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1. Introduction

Dontchev [1] introduced the notions of contra continuity and strong S-closedness in
topological spaces. He defined a function f : X—Y is contra continuous if the preimage
of every open set of Y is closed in X. A new weaker form of this class of functions called
contra semicontinuous function is introduced and investigated by Dontchev and Noiri
[2]. Caldas and Jafari [3] have introduced and studied contra f3-continuous function.
Jafri and Noiri [4, 5] introduced and investigated the notions of contra super continuous,
contra precontinuous, and contra a-continuous functions. Almost contra precontinuous
functions were introduced by Ekici [6] and recently have been investigated further by
Noiri and Popa [7]. Nasef [8] has introduced and studied contra y-continuous function.
In This direction, we will introduce the concept of almost contra w-continuous func-
tions via the notion of w-open set and study some properties of contra w-continuous and
almost contra w-continuous.

All through this paper, (X,7) and (Y,0) stand for topological spaces with no sep-
aration axioms assumed, unless otherwise stated. Let A < X, the closure of A and the
interior of A will be denoted by CI(A) and Int(A), respectively. A is regular open if
A =1Int(Cl(A)) and A is regular closed if its complement is regular open; equivalently
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A is regular closed if A = Cl(Int(A)), see [9]. Let (X, 7) be a space and let A be a subset of
X. A point x € X is called a condensation point of A if for each U € 7 with x € U, the set
U N A is uncountable. A is called w-closed [10] if it contains all its condensation points.
The complement of an w-closed set is called w-open. It is well known that a subset W of
a space (X, 1) is w-open if and only if for each x € W, there exists U € 7 such thatx € U
and U — W is countable. The family of all w-open subsets of a space (X, 7), denoted by
T4, forms a topology on X finer than 7. We set wO(X,x) = {U:x € Uand U € 1,}. The
w-closure and w-interior, that can be defined in a manner to CI(A) and Int(A), respec-
tively, will be denoted by Cl,(A) and Int, (A), respectively. Several characterizations and
properties of w-closed subsets were provided in [10-12].

2. Contra w-continuous

Definition 2.1. A function f : X—Y is called w-continuous [12] if for each x € X and
each open set V of Y containing f(x), there exists U € wO(X,x) such that f(U) € V.

Definition 2.2. A function f :X-Y is called contra-w-continuous (resp., contra-
continuous [1]) if f~1(V) is w-closed (resp., closed) in X for each open set of Y.

Definition 2.3. A function f : X—Y is said to be almost continuous [13] if f (V) is open
in X for each regular open set V of Y.

LEMMA 2.4 [4]. The following properties hold for subsets A,B of a space X:
(1) x € Ker (A) if and only if AN F#¢ for any F € C(X,x);
(2) A< Ker(A) and A = Ker (A) if A is open in X;
(3) if A € B, then Ker (A) < Ker (B).

THEOREM 2.5. The following are equivalent for a function f : X—Y:
(1) f is contra-w-continuous;
(2) for every closed subset F of Y, f ~'(F) € wO(X);
(3) for each x € X and each F € C(Y, f(x)), there exists U € wO(X,x) such that
F(U) < F;
(4) f(Cly(A)) € Ker(f(A)) for every subset A of X;
(5) Clu(f~4(B)) = f~'(Ker(B)) for every subset B of Y.

Proof. The implications (1)< (2) and (2)=(3) are obvious.

(3)=(2) Let F be any closed set of Y and x € f~1(F). Then f(x) € F and there exists
U, € wO(X,x) such that f(Uy) = F. Therefore, we obtain f~}(F) = U{U, | x € f~1(F)}
and f~!(F) is w-open, since 1, is a topological space.

(2)=(4) Let A be any subset of X. Suppose that y ¢ Ker(f(A)). Then by Lemma 2.4
there exists F € C(Y, f(x)) such that f(A) N F = ¢. Thus, we have An f~!(F) = ¢ and
since f!(F) is w-open then we have Cl,(A) N f~1(F) = ¢. Therefore, we obtain
f(Cly(A)NF=¢and y & f(Cly(A)). This implies that f(Cl,(A)) € Ker(f(A)).

(4)=>(5) Let B be any subset of Y. By (4) and Lemma2.4, we have
f(Cly(f~1(B))) = Ker (f(f~1(B))) = Ker(B) thus Cl,(f1(B)) = f~!(Ker(B)).

(5)=(1) Let V be any open set of Y. Then, by Lemma 2.4 we have Cl,(f~(V))
c f~Y(Ker(V)) = f~1(V) and Cl,(f~1(V)) = f~1(V). This shows that f~1(V) is w-
closed in X. O
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The following examples show that contra-w-continuous and contra-precontinuous
functions [4] (resp., contra-semicontinuous [2], contra-a-continuous [5], contra-y-
continuous [8]) are independent notions.

Example 2.6. Let X = {a,b} with 7 = {X, ¢, {a}} and the real number R with the standard
topology, consider the map f : R—X defined by f(x) = b if x € Q where Q is the set of
all rational numbers and f(x) = a if x ¢ Q. Then f is contra-precontinuous but not f
contra-w-continuous since {b} is a closed set of (X,7) and f~!({b}) = Q is not w-open.
but Q is preopen set in R.

Example2.7. Let X = {a,b,c},7 = {¢,{a},{b},{a,b},X},and Y = {1,2} be the Sierpinski
space with the topology 0 = {¢, {1},Y}. Let f : (X,7)—(Y,0) be defined by f(a) = 1 and
f(b) =2 = f(c). Then f is contra w-continuous but not contra-precontinuous, since {2}
is a closed set of (Y, o) and f‘l({Z}) = {¢, b} is not preopen (X, 7).

Example 2.8. Let X = {a,b,c},7 = {¢$,{a},X}, and 0 = {¢,{c}, b}, {c,b},X}. Then the
identity function f : (X,7)—(X,0) is contra-w-continuous but not contra-continuous.

Example 2.9. X = {a,b} with 7 = {X,¢,{a}} and the real number R with the standard
topology, consider the map f: R—X defined by f(x) = b if x € [0,1) and f(x) = a if
x & [0,1). Then f is contra-semicontinuous but not f contra-w-continuous since {b} is
a closed set of (X, 1) and f~!({b}) = [0,1) is not w-open. but [0,1) is semi-open set in R.

Example 2.10. Let X = {a,b} with the indiscrete topology 7 and ¢ = {¢, {a},X}. Then
the identity function f : (X,7)—(X,0) is contra w-continuous but not contra semicon-
tinuous, since A = {a} € o but A is not semiclosed in (X, 7).

Example 2.11. Let X = {a,b,c,d},7 = {¢,{b}, {c},{b,c},{a,b},{a,b,c},{b,c,d},X}. De-
fine a function f : (X,7)—(X,7) as follows: f(a) =b, f(b) =a, f(c) =d, and f(d) = c.
Then f is contra w-continuous but not contra a-continuous, since {c,d} is a closed set
of (x,7) and f‘l({c,d}) = {¢,d} is not a-open.

contra-w-continuity

ﬂ

contra-continuity == contra-a-continuity => contra-percontinuity

| e

contra-semicontinuity = contra-y-continuity

ﬂ

contra-f-continuity
TueOREM 2.12. If a function f : X—Y is contra-w-continuous and Y is regular, then f is
W-cONtinuous.

Proof. Let x be an arbitrary point of X and let V be an open set of Y containing f(x);
since Y is regular, there exists an open set W in Y containing f(x) such that CI(W) c V.
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Since f is contra-w-continuous, so by Theorem 2.5(3) there exists U € wO(X,x) such
that f(U) € CI(W). Then f(U) = CI(W) < V. Hence, f is w-continuous. O

Definition 2.13. A space (X,7) is said to be w-space (resp., locally w-indiscrete) if every
w-open set is open (resp., closed) in X.
For any space (X, 1), we have 7 € 7,,. So the following results follows immediately.

THEOREM 2.14. A function f:(X,7)—(Y,0) is contra-w-continuous if and only if f :
(X,710)—(Y,0) is contra-continuous.

TaEOREM 2.15. If a function f : X—Y is contra-w-continuous and X is w-space, then f is
contra-continuous.

TaEOREM 2.16. Let X be locally w-indiscrete. If a function f : X =Y is contra-w-continuous,
then f is continuous.

Definition 2.17. A function f :X—Y is called almost-w-continuous if for each x € X
and each open set V of Y containing f(x), there exists U € wO(X,x) such that f(U)
Int, (CI(V)).

Definition 2.18. A function f : X—Y is said to be pre-w-open if the image of each w-open
set is w-open.

THEOREM 2.19. If a function f : X—Y is a pre-w-open contra-w-continuous function, then
[ is almost w-continuous.

Proof. Let x be any arbitrary point of X and V be an open set containing f(x). Since
f is contra-w-continuous, then by Theorem 2.5(3) there exists U € wO(X,x) such that
f(U)  CI(V). Since f is pre-w-open, f(U) is w-openin Y. Therefore, f(U) = Int,, f(U)
¢ Int, (Cl(f(U))) € Int, (CI(V)). This shows that f is almost w-continuous. a

Definition 2.20. A function f : X—Y is said to be almost weakly w-continuous if for each
x € X and each open V of f(x) there exists U € wO(X,x) such that f(U) < CI(V).

Tueorem 2.21. If a function f : X—Y is contra-w-continuous, then f is almost weakly
W-CONtINUOUS.

Proof. Let V be any open set of Y. Since CI(V) is closed in Y, by Theorem 2.5(3)
f7Y(CI(V)) is w-open in X and set U = f~1(CI(V)), then we have f(U) = CI(V). This
shows that f is almost weakly w-continuous.

Since the family of all w-open subsets of a space (X, ), denoted by 7, forms a topology
on X finer than 7, then the w-frontier of A, where A < X, is defined by Fr,,(A) = Cl,,(A) N
Cl,(X—A). O

TaEOREM 2.22. The set of all points of x of X at which f : X—Y is not contra-w-continuous
is identical with the union of the w-frontier of the inverse images of closed sets of Y containing

f(x).

Proof. Suppose f is not contra-w-continuous at x € X. There exists F € C(Y, f(x)) such
that f(U) N (Y — F)#¢ for every U € wO(X,x) by Theorem 2.5. This implies that U N
fY(Y — F)#¢. Therefore, we have x € Cl,,(f (Y — F)) = ClL,(X — f~'(F)). However,
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since x € f1(F) Clw(f‘ (F)), thus x € Cl,,(f}(F ﬂ Cl,(f (Y = F)). Therefore,
we obtain x € Fr,(f'(F)). Suppose that x € Fr, f( f F)) for some F € C(Y, f(x)),

and f is contra-w-continuous at x, then there exists U E wO(X,x) such that f(U) <
F. Therefore, we have x € U = f~!(F) and hence x € Int,,(f~}(F)) = X — Fro(f~(F)).
This is a contradiction. This mean that f is not contra-w-continuous. O

THEOREM 2.23. Let f : X—Y be a function and let g : X—X X Y be the graph function of
f defined by g(x) = (x, f(x)) for every x € X. If g is contra w-continuous, then f is contra
wW-continuous.

Proof. Let U be an open set in Y, then X X U is an open set in X X Y. Since g is contra
w-continuous. It follows that f~!(U) = g7}(X x U) is an w-closed in X. Thus, f is contra
w-continuous. [l

TueEOREM 2.24. If f : X—Y and g : X—Y are contra w-continuous and Y is Urysohn, then
E={xeX: f(x)=g(x)} is w-closed in X.

Proof. Let x € X — E. Then f(x)#g(x). Since Y is Urysohn, there exist open sets V and
W such that f(x) € V,g(x) € W, and CI(V) n CI(W) = ¢. Since f and g is contra w-
continuous, then f~1(Cl(V)) and g~!(Cl(W)) are w-open sets in X. Let U = f~1(Cl(V))
and G = g7!(CI(W)). Then U and V are w-open sets containing x. Set A = U N G, thus A
is w- open in X. Hence, f(A)Ng(A) = f(UNG)Nng(UNG) < f(U)ng(G)=Cl(V)n
Cl(W) = ¢; therefore, AN E = ¢ and x ¢ Cl,(E). Hence, E is w-closed in X. O

A subset A of a topological space X is said to be w-dense in X if Cl,,(A) = X.

THEOREM 2.25. Let [ : X—Y and g : X—Y be functions. If Y is Urysohn, f and g are contra
w-continuous and f = g on w-dense set A < X, then f = g on X.

Proof. Since f and g are contra w-continuous and Y is Urysohn, by the previous theorem,
E={xeX: f(x)=g(x)}is w-closed in X. By assumption, we have f = g on w-dense set
A < X. Since A € E and A is w-dense set in X, then X = Cl,(A) < Cl,(E) = E. Hence,
f=gonX. O

Definition 2.26. A space X is called w-connected provided that X is not the union of two
disjoint nonempty w-open sets.

TaEOREM 2.27. If f : X—Y is a contra w-continuous function from an w-connected space
X onto any space Y, then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper nonempty open and closed subset of
Y. Then f~1(A) is a proper nonempty w-clopen subset of X, which is a contradiction to
the fact that X is w-connected. O

TaEOREM 2.28. If f : X—Y is contra-w-continuous surjection and X is w-connected, then
Y is connected.

Proof. Suppose that Y is not connected space. Then there exist nonempty disjoint open
sets V1 and V, such that Y = VU V. Therefore, V1 and V, are clopen in Y. Since f
is contra-w-continuous, f~!(V;) and f~!(V,) are w-open in X. Moreover, f~!(V;) and
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f~1(V,) are nonempty disjoint and X = f~1(V;) U f~1(V3). This shows that X is not
w-connected. This is a contradiction. This means that Y is connected. O

THEOREM 2.29. A space X is w-connected, if every contra-w-continuous from a space X into
any To-space Y is constant.

Proof. Suppose that X is not w-connected and every contra-w-continuous function from
X into Y is constant. Since X is not w-connected, there exists a proper nonempty w-
clopen subset A of X. Let Y = {a,b} and 7 = {Y,¢,{a}, {b}} be a topology for Y. Let
f :X—Y beafunction such that f(A) = {a} and f(X — A) = {b}. Then f is nonconstant
and contra-w-continuous such that Y is Ty which is a contradiction. Hence, X must be
w-connected. O

Definition 2.30. A space X is said to be w-T5 if for each pair of distinct points x and y in
X, there exist U € wO(X,x) and V € wO(X, y) such that U NV = ¢.

TaeOREM 2.31. Let X and Y be topological spaces. If
(1) for each pair of distinct points x and y in X there exists a function f of X into Y
such that f(x)#f(y),
(2) Y is an Urysohn space,
(3) f is contra-w-continuous at x and y, then X is w-T,.

Proof. let x and y be any distinct points in X. Then, there exists a Urysohn space Y and
a function f: X—Y such that f(x)# f(y) and f is contra-w-continuous at x and y. Let
a= f(x)and b = f(y). Then a#b. Since Y is Urysohn space, there exist open sets V and
W containing a and b, respectively, such that C1(V) n CI(W) = ¢. Since f is contra-w-
continuous at x and y, then there exist w-open sets A and B containing a and b, respec-
tively, such that f(A) < ClI(V)and f(B) € CI(W). Then f(A) N f(B) = ¢,s0 ANB = ¢.
Hence, X is w-T,. O

CoROLLARY 2.32. Let f : X—Y be contra-w-continuous injection. If Y is an Urysohn space,
then X is w-T,.

3. Almost contra w-continuous

In this section, we introduce a new type of continuity called almost contra w-continuous
which is weaker than contra w-continuous.

Definition 3.1. A function f:X-Y is said to be almost contra-w-continuous (resp.,
almost contra-precontinuous [6]) f~1(V) € wC(X) (resp., f (V) € PC(X)) for every
V € RO(X).

TareorEM 3.2. The following are equivalents for a function f : X—Y:
(1) f is almost contra-w-continuous;
(2) f7U(F) € wO(X,x) for every F € RC(Y);
(3) for each x € X and each regular closed set F in Y containing f(x), there exists an
w-open set U in X containing x such that f(U) € F;
(4) for each x € X and each regular open set V in Y noncontaining f(x), there exists
an w-closed set K in X noncontaining x such that f~'(V) < K.
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Proof (1)#(2). Let F be any regular closed set of Y. Then Y — F is regular open. By (1),
fUY—-F)=X - fY(F) € wC(X). We have f~!(F) € wO(X). The converse is obvious.

(2)=(3).Let F be any regular closed set in Y containing f(x). Then by (2) f~!(F) €
wO(X) andxef ). Take U = f~!(F). Then f(U) < F.

(3)=>(2). Let F be any regular closed set in Y and xe f (F). From (3) there exists an
w-open Uy in X containing x such that f(Uy) € F, thus U,c fﬁl(F). We have f~1(F) =
Uxe f—1(F) Ux. This implies that f~!(F)is w-open.

(3)©(4). Let V be any regular open set in Y noncontaining f(x). Then Y — V is a
regular closed set containing f(x). By (3), there exists an w-open set U in X containing
x such that f(U) =Y — V. Hence, U< f_l(Y —V)c X - f"Y(V) and then f~1(V) <
X — U. Take H = X — U. We obtain that H is an w-closed set in X noncontaining x. The
converse is obvious. |

The following examples show that almost contra-w-continuous and almost contra-
precontinuous functions are independent notions.

Example 3.3. Let X = {a,b,c},7 = {X,¢,{a},{b},{a,b}}. Then RC(X,7) = {X,¢,{b,c},
{a,c}} and wO(X,7) = P(X), where P(X) is the power set of X, PO(X,1) = {X, ¢, {a},
{b},{a,b}}. Let f : (X,7)— (X, 1) be the identity map. Then f is almost contra-w-contin-
uous function which is not almost contra-precontinuous, since {a,c} is a regular closed
set of (X,7) and f~'({a,c}) = {a,c} & PO(X,7).

Example 3.4. Let R be the real number with usual topology and X = {a,b,c} with 7 =
{X,¢,{a},{b},{a,b}}, then RO(X) = {¢,X, {a},{b}}. Let f : R—X be defined as f(x) =
aifx € Qand f(x) = cifx ¢ Q. Then f is almost contra-precontinuous function which
is not almost contra w-continuous, since {a} is a regular closed set in (X,7) and
f~1({a}) = Q which is not w-open but preopen in R.

contra-w-continuity = almost contra-w-continuity = almost week-w-continuity

contra-continuity ———> (6,s)-continuity ———= week-continuity

ﬂ

contra-percontinuity = almost contra-precontinuity => almost week-continuity

M

contra-y-continuity => almost contra-y-continuity => almost week-y-continuity
(3.1)

A space (X, 1) is anti-locally countable [11] if all nonempty open subsets are uncount-
able. Note that R with usual topology is anti-locally countable space.

Lemma 3.5 [11]. If (X, 1) is an anti-locally countable space, then Cl,(A) = CL(A) for every
w-open subset of X and Int(A) = Int,(A) for every w-closed subset of X.
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Definition 3.6 [11]. A space (X, 1) is called locally countable, if each point x € X has a
countable open neighborhood.

Lemma 3.7 [11]. If (X, 1) is a locally countable space, then T, is the discrete topology on X.

Definition 3.8. A function f : X—Y is said to be regular set-connected if f~!(V) is clopen
in X for each regular open set V of Y.

TaEOREM 3.9. Let (X, 1) be an anti-locally countable space, if a function f : X—Y is almost
contra-w-continuous and almost continuous, then f is regular set-connected.

Proof. Let V be any regular open set in Y. Since f is almost contra-w-continuous and
contra continuous f~!(V) is w-closed and open. Thus Cl,(f~1(V)) = (f~1(V)), since
(X,7) be an anti-locally countable space then by Lemma 3.5, we have Cl,(f ) =
CL(f~1(V)). Hence f~!(V) is clopen. We obtain that f is regular set-connected. O

Definition 3.10 [14]. A space X is said to be weakly Hausdorff if each element of X is an
intersection of regular closed sets.

Definition 3.11. A space X is said to be w-T;if for each pair of distinct points x and y of
X, there exists w-open sets U and V containing x and y, respectively, such that y ¢ U and
xXEV.

THEOREM 3.12. If f: X—=Y is an almost contra-w-continuous injection and Y is weakly
Hausdorff, then X is w-T).

Proof. Suppose that Y is weakly Hausdorff. For any distinct points x and y in X, there
exists V, W which are regular closed in Y such that f(x) € V, f(y) ¢ V, f(x) ¢ W, and
f(y) € W.Since f is almost contra-w-continuous, then f~!(V)and f~!(W) are w-open
subsets of X such thatx € f~1(V),y & f~1(V),x ¢ f~1(W),and y € f~}(W). This show
that X is w-Tj. O

CoroOLLARY 3.13. If f : X—Yis an contra-w-continuous injection and Y is weakly Haus-
dorff, then X is w-T).

Tueorem 3.14. If f : X =Y is almost contra-w-continuous surjection and X is w-connected,
then Y is connected.

Proof. Suppose that Y is not connected space. There exist nonempty disjoint open sets V;
and V; such that Y = V;UV,. Therefore, V; and V;, are clopen sets. Thus they are regular
openin Y. Since f is almost contra-w-continuous, f ~!(V;) and f~!(V,) are w-open in X.
Moreover, f~1(V;) and f~!(V,) are nonempty disjoint and X = f~1(V;)u f~'(V,). This
shows that X is not w-connected. This is a contradiction. This means that Y is connected.

|

Definition 3.15. A space X is said to be
(1) w-compact if every w-open cover of X has a finite subcover;
(2) countably w- compact if every countable cover of X by w-open sets has a finite
subcover;
(3) w-Lindelof if every w-open cover of X has a countable subcover;
(4) S-Lindelof [6] if every cover of X by regular closed sets has a countable subcover;
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(5) countably S-closed [15] if every countable cover of X by regular closed sets has a
finite subcover;
(6) S-closed [16] if every regular closed cover of X has a finite subcover.

TaEOREM 3.16. Let f : X—Y be an almost contra-w-continuous surjection. The following
statements hold:

(1) if X is w-compact, then Y is S-closed;

(2) if X is w-Lindelof, then Y is S-Lindelof;

(3) if X is countably w-compact, then Y is countably S-closed.

Proof. We prove only (1). let {V,:a €I} be any regular closed cover of Y. Since f is
almost contra-w-continuous, then { f “1(Vy) :a € I} is an w-open cover of X and hence
there exists a finite subset Iy of I such that X = U{f !1(V,):a € Iy} therefore we have
Y=u{V,:aely}and Y is S-closed. O

Definition 3.17. A space X is said to be

(1) w-closed compact if every w-closed cover of X has a finite subcover;

(2) countably w-closed conmpact if every countable cover of X by w-closed sets has
a finite subcover;

(3) w-closed-Lindelof if every cover of X by w-closed sets has a countable subcover;

(4) nearly compact [17] if every regular open cover of X has a finite subcover;

(5) nearly countably compact [17] if every countable cover of X by regular open sets
has a finite subcover;

(6) nearly Lindelof [17] if every cover of X by regular open sets has a countably
subcover.

TaeoreM 3.18. Let f : X—Y be an almost contra-w-continuous surjection. The following
statements hold:

(1) if X is w-closed compact, then Y is nearly compact;

(2) if X is w-closed-Lindelof , then Y nearly Lindelof;

(3) if X is countably w-closed compact, then Y is nearly countably compact.

Proof. We prove only (1). Let {V,: a € I} be any regular open cover of Y. Since f is
almost contra-w-continuous, then { f “1(Vy) : a € I'} is an w-closed cover of X. Since X is
w-closed compact, there exists a finite subset I of I such that X = U{f (V) :a € Ip}.
Thus, we have Y = U{V,:a € Iy} and Y is nearly compact. O

Definition 3.19 [14]. A space X is said to be mildly compact (mildly countably compact,
mildly Lindelof) if every clopen cover (resp., clopen countably cover, clopen cover) of X
has a finite (resp., a finite, a countable) subcover.

TaeoreM 3.20. Let (X,7) be an anti-locally countable space, if f : X—Y be an almost
contra-w-continuous and almost continuous surjection and X is mildly compact (resp.,
mildly countably compact, mildly Lindelof), then Y is nearly compact (resp., nearly count-
ably compact, nearly Lindelof) and S-closed (resp., countably S-closed, S-Lindelof).

Proof. Let V be any regular closed set on Y. Then since f is almost contra-w-continuous
and almost continuous, then f~!(V) is w-open and closed in X. By Lemma 3.5, we have
Int(f~1(V)) = Int,(f~1(V)) = f~1(V). Hence, f~1(V) is clopen. Let {V,:a €I} be
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any regular closed (resp., regular open) cover of Y. Then {F~!(V,:a € 1)} is a clopen
cover of X and since X is mildly compact, there exists a finite subset Iy of I such that
X=uU {f’l(V(X) ta € Iy}. since f is surjection, we obtain Y = U{V, : & € Iy}. This shows
that Y is S-closed (resp., nearly compact). The other proofs are similar. O

TueoreM 3.21. If f : XY is contra-w-continuous and A is w-compact relative to X, then
f(A) is strongly S-closed in Y.

Proof. Let {V;:i€ I} beany cover of f(A), by closed sets of the subspace f(A). Forie I,
there exists a closed set A; of Y such that V; = A; n f(A). For each x € A, there exists
i(x) € I such that f(x)e€ Aj) and by Theorem 2.5, there exists U, € wO(X,x) such that
f(Uy)<E Aj(x). Since the family {U, : x € A} is a cover of A by w-open sets of X, there
exists a finite subset Ay of A such that A € U {U, :x€ Ay}. Therefore, we obtain f(A)
U {f(Uy) :x € Ap}. which is a subset of U{A;q) : x € Ag}. Thus f(A) = U{Vjy) :x € Ap}
and hence f(A)is strongly S-closed. g

CoROLLARY 3.22. If f : X—Yis contra-w-continuous surjection and X is w-compacts, then
Y is strongly S-closed.

4. Contra-closed graphs

Recall that for a function f : X—Y, the subset {(x, f(x)):x € X} € X X Y is called the
graph of f and is denoted by G( f).

Definition 4.1. The graph G(f) of a function f : X—Y is said to be contra-w-closed if for
each (x,y) € (X,Y) — G(f), there exist U € wO(X,x) and V € C(Y,y) such that (U x
V)nG(f) =¢.

The following results can be easily verified.

LemMa 4.2 [6]. Let G(f) be the graph of f, for any subset A < X and B < Y, we have
fA)NB=¢ifand only if ( AXB) N G(f) = ¢.

LemMa 4.3. The graph G(f) of f : X—Y is contra-w-closed in X X Y if and only if for each
(x%,y) € (XXY)—G(f), there exist U € wO(X,x) and V € C(Y, y) such that f(U)NnV =
.

TueoreMm 4.4. If f : X—Y is contra-w-continuous and Y is Urysohn, then G(f) is contra-
w-closed in X X Y.

Proof. Let (x,y) € (X XY)— G(f). Then y # f(x) and there exists open sets V, W such
that f(x) € V,y € W, and CI(V) n CI(W) = ¢. Since f is contra-w-continuous, there
exists U € wO(X,x) such that f(U) < CI(V). Therefore, we obtain f(U) N CL(W) = ¢.
This shows that G(f) is contra-w-closed. O

THEOREM 4.5. If f : X—Y is w-continuous and Y is Ty, then G(f) is contra-w-closed in
XXY.
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Proof. Let (x,y) € (X X Y) — G(f). Then y+# f(x) and there exists open set V of Y, such
that f(x) € V,y € V. Since f is w-continuous, there exists U € wO(X,x) such that
f(U) € V. Therefore, f(U)N(Y - V)=¢and Y — V € C(Y, ). This shows that G(f) is
contra-w-closed in X X Y. |

THEOREM 4.6. If f: X—Y has a contra w-closed graph, then the inverse image of a strongly
S-closed set A of Y is w-closed in X.

Proof. Assume that A is a strongly S-closed set of Y and x ¢ f!(A). For each
a € A, (x,a) € G(f). By Lemma 4.3 there exist U, € w(X,x) and V, € C(Y,a) such that
f(U)NV, = ¢. Since {ANV, | a € A} is a closed cover of the subspace A, there exists
a finite subset Ag € A such that A € U {V, | ae Ap}. Set U = n{U, | a€ Ay}, and U is
w-open since 7,, is topology and f(U) N A = ¢. Therefore, Unf ' (A) = ¢; and hence,
x ¢ Cly(f~1(A)). This shows that f~!(A) is w-closed. O

THEOREM 4.7. Let Y be a strongly S-closed space. If a function f :X—Y has a contra-w-
closed graph, then f is contra w-continuous.

Proof. Suppose that Y is strongly S-closed space and G(f) is contra w-closed. First we
show that an open set of Y is strongly S-closed. Let U be an opensetof Y and {V; | i € I}
be a cover of U by closed sets V; of U. For each i € I, there exists a closed set K; of X such
that V; = K; 0 U. Then the family {K; | i€ I} U(Y — U) is a closed cover of Y. Since Y is
strongly S-closed, there exists a finite subset Iy < I such that Y = U{K; | i€ I} U (Y — U).
Therefore, we obtain U = U{V; | i € Iy}. This shows that U is strongly S-closed. Now
for any open set U by Theorem 4.6 f~!(U) is w-closed in X; therefore, f is contra w-
continuous. O

Definition 4.8. The graph G(f) of a function f : X—Y is said to be strongly contra-w-
closed if for each (x, y) € (X,Y) — G(f), there exist U € wO(X,x) and V € RC(Y, y) such
that (UX V)N G(f) = ¢.

LEmMa 4.9. The graph G(f) of f : X =Y is strongly contra-w-closed graph in X X Y if and
only if for each (x,y) € (X X Y) — G(f), there exist U € wO(X,x) and V € RC(Y, y) such
that f(U)NV = ¢.

TaEOREM 4.10. If f : X =Y is almost weakly-w-continuous and Y is Urysohn, then G(f) is
strongly contra-w-closed in X X Y.

Proof. Suppose that (x,y) € (X X Y) — G(f). Then y# f(x). Since Y is Urysohn, there
exist open sets V and W in Y containing y and f(x), respectively, such that CI(V) n
CI(W) = ¢. Since f is almost weakly-w-continuous, by Definition 2.20 there exists U €
w(X,x) such that f(U) € CI(W). This shows that f(U)n CI(V) = f(U) n Cl(Int(V))
= ¢, where Cl(Int(V)) € RC(Y) and hence by Lemma 4.9 we have G(f) is strongly con-
tra-w-closed. a

THEOREM 4.11. If f : XY is almost contra-w-continuous, then f is almost weakly-w-
continuous.
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Proof. Let x € X and V be any open set of Y containing f(x). Then CI(V) is a regular
closed set of Y containing f(x). Since f is almost contra-w-continuous, by Theorem 3.2
there exists U € wO(X, x) such that f(U) < CI(V). By Definition 2.20 f is almost weak-
ly-w-continuous. O

CoROLLARY 4.12. If f : XY is almost contra-w-continuous and Y is Urysohn, then G(f)
is strongly contra-w-closed.

The following result can be easily verified.

LemMa 4.13. a function f:X—Y is almost w-continuous, if and only if for each x € X
and each regular open set V of Y containing f(x), there exists U € wO(X,x) such that
fu)ev.

THEOREM 4.14. If f: X—Y is almost w-continuous, and Y is Hausdorff, then G(f) is
strongly contra-w-closed.

Proof. Suppose that (x,y) € (X X Y) — G(f). Then y+# f(x). Since Y is Hausdorff, there
exist open sets V and W in Y containing y and f(x), respectively, such that VN W =
¢; hence, C1(V) n Int(CL(W)) = ¢. Since f is almost w-continuous, and W is regular
open by Lemma 4.13 there exists U € wO(X, x) such that f(U) = W < Int(Cl(W)). This
shows that f(U) N Cl(V) = ¢ and hence by Lemma 4.9 we have G( f) is strongly contra-
w-closed. O

We recall that a topological space (X,7) is said to be extremely disconnected (E.D) if
the closure of every open set of X is open in X.

THEOREM 4.15. Let Y be E.D. Then a function f : X—Yis almost contra-w-continuous if
and only if it is almost w-continuous.

Proof. Letx € X and V be any regular open set of Y containing f(x). Since Y is E.D then
V is clopen and hence V is regular closed. By Theorem 3.2, there exists U € wO(X,x)
such that f(U) < V. Then Lemma 4.13 implies that f is almost w-continuous. Con-
versely, let F be any regular closed set of Y. Since Y is E.D, F is also regular open and
f~Y(F) is w-open in X. This shows that f is almost contra-w-continuous. O

THEOREM 4.16. If f : X—Y is an injective almost contra-w-continuous function with the
strongly contra-w-closed graph, then (X, 1) is w-T>.

Proof. Let x and y be distinct points of X. Then, since f is injective, we have f(x)# f(y).
Then we have (x, f(y)) € (X X Y) — G(f). Since G(f) is strongly contra-w-closed, by
Lemma 4.9 there exists U € wO(X,x) and a regular closed set V containing f(y) such
that f(U) NV = ¢. Since f is almost contra-w-continuous, by Theorem 3.2 there exists
G € wO(X, y)such that f(G) < V. Therefore, we have f(U) N f(G) = ¢; hence, UN G =
¢. This shows that (X, 1) is w-T>. O
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