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We investigate the concepts of linear convexity and C-convexity in complex Banach
spaces. The main result is that any C-convex domain is necessarily linearly convex. This
is a complex version of the Hahn-Banach theorem, since it means the following: given a
C-convex domain Ω in the Banach space X and a point p /∈Ω, there is a complex hyper-
plane through p that does not intersect Ω. We also prove that linearly convex domains
are holomorphically convex, and that Kergin interpolation can be performed on holo-
morphic mappings defined in C-convex domains.
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1. Introduction

The objective of this paper is to study properties of C-convex and linearly convex sets in
general complex Banach spaces. These notions of convexity are natural complex general-
izations of ordinary convexity and have been studied quite extensively in Cn.

Recall that there are several equivalent ways to define convexity for a domain Ω⊂Rn.
One can, for instance, require Ω to have contractible intersections with lines, or one can
require that through each point in the complement of Ω there passes a hyperplane that
does not intersect the set, or that through each point in the boundary of Ω there passes
such a hyperplane.

Obviously, domains in Cn can be convex in this sense, since Cn can be identified with
R2n. However, when the conditions above are given a complex interpretation, new no-
tions of convexity arise.

(1) A domain Ω⊂ Cn is said to be C-convex if its intersection with any complex line is
contractible (or empty).

(2) A domain Ω⊂ Cn is said to be linearly convex if through each point in the comple-
ment of Ω there passes a complex hyperplane that does not intersect Ω.

(3) A domain Ω ⊂ Cn is said to be weakly linearly convex if through each boundary
point of Ω there passes a complex hyperplane that does not intersect Ω.
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2 C-convexity

A quite extensive theory of these complex notions of convexity in Cn has been devel-
oped (cf. the books by Andersson et al. [2] and Hörmander [6]).

It is obvious that ordinary convexity implies C-convexity, and C-convexity has been
shown to imply linear convexity. Clearly, linear convexity implies weak linear convexity,
which in turn has been shown to imply pseudoconvexity. Since in general none of these
implications is an equivalence, there is a whole scale of different notions of convexity
in Cn.

Since linear convexity and C-convexity are defined by means of complex lines and
hyperplanes, these concepts are equally natural in a general complex Banach space (or,
for that matter, any complex locally convex topological vector space, but we will not stress
this point). No study of this kind has previously been conducted.

Our aim is to study these convexity notions in this more general setting and to show
that to a large extent, the aforementioned implications remain true. The main result is
Theorem 4.4, stating that C-convex domains are necessarily linearly convex. This can be
thought of as a complex Hahn-Banach theorem; cf. Corollary 4.5. We also show that,
as in the finite-dimensional case, Kergin interpolation, a generalized Lagrange-Hermite-
type polynomial interpolation, can be performed on holomorphic mappings defined in
a C-convex domain.

The organization of the paper is as follows. In Section 2, we make some notational
conventions and record a few basic definitions and facts. In Section 3, we discuss linear
convexity in the Banach space setting. Section 4 deals with C-convexity in Banach spaces
and contains the main results of the paper. Finally, we give applications to Kergin inter-
polation in Section 5.

2. Notational conventions and fundamental definitions

Throughout this paper, X and Y will denote complex Banach spaces and X∗ and Y∗ are
their dual counterparts. A mapping P : X → Y is said to be a polynomial of degree d if for
all x ∈ X ,

P(x)= L0 +L1x+L2x
2 + ···+Ldxd, (2.1)

where each Lj is a j-linear map fromX toY , and Ljx j is shorthand notation for Lj(x,x, . . . ,
x), the x occurring j times. We let �(X ,Y) denote the space of continuous polynomials;
in case Y = C, we simply write �(X).

If Ω is an open subset of X , then a mapping f : Ω→ Y is said to be holomorphic if for
each ξ ∈Ω there exist an open ball Br(ξ) of radius r around ξ and a sequence of j-linear
maps Lj such that

f (x)=
∞∑

j=0

Lj(x− ξ) j , (2.2)

uniformly for x ∈ Br(ξ). We let �(Ω,Y) denote the space of holomorphic mappings of Ω
into Y ; in case Y = C, we simply write �(Ω).
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A complex line in X is a set of the kind

� = {x ∈ X : x = a+ bz}, (2.3)

where a and b are fixed vectors in X and z ranges overC. A complex hyperplane in X is an
affine subspace of complex codimension one, or equivalently, the level set of a continuous
linear functional α∈ X∗, that is, a set of the type

H = {x ∈ X : α(x)= c}, (2.4)

where c is some fixed complex number. If c �= 0 and β is the functional c−1α, then

H = {x ∈ X : β(x)= 1}, (2.5)

and so we can identify hyperplanes in X that do not pass through the origin with points
in the dual space X∗. As in the finite-dimensional case, we now introduce the concept of
dual complement as follows.

Definition 2.1. Let Ω be a subset of X . The dual complement Ω∗ of Ω is defined to be
the set of all hyperplanes not intersecting Ω. Assuming that 0∈Ω, Ω∗ can be viewed as a
subset of X∗, and then

Ω∗ = {α∈ X∗ : α(x) �= 1, ∀x ∈Ω
}
. (2.6)

Clearly, if Ω is open, then Ω∗ is closed, and if Ω is closed, then Ω∗ is open.

3. Linear convexity in Banach spaces

We begin our study of complex convexity notions in Banach spaces by the following def-
inition.

Definition 3.1. An open set Ω⊂ X is said to be linearly convex if for each x ∈ X\Ω, there
exists an affine complex hyperplane H such that x ∈ H ⊂ X\Ω. The set Ω is said to be
weakly linearly convex if the condition is fulfilled for each x ∈ ∂Ω.

Since every real hyperplane contains a complex one, every convex set is linearly convex.
The converse is not true. The fact that a complex hyperplane has a connected complement
makes linear convexity a weaker condition than ordinary convexity.

Linear convexity is preserved under intersections, and so one can define the linearly
convex hull of a set Ω as the smallest linearly convex set containing Ω. If X is a reflexive
Banach space, then for any set Ω ⊂ X we can form the dual complement of the dual
complement and end up with a set Ω∗∗ ⊂ X . In this situation, the dual complement of a
set is always linearly convex, and Ω∗∗ is the linearly convex hull of Ω.

An open set Ω⊂ X is said to be holomorphically convex if for each compact setK ⊂Ω,
the holomorphic hull

K̂�(Ω) :=
{
x ∈Ω :

∣∣ f (x)
∣∣≤ sup

K
| f |, ∀ f ∈ �(Ω)

}
(3.1)
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is compact. Note that in a general Banach space, any domain of holomorphy is holomor-
phically convex, but the converse is not true. We also introduce the concept of affine hull
as follows. Let C⊕X∗ denote the vector space of all continuous affine forms on X . The
affine hull of K ⊂ X is then defined to be the set

K̂C⊕X∗ :=
{
x ∈ X :

∣∣ f (x)
∣∣≤ sup

K
| f |, ∀ f ∈ C⊕X∗

}
. (3.2)

This concept will be of use to us in the proof of the following result. The proof is very
similar to the proof of the corresponding property in the finite-dimensional case (cf. [2]).

Proposition 3.2. Every weakly linearly convex open set Ω⊂ X is holomorphically convex.

Proof. Let K be a compact subset of Ω. We must prove that the holomorphic hull K̂�(Ω)

is compact in Ω. Since K̂�(Ω) is clearly contained in K̂C⊕X∗ which is easily seen to be
compact, it is enough to prove that the closure of K̂�(Ω) is contained in Ω. Let x0 ∈ ∂Ω.
Since Ω is weakly linearly convex, there is an affine complex linear function f vanishing
at x0 with the property that the zero set of f is contained in the complement of Ω. Now
the function 1/ f is holomorphic in Ω and |1/ f (x)| ≤ supK |1/ f | if x ∈ K̂�(Ω), and so it
follows that x0 is not in the closure of K̂�(Ω). �

4. C-convexity in Banach spaces

In this section, we turn to C-convexity, which is the principal concept under study in this
paper. The definition is as follows.

Definition 4.1. An open set Ω of a complex Banach space X is said to be C-convex if Ω∩ �
is a simply connected subset of � for each affine complex line �.

Clearly, all convex sets in X are C-convex, but there are C-convex sets which are not
convex. See [2, 6] for (finite-dimensional) examples. We now set out to prove some basic
facts about C-convex open sets in Banach spaces.

Proposition 4.2. Every open C-convex set Ω of a complex Banach space X is simply con-
nected.

Proof. Ω is connected almost by definition, since any two points x1 and x2 in Ω can be
joined by an arc contained in the complex line spanned by these two points. To prove
that Ω is simply connected, we must take an arbitrary closed curve γ ⊂Ω and show that
it is homotopic to a point. Since γ is compact, it can be covered by finitely many open
balls contained in Ω. Inside each of these balls, we can make a small deformation of γ,
and so we may assume that γ is piecewise linear with vertices v0,v1,v2, . . . ,vN = v0. By C-
convexity, such a γ is homotopic to any curve passing through these vertices in order and
which between vj and vj+1 is contained in the line �j spanned by these two points.

Clearly, it is enough to show that γ is homotopic to a point in Ω intersected with the
finite-dimensional subspace ofX spanned by 0 and the vertices v0,v1, . . . ,vN−1. For the rest
of the proof, we may therefore assume that X is finite dimensional and use the following
argument given by Hörmander [6].
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The homotopy class is not changed if the points vj are moved a little bit to the points
v′j sufficiently close. Indeed, if we insert a path from vj to v′j and back to vj , we get a
homotopic path, and the path from v′j to vj to vj+1 to v′j+1 is homotopic to its orthogonal
projection on the line L′j spanned by v′j and v′j+1, if vk − v′k is sufficiently small for all k.
Thus, the homotopy class is independent of (v0,v1, . . . ,vN−1)∈ΩN , for ΩN is connected.
Since we can choose all points in a convex subset of Ω, we conclude that it is equal to 0.

�

Proposition 4.3. Let Ω be aC-convex open set in X . If T : X → Y is a continuous surjective
complex affine map, then T(Ω) is a C-convex open set in Y . If S : W → X is a continuous
complex affine map and W is a Banach space, then S−1(Ω) is a C-convex open set in W .

Proof. It is clear that S−1(Ω)∩ � is connected and simply connected for any complex line
� in W , since � is either mapped to a point by S or it is mapped bijectively onto a line.
Also, by continuity, S−1(Ω) is open.

The mapping T is surjective, and so T(Ω) is open and obviously connected. Let us
prove that T(Ω) is simply connected. Let γ be an arbitrary closed curve in T(Ω). By
Michael’s selection theorem (cf. [10]), we can find a closed curve Γ in Ω such that T(Γ)=
γ. Since Ω is simply connected by Proposition 4.2, there is a homotopy from Γ to a point
in Ω. If we apply T to such a homotopy, we get a homotopy from γ to a point in T(Ω),
and so T(Ω) is indeed simply connected. Now let � be any complex line in Y . Then Ω∩
T−1(�) is C-convex as a subset of T−1(�), hence simply connected. Since T : T−1(�)→
� is surjective, it follows from what we just proved that T(Ω∩ T−1(�)) = T(Ω)∩ � is
connected and simply connected and the proof is complete. �

The fact that C-convexity is preserved under affine maps is, while important in it-
self, also one of the main ingredients in the proof of the fact that C-convex domains are
linearly convex. Since this can be thought of as a complex Hahn-Banach theorem, it is
perhaps not surprising that part of the argument is mimicked on the proof of a geometri-
cal version of the classical Hahn-Banach theorem. The proof also uses the corresponding
result in finite dimensions: in Cn all C-convex open sets are linearly convex (cf. [2] or
[6]).

Theorem 4.4. Every open C-convex set Ω of a complex Banach space X is linearly convex.

Proof. Let a be any point inX\Ω. We need to prove the existence of a complex hyperplane
through a that does not cut Ω. We may clearly assume that a= 0. Let

L :=
{
M :M subspace of X , 0∈M, M∩Ω=∅

}
. (4.1)

The set L is partially ordered by inclusion, and if {Mα} is a totally ordered subset of L, then⋃
αMα is an upper bound for {Mα}. Zorn’s lemma guarantees the existence of a maximal

element N ∈ L. By construction, 0 ∈ N and N ∩Ω =∅. It remains to prove that N is a
hyperplane. Suppose it is not, then it is a subspace of X of codimension at least two. Let
Z be a two-dimensional linear subspace of X such that N ∩ Z = 0. By Proposition 4.3,



6 C-convexity

Ω̃ :=Ω∩ (N ⊕Z) is C-convex. Also, by Proposition 4.3, the projection

π :N ⊕Z −→ Z (4.2)

maps Ω̃ to a C-convex set π(Ω̃) that avoids the origin. Since Z is two dimensional, all its
C-convex subsets are linearly convex (cf. [2]), and so there is a complex hyperplane, that
is, a complex line � through the origin that does not cut π(Ω̃). But then (N ∪ π−1(�))∩
Ω=∅ which contradicts the maximality of N . The theorem is proved. �

Considering the definitions of C-convexity and linear convexity, we immediately get
the following purely complex version of the Hahn-Banach theorem.

Corollary 4.5. Given a C-convex domain Ω and a point p /∈ Ω, there exists a complex
hyperplane passing through p that does not intersect Ω.

In Cn, it has been proved that all C-convex open sets are polynomially convex (cf.
[2, 6]). To generalize this result to the present setting, we first need some definitions.

For any set K ⊂ X , we define its polynomial hull to be the set

K̂�(X) :=
{
x ∈ X :

∣∣ f (x)
∣∣≤ sup

K
| f |, ∀ f ∈�(X)

}
, (4.3)

and an open set Ω is said to be polynomially convex if K̂�(X)∩Ω is compact for every com-
pact K ⊂Ω. An open set Ω⊂ X is said to be Runge if �(X) is dense in �(Ω) with respect
to the compact-open topology. Also, Ω is said to be finitely polynomially convex (resp.,
finitely Runge) if Ω∩M is polynomially convex (resp., Runge) for each finite-dimensional
subspace M. In general, these concepts are different, but Proposition 4.6 gives a sufficient
condition for them to coincide.

Recall that the Banach space X is said to have the approximation property if for each
compact set K ⊂ X and ε > 0, there is a continuous linear operator T on X with finite-
dimensional range such that ‖T(x)− x‖ < ε for every x ∈ K .

Proposition 4.6. Let X be a Banach space with the approximation property and Ω a holo-
morphically convex open subset of X . Then the following conditions are equivalent.

(1) Ω is polynomially convex.
(2) Ω is finitely polynomially convex.
(3) Ω is finitely Runge.
(4) Ω is Runge.

Proof. This was proved by Aron and Schottenloher, extending results by Dineen and
Noverraz (cf. [9]). �

Now we are ready to prove the last result of this section.

Proposition 4.7. Let X be a complex Banach space with the approximation property. Then
every C-convex open set Ω⊂ X is polynomially convex and Runge.

Proof. Clearly, Ω∩M is C-convex for each finite-dimensional subspace M of X . Since in
the finite-dimensional caseC-convexity implies polynomial convexity, our set Ω is finitely
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polynomially convex. By Proposition 3.2, Ω is also holomorphically convex, and so by an
application of Proposition 4.6, we are done. �

5. Applications to Kergin interpolation

In [5], it is proved that if f is a Ck mapping from an open convex subset U of a Banach
space X into a Banach space Y , for each sequence of points p = (p0, p1, . . . , pk) in U , one
can associate to f a polynomial Kp f of degree at most k with the following properties.

(1) Kp f (pj)= f (pj), j = 0,1, . . . ,k.
(2) If p ⊂ q, then Kp f = KpKq f .
(3) For polynomials f of degree at most k, Kp f = f .
(4) For any continuous affine map A, Kp(g ◦A)= (KApg)◦A.

Moreover, the mapping f �→ Kp f is continuous and independent of the ordering of
the points in the sequence p. The polynomial Kp f is called the Kergin polynomial and is
given by the explicit formula

Kp f (x)= f
(
p0
)

+
∫

[p0,p1]
Dx−p0 f + ···+

∫

[p0,p1,...,pk]
Dx−pk−1 ···Dx−p0 f , (5.1)

where Dy denotes the directional derivative of f in the direction y, and the integrals are
the so-called simplex functionals defined by

∫

[p0,p1,...,pj ]
g :=

∫

Sj
g
(
p0 + s1

(
p1− p0

)
+ ···+ s j

(
pj − p0

))
ds1 ···dsj . (5.2)

Here Sj = {(s1, . . . ,s j) : si ≥ 0,
∑
si ≤ 1} is the standard j-simplex inR j and the integral on

the right is a Bochner integral with respect to Lebesgue measure. Note that these simplex
functionals take values in a Banach space, hence they are not functionals in the usual sense
(cf. [5] for more details about this). See also [1, 3, 7, 8] for finite-dimensional results.

We will now prove that, in the complex case, Kergin interpolation can be extended
to mappings holomorphic in C-convex domains. This was done in [1] for the finite-
dimensional case, and we will adopt their method to the present situation.

To begin with, we need to define an extension of the simplex functional to any C-
convex domain Ω. The construction is as follows.

Let Ω ⊂ X be a C-convex domain and let p = (p0, p1, . . . , pk) be a sequence of points
in Ω. Denote the standard j-simplex by Sj , its vertices by v0,v1, . . . ,vk, and for each j ≤ k,
let Ω j be the intersection of Ω with the complex affine space spanned by p0, p1, . . . , pj .
Also, let ωj be the preimage of Ω j under the complex affine map C j → X taking each
vi to pi (we use the standard inclusion R j ⊂ C j). It turns out that ωj is again C-convex.
Finally, introduce singular chains γj : Sj → ωj mapping every face of Sj into the complex
( j− 1)-plane which it spans. This is possible by C-convexity, and each vi remains fixed.

Definition 5.1. With the notation introduced above, the complex simplex functional is
defined to be

g �−→
∫

[p0,p1,...,pj ]
g :=

∫

γj
g
(
p0 + λ1

(
p1− p0

)
+ ···+ λj

(
pj − p0

))
dλ1∧···∧dλj .

(5.3)
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Observe that the complex simplex functional depends on the domain Ω. The following
properties of the complex simplex functional are useful.

Proposition 5.2. For p = (p0, p1, . . . , pj) in the C-convex domain Ω ⊂ X , the complex
simplex functional

∫

[p]
: �(Ω,Y)−→ Y , (5.4)

defined above, is independent of the particular choice of chain γj in ωj . Moreover,
(1) it is independent of the order of the points in the sequence p,
(2) it is invariant under complex affine mappings, that is, if A :W → X is such a map, W

is another Banach space, then
∫

[p] g ◦A=
∫

[Ap] g, whereAp=(A(p0),A(p1), . . . ,A(pj)).

Proof. If the target space Y is C, then everything follows from the corresponding result in
[1], since when we evaluate the simplex functional, we only take into account the behavior
of g on a subspace of (the finite-dimensional) affine subspace of X spanned by the points
in the sequence p. If Y is any Banach space, then the proposition is true if we replace g by
ψ ◦ g, where ψ is any continuous linear functional on Y . Since the Bochner integral has
the property that, for all ψ ∈ Y∗,

ψ
(∫

E
g dμ

)
=
∫

E
ψ ◦ gdμ, (5.5)

where E is any measurable set (cf. [4]), and the continuous linear functionals separate
points, the proposition follows in the general case. �

Now we can define the Kergin polynomial in this setting and state and prove our theo-
rem on Kergin interpolation of holomorphic mappings on C-convex domains in Banach
spaces.

Definition 5.3. Let Ω be a C-convex domain in X and p = (p0, p1, . . . , pk) a sequence of
points in Ω. Then, for any f ∈ �(Ω), the Kergin polynomial Kp f of f with respect to the
points p is defined to be

Kp f (x)= f (p0) +
∫

[p0,p1]
Dx−p0 f + ···+

∫

[p0,p1,...,pk]
Dx−pk−1 ···Dx−p0 f . (5.6)

Theorem 5.4. Let Ω be a C-convex domain in X and p = (p0, p1, . . . , pk) a sequence of
points in Ω. Then, for any f ∈ �(Ω), the Kergin polynomial Kp f defined above is a polyno-
mial such that

Kp f
(
pj
)= f

(
pj
)
, j = 0,1, . . . ,k. (5.7)

Moreover, the mapping f �→ Kp f is continuous in the compact-open topology and has the
following properties.

(1) It is independent of the ordering of the points in the sequence.
(2) It is associative, in the sense that, if p ⊂ q, Kp f = KpKq f .



Lars Filipsson 9

(3) It is affine invariant, meaning that if f = g ◦A for some continuous affine map A
and holomorphic function g, then Kp f = Kp(g ◦A) = (KApg) ◦A, where as before
Ap = (A(p0), . . . ,A(pk)).

(4) It is a projection, that is, if f is itself a polynomial of degree at most k, then Kp f = f .

Proof. In case Y = C, all assertions follow from the results in [1], since everything takes
place in the convex hull of the points in the sequence p which is contained in a finite-
dimensional subspace of X . Suppose that Y is any complex Banach space. Then Kp f is a
polynomial of degree k if and only if ψ ◦Kp f is a polynomial of degree at most k for each
ψ ∈ Y∗. Also, for any such ψ,

ψ ◦Kp f
(
pj
)= Kp

(
ψ ◦ f )(pj

)= ψ ◦ f (pj
)
, j = 0,1, . . . ,k. (5.8)

It follows that Kp f (pj) = f (pj) for all j since the functionals separate points of Y . The
properties (1)–(4) follow in a similar manner from their classical counterparts and the
properties of the continuous linear functionals in Y∗. �

Remark 5.5. We want to point out that there is a concept called c-convexity in the theory
of normed linear spaces. Such a space X is said to be uniformly c-convex if for every
ε > 0 there is a δ > 0 such that ‖y‖ < ε whenever x, y ∈ X , ‖x‖ = 1, ‖x + λy‖ ≤ 1 for all
complex numbers λwith |λ| ≤ 1. This concept of c-convexity is not related to our concept
of C-convexity.

References

[1] M. Andersson and M. Passare, Complex Kergin interpolation, Journal of Approximation Theory
64 (1991), no. 2, 214–225.

[2] M. Andersson, M. Passare, and R. Sigurdsson, Complex Convexity and Analytic Functionals,
Progress in Mathematics, vol. 225, Birkhäuser, Basel, 2004.
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