotient is isomorphic to the cell module Lk, under the map sending b ∈ Mk to cai
k
,b.

There is one subquotient for each 0 ≤ l ≤ li.

Claim 9. The module Li is a submodule of V i.

Proof. Letting l = li and k = ki, the final term in the filtration is precisely Li ∼= V i
ki

.

Having explicitly defined the embedding Li ⊂ V i, we pause to investigate adjoint
pairings on V i.

Proposition 4.6. Consider the Z[[t, t−1]] module of semi-linear pairings on V i where (xuj , y) =
(x, yuj) for all j. Consider the li + 1 functionals on this space, which send a pairing to (1, cai

k
,ω(ai

k
))

for various k = n + 1 − 2l, 0 ≤ l ≤ li. Then these linear functionals are independent and yield an
isomorphism between the space of pairings and a free module of rank li + 1.

Note that, using adjunction, one can check that [2]l(1, cai
k
,ω(ai

k
)) = (cai

k
,ω(ai

k
), cai

k
,ω(ai

k
)).
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Proof. Given diagrams x, y ∈ Xi, the self-adjointness of ui implies that the value of (x, y) is
an invariant of the diagram y ◦ ω(x). In particular, (x, y) = (1, yω(x)) = (xω(y),1), where
yω(x) refers to the image of this diagram in the quotient TL/Ii. Therefore, if either yω(x) or
xω(y) is not in Xi then the value of (x, y) is zero. However, Xi ∩ ω(Xi) = {cai

k
,ω(ai

k
)} where

this set runs over all k with 0 ≤ l ≤ li. Thus the value of the pairing on all elements is clearly
determined by the values of (1, cai

k
,ω(ai

k
)) for all such k.

Consider the following map V i × V i → Z[[t, t−1]]: fix k, and for basis elements x, y
send (x, y) to r ∈ Z[t, t−1] if yω(x) = rcai

k
,ω(ai

k
) ∈ TL, and send (x, y) to zero otherwise.

Clearly this is a well-defined semi-linear map (being defined on a Z[t, t−1]-basis) and uj is
self-adjoint. Thus we have enough pairings to prove independence.

Remark 4.7. Once again, all pairings are defined topologically. The closure of cai
k
,ω(ai

k
) has

nesting number exactly k, which distinguishes the traces.

4.3. Categorifying Cell Modules

Categorifying the sign representation Ln+1 is easy. If we take the quotient of TLC by all
nonempty diagrams, we get a category where the only nonzero morphism space is the one-
dimensional space Hom(∅, ∅). This clearly categorifies Ln+1, and we will say no more.

Consider the quotient of the category TLC1 by all diagrams where any color not equal
to i appears on the left. Call this quotient Vi1. As usual, we let Vi2 be its additive grading
closure, and let Vi be its graded Karoubi envelope. We will show that Vi ∼= Vi2, so that we
really may think of Vi entirely diagrammatically without worrying about idempotents. We
claim that Vi categorifies V i. Not only this, but the action of TLC on Vi by placing diagrams
on the right will categorify the action of TL on V i.

Any monomial ui which goes to zero in V i is equal to a (scalar multiple of a) monomial
uj where some index j /= i appears on the left. Therefore, the corresponding object Ui will be
isomorphic to Uj, whose identity morphism is sent to zero in Vi1 since it has a j-colored line
on the left. There is an obvious map from V i to the Grothendieck group of Vi2, and the action
of TLC, descended to the Grothendieck group, will commute with the action of TL on V i.

Therefore, Hom spaces in Vi1 will induce a semi-linear pairing on V i, which satisfies
the property (auj , b) = (a, buj) becauseUj is self-adjoint. As before, once we determine which
pairing this is, our proof will be almost complete.

Lemma 4.8. The pairing induced by Vi1 will satisfy (1, caik,ω(aik)) = t
l/(1 − t2), where k = n + 1 − 2l.

Remark 4.9. Taking a (n + 1, n + 1) diagram and closing it off on the punctured plane, if m is
the number of circles and k is the nesting number, then the pairing comes from the trace on
TLwhich sends this configuration to [2]l+m−(n+1)(tl/(1 − t2)).

For a closure of an arbitrary diagram, l + m < n + 1 is possible. However, for any
diagram in Xi ∩ ω(Xi) (with extra circles thrown in), we have l +m ≥ n + 1, since removing
the circles yields precisely cai

k
,ω(ai

k
) for some k. This guarantees that evaluating the formula on

an element of V i yields a power series with nonnegative coefficients.

The proof of the lemma may be found shortly below. Temporarily assuming the
lemma, the remainder of our results are easy.
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Theorem 4.10. Vi2 is idempotent closed and Krull-Schmidt, so that Vi ∼= Vi2. Its Grothendieck group
is isomorphic to V i.

Proof. It is enough to check that for any ui /=uj corresponding to matchings in Xi,
Hom(Ui, Ui) is concentrated in nonnegative degrees with a 1-dimensional degree 0 part, and
Hom(Ui, Uj) is concentrated in strictly positive degrees (see the proof of Proposition 3.4).
This is a calculation using the semi-linear pairing.

Lettingm be the number of circles in a configuration on the punctured disk, and letting
k = n + 1 − 2l be the nesting number, then the evaluation will be in strictly positive degrees
if m < n + 1, and will be in nonnegative degrees with a 1-dimensional degree 0 part if m =
n + 1 exactly, but this was precisely the calculation in the proof of Lemma 3.5: for arbitrary
crossingless matchings ui and uj, the closure of uiω(uj) has fewer than n + 1 circles if ui /=uj,
and exactly n + 1 if they are equal.

Corollary 4.11. Let Li be the full subcategory of Vi with objects consisting of (sums and grading
shifts of) Ui such that ui is an element of V i

n+1−2li
. This has an action of TLC on the right. On the

Grothendieck group, this setup categorifies the cell module Li = V i
n+1−2li

.

Proof. That this subcategory is closed under the action of TLC is obvious, as is the existence
of a map from Li to the Grothendieck group. We already know the induced pairing, because
the subcategory is full. Therefore, the same arguments imply that the Grothendieck group
behaves as planned.

Proof of Lemma 4.8. To calculate the pairing, we may calculate (ui, ui) = gdimEnd(Ui) for the
following choices of i: ∅, i, i(i + 1) (i − 1), i(i + 1) (i − 1)(i + 2)i(i − 2), i(i + 1) (i − 1)(i + 2)i(i −
2)(i + 3)(i + 1)(i − 1)(i − 3), and so forth. These are pictured below.

(4.4)

(4.5)

These sequences are split into subsequences we call “tiers”, where the mth sequence
adds the mth tier. The following property of these sequences is easily verified: each sequence
i is in Xi, and remains in Xi if one removes any subset of the final tier, but ceases to be in Xi

if one removes a single element from any other tier instead.
Fix nonempty i in this sequence, and let j be the subsequence with the final tier

removed. It is a quick exercise to show that the lemma is equivalent to gdimEnd(Ui) =
(1 + t2)l/(1 − t2), where l is the number of elements in the final tier.

Now consider an element of the endomorphism ring. Using previous results, we may
assume it is a simple forest, with all double dots on the far left. Any double dot colored j /= i
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will be sent to zero, so we have only an action of the ring k[fi] on the left. This accounts for
the 1/(1 − t2) appearing in all the formulae.

Suppose there is a boundary dot in the morphism on any line not in the final tier. Then
the morphism factors through the sequence Uk where k is i with that index removed. As
discussed above, uk is not in Xi and therefore Uk is isomorphic to the zero object. See the
first picture below for an intuitive reason why such a morphism vanishes. Hence, the only
boundary dots which can appear occur on the final tier. It is easy to check that the existence of
a trivalent vertex joining three boundary lines will force the existence of a dot not on the final
tier; see the second picture below. Both pictures are for the sequence i(i+1)(i−1)(i+2)i(i−2),
and blue will represent i in all pictures in this section.

(4.6)

Therefore a nonzero endomorphism must be 1Uj accompanied on the right by either
identity maps or broken lines (pairs of boundary dots), because all other simple forests yield a
zero map. Identity maps have degree zero, while broken lines have degree 2. If these pictures
form a basis (along with the action of blue double dots on the left), then the graded dimension
will be exactly as desired. An example with l = 3, two broken lines, and one unbroken line is
shown below.

(4.7)

This spanning set is linearly independent in TLC over k, so any further dependencies
must come from having a nonblue color on the left. Consider an arbitrary endomorphism,
and reduce it using the TLC relations to a simple forest with all double dots on the left. The
actual double dots appearing are ambiguous, since there are polynomial relations in TLC,
but it is easy (knowing the generators of the TL ideal) to note that these relations are trivial
modulo nonblue colors. Hence the spanning set will be linearly independent if any diagram
inTLCwhich started with a nonblue color on the left will still have a nonblue color (perhaps
in a double-dot) on the left after reducing to a simple forest. This will be the case for any
diagram with a boundary dot on j.

Let red indicate any other index, and suppose that red appears on the far left.
Regardless of what index red is, unless there is a dot on j, the identity lines of j block
this leftmost red component from reaching any red on the boundary of the graph. Take a
neighborhood of a red line segment which includes no other colors and goes to −∞. Excising
this neighborhood, we get a simply connected region where the only relevant red boundary
lines are the two which connect to the ends of the segment. Red then will reduce to a simple
forest with double dots on the left, which in this case yields either a red double dot or a red
circle (potentially with more double dots).

or (4.8)
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However, no colors adjacent to red can interfere on the interior of a red circle, so the
circle evaluates to zero. Therefore, the diagram evaluates to zero or has at least one red double
dot on the left. We may ignore the red double dot and reduce the remainder of the diagram,
and so regardless of what else is done, the final result will have a red double dot on the
left.

Acknowledgments

The author was supported by NSF Grants DMS-524460 and DMS-524124. The author would
like to thank Mikhail Khovanov, Catharina Stroppel, and the referees for many thoughtful
comments.

References

[1] J. Chuang and R. Rouquier, “Derived equivalences for symmetric groups and sl2- categorification,”
Annals of Mathematics, vol. 167, no. 1, pp. 245–298, 2008.

[2] R. Rouquier, “2-Kac Moody algebras,” http://arxiv.org/abs/0812.5023.
[3] A. Lauda, “Categorified quantum sl(2) and equivariant cohomology of iterated flag varieties,”

Published in Algebras and Representation Theory.
[4] M. Khovanov and A. Lauda, “A diagrammatic approach to categorification of quantum groups III,”

Quantum Topology, vol. 1, no. 1, pp. 1–92, 2010.
[5] M. Varagnolo and E. Vasserot, “Canonical bases and Khovanov-Lauda algebras,” http://arxiv

.org/abs/0901.3992.
[6] A. Lauda and M. Vazirani, “Crystals from categorified quantum groups,” http://www.laolinghua

.com/abs/0909.1810.
[7] D. Hill and J. Sussan, “The Khovanov-Lauda 2-category and categorifications of a level two quantum

sl(N) representation,” http://arxiv.org/abs/0910.2496.
[8] W. Soergel, “The combinatorics of Harish-Chandra bimodules,” Journal für die Reine und Angewandte

Mathematik, vol. 429, pp. 49–74, 1992.
[9] W. Soergel, “Gradings on representation categories,” in Proceedings of the International Congress of

Mathematicians (ICM ’94), pp. 800–806, Birkhäuser, Zürich, Switzerland.
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