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The notion of contra continuous functions was introduced and investigated by Dontchev.
In this paper, we apply the notion of ω-open sets in topological space to present and
study a new class of functions called almost contra ω-continuous functions as a new
generalization of contra continuity.
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1. Introduction

Dontchev [1] introduced the notions of contra continuity and strong S-closedness in
topological spaces. He defined a function f : X→Y is contra continuous if the preimage
of every open set of Y is closed in X . A new weaker form of this class of functions called
contra semicontinuous function is introduced and investigated by Dontchev and Noiri
[2]. Caldas and Jafari [3] have introduced and studied contra β-continuous function.
Jafri and Noiri [4, 5] introduced and investigated the notions of contra super continuous,
contra precontinuous, and contra α-continuous functions. Almost contra precontinuous
functions were introduced by Ekici [6] and recently have been investigated further by
Noiri and Popa [7]. Nasef [8] has introduced and studied contra γ-continuous function.
In This direction, we will introduce the concept of almost contra ω-continuous func-
tions via the notion of ω-open set and study some properties of contra ω-continuous and
almost contra ω-continuous.

All through this paper, (X ,τ) and (Y ,σ) stand for topological spaces with no sep-
aration axioms assumed, unless otherwise stated. Let A ⊆ X , the closure of A and the
interior of A will be denoted by Cl(A) and Int(A), respectively. A is regular open if
A = Int(Cl(A)) and A is regular closed if its complement is regular open; equivalently
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A is regular closed if A= Cl(Int(A)), see [9]. Let (X ,τ) be a space and let A be a subset of
X . A point x ∈ X is called a condensation point of A if for each U ∈ τ with x ∈U , the set
U ∩A is uncountable. A is called ω-closed [10] if it contains all its condensation points.
The complement of an ω-closed set is called ω-open. It is well known that a subset W of
a space (X ,τ) is ω-open if and only if for each x ∈W , there exists U ∈ τ such that x ∈U
and U −W is countable. The family of all ω-open subsets of a space (X ,τ), denoted by
τω, forms a topology on X finer than τ. We set ωO(X ,x)= {U : x ∈U andU ∈ τω}. The
ω-closure and ω-interior, that can be defined in a manner to Cl(A) and Int(A), respec-
tively, will be denoted by Clω(A) and Intω(A), respectively. Several characterizations and
properties of ω-closed subsets were provided in [10–12].

2. Contra ω-continuous

Definition 2.1. A function f : X→Y is called ω-continuous [12] if for each x ∈ X and
each open set V of Y containing f (x), there exists U ∈ ωO(X ,x) such that f (U)⊆V .

Definition 2.2. A function f : X→Y is called contra-ω-continuous (resp., contra-
continuous [1]) if f −1(V) is ω-closed (resp., closed) in X for each open set of Y .

Definition 2.3. A function f : X→Y is said to be almost continuous [13] if f −1(V) is open
in X for each regular open set V of Y .

Lemma 2.4 [4]. The following properties hold for subsets A,B of a space X :
(1) x ∈ Ker(A) if and only if A∩F �=φ for any F ∈ C(X ,x);
(2) A⊆ Ker(A) and A= Ker(A) if A is open in X ;
(3) if A⊆ B, then Ker(A)⊆ Ker(B).

Theorem 2.5. The following are equivalent for a function f : X→Y :
(1) f is contra-ω-continuous;
(2) for every closed subset F of Y , f −1(F)∈ ωO(X);
(3) for each x ∈ X and each F ∈ C(Y , f (x)), there exists U ∈ ωO(X ,x) such that

f (U)⊆ F;
(4) f (Clω(A))⊆ Ker( f (A)) for every subset A of X ;
(5) Clω( f −1(B))⊆ f −1(Ker(B)) for every subset B of Y .

Proof. The implications (1)⇔(2) and (2)⇒(3) are obvious.
(3)⇒(2) Let F be any closed set of Y and x ∈ f −1(F). Then f (x)∈ F and there exists

Ux ∈ ωO(X ,x) such that f (Ux)⊆ F. Therefore, we obtain f −1(F)=∪{Ux | x ∈ f −1(F)}
and f −1(F) is ω-open, since τω is a topological space.

(2)⇒(4) Let A be any subset of X . Suppose that y �∈ Ker( f (A)). Then by Lemma 2.4
there exists F ∈ C(Y , f (x)) such that f (A)∩ F = φ. Thus, we have A∩ f −1(F) = φ and
since f −1(F) is ω-open then we have Clω(A) ∩ f −1(F) = φ. Therefore, we obtain
f (Clω(A))∩F = φ and y �∈ f (Clω(A)). This implies that f (Clω(A))⊆Ker( f (A)).

(4)⇒(5) Let B be any subset of Y . By (4) and Lemma 2.4, we have
f (Clω( f −1(B)))⊆ Ker( f ( f −1(B)))⊆ Ker(B) thus Clω( f −1(B))⊆ f −1(Ker(B)).

(5)⇒(1) Let V be any open set of Y . Then, by Lemma 2.4 we have Clω( f −1(V))
⊆ f −1(Ker(V)) = f −1(V) and Clω( f −1(V)) = f −1(V). This shows that f −1(V) is ω-
closed in X . �
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The following examples show that contra-ω-continuous and contra-precontinuous
functions [4] (resp., contra-semicontinuous [2], contra-α-continuous [5], contra-γ-
continuous [8]) are independent notions.

Example 2.6. Let X = {a,b}with τ = {X ,φ,{a}} and the real numberRwith the standard
topology, consider the map f : R→X defined by f (x)= b if x ∈Q where Q is the set of
all rational numbers and f (x) = a if x �∈Q. Then f is contra-precontinuous but not f
contra-ω-continuous since {b} is a closed set of (X ,τ) and f −1({b})=Q is not ω-open.
butQ is preopen set in R.

Example 2.7. Let X = {a,b,c},τ = {φ,{a},{b},{a,b},X}, and Y = {1,2} be the Sierpinski
space with the topology σ = {φ,{1},Y}. Let f : (X ,τ)→(Y ,σ) be defined by f (a)= 1 and
f (b)= 2= f (c). Then f is contra ω-continuous but not contra-precontinuous, since {2}
is a closed set of (Y ,σ) and f −1({2})= {c,b} is not preopen (X ,τ).

Example 2.8. Let X = {a,b,c},τ = {φ,{a},X}, and σ = {φ,{c},{b},{c,b},X}. Then the
identity function f : (X ,τ)→(X ,σ) is contra-ω-continuous but not contra-continuous.

Example 2.9. X = {a,b} with τ = {X ,φ,{a}} and the real number R with the standard
topology, consider the map f : R→X defined by f (x) = b if x ∈ [0,1) and f (x) = a if
x �∈ [0,1). Then f is contra-semicontinuous but not f contra-ω-continuous since {b} is
a closed set of (X ,τ) and f −1({b})= [0,1) is not ω-open. but [0,1) is semi-open set in R.

Example 2.10. Let X = {a,b} with the indiscrete topology τ and σ = {φ,{a},X}. Then
the identity function f : (X ,τ)→(X ,σ) is contra ω-continuous but not contra semicon-
tinuous, since A= {a} ∈ σ but A is not semiclosed in (X ,τ).

Example 2.11. Let X = {a,b,c,d},τ = {φ,{b},{c},{b,c},{a,b},{a,b,c},{b,c,d},X}. De-
fine a function f : (X ,τ)→(X ,τ) as follows: f (a) = b, f (b) = a, f (c) = d, and f (d) = c.
Then f is contra ω-continuous but not contra α-continuous, since {c,d} is a closed set
of (x,τ) and f −1({c,d})= {c,d} is not α-open.

contra-ω-continuity

contra-continuity contra-α-continuity contra-percontinuity

contra-semicontinuity contra-γ-continuity

contra-β-continuity

(2.1)

Theorem 2.12. If a function f : X→Y is contra-ω-continuous and Y is regular, then f is
ω-continuous.

Proof. Let x be an arbitrary point of X and let V be an open set of Y containing f (x);
since Y is regular, there exists an open set W in Y containing f (x) such that Cl(W)⊆V .
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Since f is contra-ω-continuous, so by Theorem 2.5(3) there exists U ∈ ωO(X ,x) such
that f (U)⊆ Cl(W). Then f (U)⊆ Cl(W)⊆V . Hence, f is ω-continuous. �

Definition 2.13. A space (X ,τ) is said to be ω-space (resp., locally ω-indiscrete) if every
ω-open set is open (resp., closed) in X .

For any space (X ,τ), we have τ ⊆ τω. So the following results follows immediately.

Theorem 2.14. A function f : (X ,τ)→(Y ,σ) is contra-ω-continuous if and only if f :
(X ,τω)→(Y ,σ) is contra-continuous.

Theorem 2.15. If a function f : X→Y is contra-ω-continuous and X is ω-space, then f is
contra-continuous.

Theorem 2.16. Let X be locally ω-indiscrete. If a function f : X→Y is contra-ω-continuous,
then f is continuous.

Definition 2.17. A function f : X→Y is called almost-ω-continuous if for each x ∈ X
and each open set V of Y containing f (x), there exists U ∈ ωO(X ,x) such that f (U) ⊆
Intω(Cl(V)).

Definition 2.18. A function f : X→Y is said to be pre-ω-open if the image of each ω-open
set is ω-open.

Theorem 2.19. If a function f : X→Y is a pre-ω-open contra-ω-continuous function, then
f is almost ω-continuous.

Proof. Let x be any arbitrary point of X and V be an open set containing f (x). Since
f is contra-ω-continuous, then by Theorem 2.5(3) there exists U ∈ ωO(X ,x) such that
f (U)⊆ Cl(V). Since f is pre-ω-open, f (U) isω-open inY . Therefore, f (U)= Intw f (U)
⊆ Intw(Cl( f (U)))⊆ Intw(Cl(V)). This shows that f is almost ω-continuous. �

Definition 2.20. A function f : X→Y is said to be almost weakly ω-continuous if for each
x ∈ X and each open V of f (x) there exists U ∈ ωO(X ,x) such that f (U)⊆ Cl(V).

Theorem 2.21. If a function f : X→Y is contra-ω-continuous, then f is almost weakly
ω-continuous.

Proof. Let V be any open set of Y . Since Cl(V) is closed in Y , by Theorem 2.5(3)
f −1(Cl(V)) is ω-open in X and set U = f −1(Cl(V)), then we have f (U)⊆ Cl(V). This
shows that f is almost weakly ω-continuous.

Since the family of allω-open subsets of a space (X ,τ), denoted by τω, forms a topology
onX finer than τ, then theω-frontier ofA, whereA⊆ X , is defined by Frw(A)= Clw(A)∩
Clw(X −A). �

Theorem 2.22. The set of all points of x of X at which f : X→Y is not contra-ω-continuous
is identical with the union of the ω-frontier of the inverse images of closed sets of Y containing
f (x).

Proof. Suppose f is not contra-ω-continuous at x ∈ X . There exists F ∈ C(Y , f (x)) such
that f (U)∩ (Y − F) �=φ for every U ∈ ωO(X ,x) by Theorem 2.5. This implies that U ∩
f −1(Y − F) �=φ. Therefore, we have x ∈ Clw( f −1(Y − F)) = Clw(X − f −1(F)). However,
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since x ∈ f −1(F) ⊆ Clw( f −1(F)), thus x ∈ Clw( f −1(F))∩Clw( f −1(Y − F)). Therefore,
we obtain x ∈ Frω( f −1(F)). Suppose that x ∈ Frω f ( f −1(F)) for some F ∈ C(Y , f (x)),
and f is contra-ω-continuous at x, then there exists U ∈ ωO(X ,x) such that f (U) ⊆
F. Therefore, we have x ∈ U ⊆ f −1(F) and hence x ∈ Intω( f −1(F)) ⊆ X − Frω( f −1(F)).
This is a contradiction. This mean that f is not contra-ω-continuous. �

Theorem 2.23. Let f : X→Y be a function and let g : X→X ×Y be the graph function of
f defined by g(x)= (x, f (x)) for every x ∈ X . If g is contra ω-continuous, then f is contra
ω-continuous.

Proof. Let U be an open set in Y , then X ×U is an open set in X ×Y . Since g is contra
ω-continuous. It follows that f −1(U)= g−1(X ×U) is an ω-closed in X . Thus, f is contra
ω-continuous. �

Theorem 2.24. If f : X→Y and g : X→Y are contra ω-continuous and Y is Urysohn, then
E = {x ∈ X : f (x)= g(x)} is ω-closed in X .

Proof. Let x ∈ X −E. Then f (x) �=g(x). Since Y is Urysohn, there exist open sets V and
W such that f (x) ∈ V ,g(x) ∈W , and Cl(V)∩ Cl(W) = φ. Since f and g is contra ω-
continuous, then f −1(Cl(V)) and g−1(Cl(W)) are ω-open sets in X . Let U = f −1(Cl(V))
and G= g−1(Cl(W)). Then U and V are ω-open sets containing x. Set A=U ∩G, thus A
is ω-open in X . Hence, f (A)∩ g(A) = f (U ∩G)∩ g(U ∩G) ⊆ f (U)∩ g(G) = Cl(V)∩
Cl(W)= φ; therefore, A∩E = φ and x �∈ Clω(E). Hence, E is ω-closed in X . �

A subset A of a topological space X is said to be ω-dense in X if Clw(A)= X .

Theorem 2.25. Let f : X→Y and g : X→Y be functions. If Y is Urysohn, f and g are contra
ω-continuous and f = g on ω-dense set A⊆ X , then f = g on X .

Proof. Since f and g are contraω-continuous andY is Urysohn, by the previous theorem,
E = {x ∈ X : f (x)= g(x)} is ω-closed in X . By assumption, we have f = g on ω-dense set
A ⊆ X . Since A ⊆ E and A is ω-dense set in X , then X = Clω(A) ⊆ Clω(E) = E. Hence,
f = g on X . �

Definition 2.26. A space X is called ω-connected provided that X is not the union of two
disjoint nonempty ω-open sets.

Theorem 2.27. If f : X→Y is a contra ω-continuous function from an ω-connected space
X onto any space Y , then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper nonempty open and closed subset of
Y . Then f −1(A) is a proper nonempty ω-clopen subset of X , which is a contradiction to
the fact that X is ω-connected. �

Theorem 2.28. If f : X→Y is contra-ω-continuous surjection and X is ω-connected, then
Y is connected.

Proof. Suppose that Y is not connected space. Then there exist nonempty disjoint open
sets V1 and V2 such that Y = V1 ∪V2. Therefore, V1 and V2 are clopen in Y . Since f
is contra-ω-continuous, f −1(V1) and f −1(V2) are ω-open in X . Moreover, f −1(V1) and
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f −1(V2) are nonempty disjoint and X = f −1(V1)∪ f −1(V2). This shows that X is not
ω-connected. This is a contradiction. This means that Y is connected. �

Theorem 2.29. A space X is ω-connected, if every contra-ω-continuous from a space X into
any T0-space Y is constant.

Proof. Suppose that X is not ω-connected and every contra-ω-continuous function from
X into Y is constant. Since X is not ω-connected, there exists a proper nonempty ω-
clopen subset A of X . Let Y = {a,b} and τ = {Y ,φ,{a},{b}} be a topology for Y . Let
f : X→Y be a function such that f (A)= {a} and f (X −A)= {b}. Then f is nonconstant
and contra-ω-continuous such that Y is T0 which is a contradiction. Hence, X must be
ω-connected. �

Definition 2.30. A space X is said to be ω-T2 if for each pair of distinct points x and y in
X , there exist U ∈ ωO(X ,x) and V ∈ ωO(X , y) such that U ∩V = φ.

Theorem 2.31. Let X and Y be topological spaces. If
(1) for each pair of distinct points x and y in X there exists a function f of X into Y

such that f (x) �= f (y),
(2) Y is an Urysohn space,
(3) f is contra-ω-continuous at x and y, then X is ω-T2.

Proof. let x and y be any distinct points in X . Then, there exists a Urysohn space Y and
a function f : X→Y such that f (x) �= f (y) and f is contra-ω-continuous at x and y. Let
a= f (x) and b = f (y). Then a�=b. Since Y is Urysohn space, there exist open sets V and
W containing a and b, respectively, such that Cl(V)∩ Cl(W)= φ. Since f is contra-ω-
continuous at x and y, then there exist ω-open sets A and B containing a and b, respec-
tively, such that f (A)⊆ Cl(V) and f (B)⊆ Cl(W). Then f (A)∩ f (B)= φ, so A∩B = φ.
Hence, X is ω-T2. �

Corollary 2.32. Let f : X→Y be contra-ω-continuous injection. If Y is an Urysohn space,
then X is ω-T2.

3. Almost contra ω-continuous

In this section, we introduce a new type of continuity called almost contra ω-continuous
which is weaker than contra ω-continuous.

Definition 3.1. A function f : X→Y is said to be almost contra-ω-continuous (resp.,
almost contra-precontinuous [6]) f −1(V) ∈ ωC(X) (resp., f −1(V) ∈ PC(X)) for every
V ∈ RO(X).

Theorem 3.2. The following are equivalents for a function f : X→Y :
(1) f is almost contra-ω-continuous;
(2) f −1(F)∈ ωO(X ,x) for every F ∈ RC(Y);
(3) for each x ∈ X and each regular closed set F in Y containing f (x), there exists an

ω-open set U in X containing x such that f (U)⊆ F;
(4) for each x ∈ X and each regular open set V in Y noncontaining f (x), there exists

an ω-closed set K in X noncontaining x such that f −1(V)⊆ K .
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Proof. (1)⇔(2). Let F be any regular closed set of Y . Then Y −F is regular open. By (1),
f −1(Y −F)= X − f −1(F)∈ ωC(X). We have f −1(F)∈ ωO(X). The converse is obvious.

(2)⇒(3). Let F be any regular closed set in Y containing f (x). Then by (2) f −1(F)∈
ωO(X) and x∈ f −1(F). Take U = f −1(F). Then f (U)⊆ F.

(3)⇒(2). Let F be any regular closed set in Y and x∈ f −1(F). From (3) there exists an
ω-open Ux in X containing x such that f (Ux)⊆ F, thus Ux⊆ f −1(F). We have f −1(F)⊆
∪x∈ f−1(F)Ux. This implies that f −1(F)is ω-open.

(3)⇔(4). Let V be any regular open set in Y noncontaining f (x). Then Y −V is a
regular closed set containing f (x). By (3), there exists an ω-open set U in X containing
x such that f (U) ⊆ Y −V . Hence, U⊆ f −1(Y −V) ⊆ X − f −1(V) and then f −1(V) ⊆
X −U . Take H = X −U . We obtain that H is an ω-closed set in X noncontaining x. The
converse is obvious. �

The following examples show that almost contra-ω-continuous and almost contra-
precontinuous functions are independent notions.

Example 3.3. Let X = {a,b,c},τ = {X ,φ,{a},{b},{a,b}}. Then RC(X ,τ) = {X ,φ,{b,c},
{a,c}} and ωO(X ,τ) =�(X), where �(X) is the power set of X , PO(X ,τ) = {X ,φ,{a},
{b},{a,b}}. Let f : (X ,τ)→(X ,τ) be the identity map. Then f is almost contra-ω-contin-
uous function which is not almost contra-precontinuous, since {a,c} is a regular closed
set of (X ,τ) and f −1({a,c})={a,c} �∈ PO(X ,τ).

Example 3.4. Let R be the real number with usual topology and X = {a,b,c} with τ =
{X ,φ,{a},{b},{a,b}}, then RO(X)= {φ,X ,{a},{b}}. Let f :R→X be defined as f (x)=
a if x ∈Q and f (x)= c if x �∈Q. Then f is almost contra-precontinuous function which
is not almost contra ω-continuous, since {a} is a regular closed set in (X ,τ) and
f −1({a})=Q which is not ω-open but preopen in R.

contra-ω-continuity almost contra-ω-continuity almost week-ω-continuity

contra-continuity (θ,s)-continuity week-continuity

contra-percontinuity almost contra-precontinuity almost week-continuity

contra-γ-continuity almost contra-γ-continuity almost week-γ-continuity

(3.1)

A space (X ,τ) is anti-locally countable [11] if all nonempty open subsets are uncount-
able. Note that R with usual topology is anti-locally countable space.

Lemma 3.5 [11]. If (X ,τ) is an anti-locally countable space, then Clω(A)= Cl(A) for every
ω-open subset of X and Int(A)= Intω(A) for every ω-closed subset of X .
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Definition 3.6 [11]. A space (X ,τ) is called locally countable, if each point x ∈ X has a
countable open neighborhood.

Lemma 3.7 [11]. If (X ,τ) is a locally countable space, then τω is the discrete topology on X .

Definition 3.8. A function f : X→Y is said to be regular set-connected if f −1(V) is clopen
in X for each regular open set V of Y .

Theorem 3.9. Let (X ,τ) be an anti-locally countable space, if a function f : X→Y is almost
contra-ω-continuous and almost continuous, then f is regular set-connected.

Proof. Let V be any regular open set in Y . Since f is almost contra-ω-continuous and
contra continuous f −1(V) is ω-closed and open. Thus Clω( f −1(V)) = ( f −1(V)), since
(X ,τ) be an anti-locally countable space then by Lemma 3.5, we have Clω(f −1(V))=
Cl( f −1(V)). Hence f −1(V) is clopen. We obtain that f is regular set-connected. �

Definition 3.10 [14]. A space X is said to be weakly Hausdorff if each element of X is an
intersection of regular closed sets.

Definition 3.11. A space X is said to be ω-T1if for each pair of distinct points x and y of
X , there exists ω-open sets U and V containing x and y, respectively, such that y �∈U and
x �∈V .

Theorem 3.12. If f : X→Y is an almost contra-ω-continuous injection and Y is weakly
Hausdorff, then X is ω-T1.

Proof. Suppose that Y is weakly Hausdorff. For any distinct points x and y in X , there
exists V ,W which are regular closed in Y such that f (x)∈ V , f (y) �∈ V , f (x) �∈W , and
f (y)∈W . Since f is almost contra-ω-continuous, then f −1(V) and f −1(W) are ω-open
subsets of X such that x ∈ f −1(V), y �∈ f −1(V),x �∈ f −1(W), and y ∈ f −1(W). This show
that X is ω-T1. �

Corollary 3.13. If f : X→Y is an contra-ω-continuous injection and Y is weakly Haus-
dorff, then X is ω-T1.

Theorem 3.14. If f : X→Y is almost contra-ω-continuous surjection and X is ω-connected,
then Y is connected.

Proof. Suppose that Y is not connected space. There exist nonempty disjoint open sets V1

and V2 such that Y =V1∪V 2. Therefore, V1 and V2 are clopen sets. Thus they are regular
open inY . Since f is almost contra-ω-continuous, f −1(V1) and f −1(V2) areω-open inX .
Moreover, f −1(V1) and f −1(V2) are nonempty disjoint and X = f −1(V1)∪ f −1(V2). This
shows that X is not ω-connected. This is a contradiction. This means that Y is connected.

�

Definition 3.15. A space X is said to be
(1) ω-compact if every ω-open cover of X has a finite subcover;
(2) countably ω- compact if every countable cover of X by ω-open sets has a finite

subcover;
(3) ω-Lindelof if every ω-open cover of X has a countable subcover;
(4) S-Lindelof [6] if every cover of X by regular closed sets has a countable subcover;
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(5) countably S-closed [15] if every countable cover of X by regular closed sets has a
finite subcover;

(6) S-closed [16] if every regular closed cover of X has a finite subcover.

Theorem 3.16. Let f : X→Y be an almost contra-ω-continuous surjection. The following
statements hold:

(1) if X is ω-compact, then Y is S-closed;
(2) if X is ω-Lindelof, then Y is S-Lindelof;
(3) if X is countably ω-compact, then Y is countably S-closed.

Proof. We prove only (1). let {Vα : α ∈ I} be any regular closed cover of Y . Since f is
almost contra-ω-continuous, then { f −1(Vα) : α∈ I} is an ω-open cover of X and hence
there exists a finite subset I0 of I such that X = ∪{ f −1(Vα) : α ∈ I0} therefore we have
Y =∪{Vα : α∈ I0} and Y is S-closed. �

Definition 3.17. A space X is said to be
(1) ω-closed compact if every ω-closed cover of X has a finite subcover;
(2) countably ω-closed conmpact if every countable cover of X by ω-closed sets has

a finite subcover;
(3) ω-closed-Lindelof if every cover of X by ω-closed sets has a countable subcover;
(4) nearly compact [17] if every regular open cover of X has a finite subcover;
(5) nearly countably compact [17] if every countable cover of X by regular open sets

has a finite subcover;
(6) nearly Lindelof [17] if every cover of X by regular open sets has a countably

subcover.

Theorem 3.18. Let f : X→Y be an almost contra-ω-continuous surjection. The following
statements hold:

(1) if X is ω-closed compact, then Y is nearly compact;
(2) if X is ω-closed-Lindelof , then Y nearly Lindelof;
(3) if X is countably ω-closed compact, then Y is nearly countably compact.

Proof. We prove only (1). Let {Vα : α ∈ I} be any regular open cover of Y . Since f is
almost contra-ω-continuous, then { f −1(Vα) : α∈ I} is an ω-closed cover of X . Since X is
ω-closed compact, there exists a finite subset I0 of I such that X = ∪{ f −1(Vα) : α ∈ I0}.
Thus, we have Y =∪{Vα : α∈ I0} and Y is nearly compact. �

Definition 3.19 [14]. A space X is said to be mildly compact (mildly countably compact,
mildly Lindelof) if every clopen cover (resp., clopen countably cover, clopen cover) of X
has a finite (resp., a finite, a countable) subcover.

Theorem 3.20. Let (X ,τ) be an anti-locally countable space, if f : X→Y be an almost
contra-ω-continuous and almost continuous surjection and X is mildly compact (resp.,
mildly countably compact, mildly Lindelof), then Y is nearly compact (resp., nearly count-
ably compact, nearly Lindelof) and S-closed (resp., countably S-closed, S-Lindelof).

Proof. Let V be any regular closed set on Y . Then since f is almost contra-ω-continuous
and almost continuous, then f −1(V) is ω-open and closed in X . By Lemma 3.5, we have
Int( f −1(V)) = Intω( f −1(V)) = f −1(V). Hence, f −1(V) is clopen. Let {Vα : α ∈ I} be
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any regular closed (resp., regular open) cover of Y . Then {F−1(Vα : α ∈ I)} is a clopen
cover of X and since X is mildly compact, there exists a finite subset I0 of I such that
X =∪{ f −1(Vα) : α∈ I0}. since f is surjection, we obtain Y =∪{Vα : α∈ I0}. This shows
that Y is S-closed (resp., nearly compact). The other proofs are similar. �

Theorem 3.21. If f : X→Y is contra-ω-continuous and A is ω-compact relative to X , then
f (A) is strongly S-closed in Y .

Proof. Let {Vi : i∈ I} be any cover of f (A), by closed sets of the subspace f (A). For i∈ I ,
there exists a closed set Ai of Y such that Vi = Ai ∩ f (A). For each x ∈ A, there exists
i(x)∈ I such that f (x)∈Ai(x) and by Theorem 2.5, there exists Ux ∈ ωO(X ,x) such that
f (Ux)⊆Ai(x). Since the family {Ux : x ∈ A} is a cover of A by ω-open sets of X , there
exists a finite subset A0 of A such that A⊆ ∪{Ux : x∈A0}. Therefore, we obtain f (A)⊆
∪{ f (Ux) : x∈ A0}. which is a subset of ∪{Ai(x) : x∈ A0}. Thus f (A)=∪{Vi(x) : x∈A0}
and hence f (A)is strongly S-closed. �

Corollary 3.22. If f : X→Y is contra-ω-continuous surjection and X is ω-compacts, then
Y is strongly S-closed.

4. Contra-closed graphs

Recall that for a function f : X→Y , the subset {(x, f (x)) : x ∈ X} ⊆ X ×Y is called the
graph of f and is denoted by G( f ).

Definition 4.1. The graph G( f ) of a function f : X→Y is said to be contra-ω-closed if for
each (x, y) ∈ (X ,Y)−G( f ), there exist U ∈ ωO(X ,x) and V ∈ C(Y , y) such that (U ×
V)∩G( f )= φ.

The following results can be easily verified.

Lemma 4.2 [6]. Let G( f ) be the graph of f , for any subset A ⊆ X and B ⊆ Y , we have
f (A)∩B = φ if and only if (A×B)∩G( f )= φ.

Lemma 4.3. The graph G( f ) of f : X→Y is contra-ω-closed in X ×Y if and only if for each
(x, y)∈ (X ×Y)−G( f ), there exist U ∈ ωO(X ,x) and V ∈ C(Y , y) such that f (U)∩V =
φ.

Theorem 4.4. If f : X→Y is contra-ω-continuous and Y is Urysohn, then G( f ) is contra-
ω-closed in X ×Y .

Proof. Let (x, y)∈ (X ×Y)−G( f ). Then y �= f (x) and there exists open sets V ,W such
that f (x) ∈ V , y ∈W , and Cl(V)∩ Cl(W) = φ. Since f is contra-ω-continuous, there
exists U ∈ ωO(X ,x) such that f (U)⊆ Cl(V). Therefore, we obtain f (U)∩ Cl(W)= φ.
This shows that G( f ) is contra-ω-closed. �

Theorem 4.5. If f : X→Y is ω-continuous and Y is T1, then G( f ) is contra-ω-closed in
X ×Y .
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Proof. Let (x, y)∈ (X ×Y)−G( f ). Then y �= f (x) and there exists open set V of Y , such
that f (x) ∈ V , y �∈ V . Since f is ω-continuous, there exists U ∈ ωO(X ,x) such that
f (U)⊆V . Therefore, f (U)∩ (Y −V)= φ and Y −V ∈ C(Y , y). This shows that G( f ) is
contra-ω-closed in X ×Y . �

Theorem 4.6. If f : X→Y has a contra ω-closed graph, then the inverse image of a strongly
S-closed set A of Y is ω-closed in X .

Proof. Assume that A is a strongly S-closed set of Y and x �∈ f −1(A). For each
a ∈ A, (x,a) �∈ G( f ). By Lemma 4.3 there exist Ua ∈ ω(X ,x) and Va ∈ C(Y ,a) such that
f (Ua)∩Va = φ. Since {A∩Va | a ∈ A} is a closed cover of the subspace A, there exists
a finite subset A0 ⊆ A such that A ⊆ ∪{Va | a∈A0}. Set U = ∩{Ua | a∈A0}, and U is
ω-open since τω is topology and f (U)∩A = φ. Therefore, U∩ f −1(A) = φ; and hence,
x �∈ Clω( f −1(A)). This shows that f −1(A) is ω-closed. �

Theorem 4.7. Let Y be a strongly S-closed space. If a function f : X→Y has a contra-ω-
closed graph, then f is contra ω-continuous.

Proof. Suppose that Y is strongly S-closed space and G( f ) is contra ω-closed. First we
show that an open set of Y is strongly S-closed. Let U be an open set of Y and {Vi | i∈ I}
be a cover of U by closed sets Vi of U . For each i∈ I , there exists a closed set Ki of X such
that Vi = Ki∩U . Then the family {Ki | i∈ I}∪ (Y −U) is a closed cover of Y . Since Y is
strongly S-closed, there exists a finite subset I0 ⊆ I such that Y =∪{Ki | i∈ I0}∪ (Y −U).
Therefore, we obtain U = ∪{Vi | i ∈ I0}. This shows that U is strongly S-closed. Now
for any open set U by Theorem 4.6 f −1(U) is ω-closed in X ; therefore, f is contra ω-
continuous. �

Definition 4.8. The graph G( f ) of a function f : X→Y is said to be strongly contra-ω-
closed if for each (x, y)∈ (X ,Y)−G( f ), there exist U ∈ ωO(X ,x) and V ∈ RC(Y , y) such
that (U ×V)∩G( f )= φ.

Lemma 4.9. The graph G( f ) of f : X→Y is strongly contra-ω-closed graph in X ×Y if and
only if for each (x, y)∈ (X ×Y)−G( f ), there exist U ∈ ωO(X ,x) and V ∈ RC(Y , y) such
that f (U)∩V = φ.

Theorem 4.10. If f : X→Y is almost weakly-ω-continuous and Y is Urysohn, then G( f ) is
strongly contra-ω-closed in X ×Y .

Proof. Suppose that (x, y) ∈ (X ×Y)−G( f ). Then y �= f (x). Since Y is Urysohn, there
exist open sets V and W in Y containing y and f (x), respectively, such that Cl(V)∩
Cl(W)= φ. Since f is almost weakly-ω-continuous, by Definition 2.20 there exists U ∈
ω(X ,x) such that f (U)⊆ Cl(W). This shows that f (U)∩ Cl(V)= f (U)∩ Cl(Int(V))
= φ, where Cl(Int(V))∈ RC(Y) and hence by Lemma 4.9 we have G( f ) is strongly con-
tra-ω-closed. �

Theorem 4.11. If f : X→Y is almost contra-ω-continuous, then f is almost weakly-ω-
continuous.
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Proof. Let x ∈ X and V be any open set of Y containing f (x). Then Cl(V) is a regular
closed set of Y containing f (x). Since f is almost contra-ω-continuous, by Theorem 3.2
there exists U ∈ ωO(X ,x) such that f (U)⊆ Cl(V). By Definition 2.20 f is almost weak-
ly-ω-continuous. �

Corollary 4.12. If f : X→Y is almost contra-ω-continuous and Y is Urysohn, then G( f )
is strongly contra-ω-closed.

The following result can be easily verified.

Lemma 4.13. a function f : X→Y is almost ω-continuous, if and only if for each x ∈ X
and each regular open set V of Y containing f (x), there exists U ∈ ωO(X ,x) such that
f (U)⊆V .

Theorem 4.14. If f : X→Y is almost ω-continuous, and Y is Hausdorff, then G( f ) is
strongly contra-ω-closed.

Proof. Suppose that (x, y)∈ (X ×Y)−G( f ). Then y �= f (x). Since Y is Hausdorff, there
exist open sets V and W in Y containing y and f (x), respectively, such that V ∩W =
φ; hence, Cl(V)∩ Int(Cl(W)) = φ. Since f is almost ω-continuous, and W is regular
open by Lemma 4.13 there exists U ∈ ωO(X ,x) such that f (U)=W ⊆ Int(Cl(W)). This
shows that f (U)∩ Cl(V)= φ and hence by Lemma 4.9 we have G( f ) is strongly contra-
ω-closed. �

We recall that a topological space (X ,τ) is said to be extremely disconnected (E.D) if
the closure of every open set of X is open in X .

Theorem 4.15. Let Y be E.D. Then a function f : X→Y is almost contra-ω-continuous if
and only if it is almost ω-continuous.

Proof. Let x ∈ X and V be any regular open set of Y containing f (x). Since Y is E.D then
V is clopen and hence V is regular closed. By Theorem 3.2, there exists U ∈ ωO(X ,x)
such that f (U) ⊆ V . Then Lemma 4.13 implies that f is almost ω-continuous. Con-
versely, let F be any regular closed set of Y . Since Y is E.D, F is also regular open and
f −1(F) is ω-open in X . This shows that f is almost contra-ω-continuous. �

Theorem 4.16. If f : X→Y is an injective almost contra-ω-continuous function with the
strongly contra-ω-closed graph, then (X ,τ) is ω-T2.

Proof. Let x and y be distinct points of X . Then, since f is injective, we have f (x) �= f (y).
Then we have (x, f (y)) ∈ (X × Y)−G( f ). Since G( f ) is strongly contra-ω-closed, by
Lemma 4.9 there exists U ∈ ωO(X ,x) and a regular closed set V containing f (y) such
that f (U)∩V = φ. Since f is almost contra-ω-continuous, by Theorem 3.2 there exists
G∈ ωO(X , y)such that f (G)⊆ V . Therefore, we have f (U)∩ f (G)= φ; hence, U ∩G=
φ. This shows that (X ,τ) is ω-T2. �
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