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We construct two adjacent sequences that converge to the sum of a given convergent p-
series. In case of a divergent p-series, lower and upper bounds of the (kn)th partial sum
are constructed. In either case, we extend the results obtained by Hansheng and Lu (2005)
to any integer k ≥ 2. Some numerical examples are given.
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Theorem 2 is the main result in this note. Lemma 1 is key to our main result. It is different
from the result in [2] because it does not restrict the number of terms in the partial sum
to an even one. Also, our inequalities (2) should be compared with the corresponding
result in [2] for k = 2.

Lemma 1. Let sn(p) be the nth partial sum of the p-series
∑∞

i=1(1/ip), and let k be any
integer greater than 1.

(a) If p > 0, then

sk−1(p)− k− 1
kp

+
k

kp
sn(p) < skn(p) < sk−1(p) +

k

kp
sn(p). (1)

(b) If p < 0, then

k+
k

kp
sn−1(p) < skn(p) < 1− 1

kp
+

k

kp
sn(p). (2)

Proof. Let us observe that by the definition of sn(p), we have

skn(p)= 1 +
1
2p + ···+

1
(kn)p

=
k−1∑

j=0

s
j
kn, (3)

where

s
j
kn =

1
(k− j)p

+
1

(2k− j)p
+ ···+

1
(nk− j)p

. (4)
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In particular,

s0
kn =

1
kp

+
1

(2k)p
+ ···+

1
(nk)p

= 1
kp

sn(p). (5)

(a) Assume that p > 0, and k is any integer greater than 1. For j = 1, . . . ,k− 1,

s
j
kn =

1
(k− j)p

+
1

(2k− j)p
+ ···+

1
(nk− j)p

>
1

(k− j)p
+

1
(2k)p

+ ···+
1

(nk)p
. (6)

Therefore,

s
j
kn >

1
(k− j)p

− 1
kp

+
1
kp

sn(p). (7)

Finally,

k−1∑

j=0

s
j
kn > s0

kn +
k−1∑

j=1

(
1

(k− j)p
− 1
kp

+
1
kp

sn(p)

)

= sk−1(p)− k− 1
kp

+
k

kp
sn(p), (8)

which concludes the proof of the left inequality of (1).
Now, for j = 1, . . . ,k− 1, we have

s
j
kn =

1
(k− j)p

+
1

(2k− j)p
+ ···+

1
(nk− j)p

<
1

(k− j)p
+

1
kp

+ ···+
1

(nk)p
, (9)

so that

s
j
kn <

1
(k− j)p

+
1
kp

sn(p). (10)

It follows that

skn(p) < s0
kn +

k−1∑

j=1

(
1

(k− j)p
+

1
kp

sn(p)

)

= sk−1(p) +
k

kp
sn(p), (11)

which concludes the proof of the right inequality of (1). The proof of (1) is complete.
(b) Assume now that p < 0, and k is any integer greater than 1. We have

s
j
kn =

1
(k− j)p

+
1

(2k− j)p
+ ···+

1
(nk− j)p

> 1 +
1
kp

+
1

(2k)p
+ ···+

1
(
k(n− 1)

)p > 1 +
1
kp

sn−1(p)
(12)

for j = 0, . . . ,k− 1.
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It now follows that

skn(p)=
k−1∑

j=0

s
j
kn >

k−1∑

j=0

(

1 +
1
kp

sn−1(p)
)

> k+
k

kp
sn−1(p). (13)

This completes the proof of the left inequality of (2).
The proof of the right inequality of (2) follows from the inequalities below:

sk−1
kn =1+

1
(k+ 1)p

+···+ 1
(
k(n−1)+1

)p < 1+
1

(2k)p
+ ···+

1
(nk)p

= 1− 1
kp

+
1
kp

sn(p),

s
j
kn =

1
(k− j)p

+
1

(2k− j)p
+ ···+

1
(nk− j)p

<
1
kp

+
1

(2k)p
+ ···+

1
(nk)p

= 1
kp

sn(p)

(14)

for j = 1, . . . ,k− 2.
It is now clear that

skn(p)=s0
kn+sk−1

kn +
k−2∑

j=1

s
j
kn <

1
kp

sn(p)+1− 1
kp

+
1
kp

sn(p) +
k−2∑

j=1

1
kp

sn(p) < 1− 1
kp

+
k

kp
sn(p).

(15)

The proof of the right inequality of (2) is complete; so are the proofs of (2) and
Lemma 1. �

Let us now state and prove our main theorem. Like Lemma 1, Theorem 2 generalizes
the results contained in [2] to any integer k ≥ 2. In addition to that, it extends the results
in [2] from the computational point of view.

Theorem 2. Let k be any integer greater than 1.
(a) For p ≤ 1, the p-series is divergent and

lim
n→∞

skn(p)
sn(p)

= k1−p. (16)

(b) For p > 1, the p-series converges and

lk(p)≤ lim
n→∞sn(p)≤ uk(p), (17)

where

lk(p)= kp

kp− k

(

sk−1(p)− k− 1
kp

)

, uk(p)= kp

kp− k
sk−1(p). (18)
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Proof. (a) Assume p ≤ 1.
For p ≤ 0, the general term of the p-series does not go to 0 as n goes to ∞ and thus,

the p-series diverges.
For 0 < p ≤ 1, let us assume that the p-series converges to S(p). By taking the limit as

n goes to∞ of (1) and solving for S(p) the left inequality, one obtains

0 < sk−1(p)− k− 1
kp

≤ kp− k

kp
S(p)≤ 0. (19)

The contradiction displayed by (19) shows that the p-series diverges for 0 < p ≤ 1. This
completes the proof that the p-series is divergent for p ≤ 1.

Now, assume that the p-series diverges. By dividing (1) and (2) by sn(p), and taking
the limit as n goes to ∞ of the newly obtained inequalities, the squeeze theorem shows
that

lim
n→∞

skn(p)
sn(p)

= k

kp
= k1−p. (20)

This proves (16).
(b) Assume now that p > 1.
From (1) and the fact that sk−1(p)≤ k− 1 for each k ≥ 2, one can write

sn(p)≤ k− 1 +
k

kp
sn(p). (21)

Solving (21) for sn(p), one obtains

sn(p)≤ (k− 1)kp−1

kp−1− 1
, (22)

which shows that the sequence of the partial sums of the p-series is bounded above. Since
it is also increasing as the sum of positive numbers, it is convergent. This concludes the
proof of the convergence of the p-series for p > 1.

Now, let S(p) be the sum of the p-series. By taking the limit as n goes to ∞ of the
inequalities (1), one obtains

sk−1(p)− k− 1
kp

+
k

kp
S(p) < S(p) < sk−1(p) +

k

kp
S(p) (23)

or equivalently

kp

kp− k

(

sk−1(p)− k− 1
kp

)

≤ lim
n→∞sn(p)≤ kp

kp− k
sk−1(p). (24)

The proof of Theorem 2 is complete. �
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Corollary 3. For a divergent p-series,

lim
n→∞

skn(p)
smn(p)

=
(
k

m

)1−p
. (25)

Proof.

lim
n→∞

skn(p)
smn(p)

= lim
n→∞

skn(p)
sn(p)

× lim
n→∞

sn(p)
smn(p)

= k1−p×m−(1−p) =
(
k

m

)1−p
. (26)

�

Example 4.

lim
n→∞

1 + 1/ 5
√

2 + 1/ 5
√

3 + ···+ 1/ 5
√

7n
1 + 1/ 5

√
2 + 1/ 5

√
3 + ···+ 1 5

√
3n

= lim
n→∞

s7n(1/5)
s3n(1/5)

=
(

7
3

)4/5

. (27)

Lemma 5. For x ≥ 2 and p > 1, the function

f (x)= xp

xp− x
(28)

is decreasing.

Proof. Assume x ≥ 2 and p > 1. Then

f ′(x)= (1− p)xp
(
xp− x

)2 < 0. (29)

�

Lemma 6. For x ≥ 2 and p > 1,

(
(x+ 1)p

(x+ 1)p− (x+ 1)
− xp

xp− x

)

+

(
(x+ 1)p

(x+ 1)p− (x+ 1)

)
1
xp
≤ 0. (30)

Proof. Assume x ≥ 2 and p > 1; let

g(x)=
(

(x+ 1)p

(x+ 1)p− (x+ 1)
− xp

xp− x

)

+

(
(x+ 1)p

(x+ 1)p− (x+ 1)

)
1
xp

. (31)

Then

lim
x→∞g(x)= 0. (32)

As in Lemma 5, one can show that g(x) is increasing. This shows that

g(x)≤ 0. (33)
�

We would like to point out that lk(p) and uk(p) as defined in (18) are, respectively, a
lower estimate and an upper estimate of the sum of a convergent p-series. They are the
general terms of sequences that enjoy some interesting properties from the computational
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point of view. We would like to study some of these properties in the next theorem and
its corollary.

Theorem 7. The sequences (lk(p))∞k=2 and (uk(p))∞k=2 are adjacent.

Proof. (i) By construction,

lk(p) � uk(p), (34)

for each k � 2.
(ii) Let us show that (uk(p))∞k=2 is nonincreasing. For each k � 2, we have

uk+1(p)−uk(p)= (k+ 1)p

(k+ 1)p− (k+ 1)
sk(p)− kp

kp− k
sk−1(p)

=
(

(k+ 1)p

(k+ 1)p− (k+ 1)
− kp

kp− k

)

sk−1(p) +

(
(k+ 1)p

(k+ 1)p− (k+ 1)

)
1
kp

.

(35)

Lemma 5 implies that

(
(k+ 1)p

(k+ 1)p− (k+ 1)
− kp

kp− k

)

sk−1(p) +

(
(k+ 1)p

(k+ 1)p− (k+ 1)

)
1
kp
≤ 0, (36)

which shows that (uk(p))∞k=2 is a nonincreasing sequence.
(iii) The proof that (lk(p))∞k=2 is nondecreasing is similar to the one given in part (ii).
(iv) From (18), we have

lim
k→∞

(
uk(p)− lk(p)

)= lim
k→∞

kp

kp− k

(
k− 1
kp

)

= lim
k→∞

k− 1
kp− k

= 0. (37)

The proof of Theorem 7 is complete. �

The following corollary shows the computational importance of Theorem 7. It will be
used to illustrate the results obtained in this note.

Corollary 8. If the p-series converges to S(p), then

lim
k→∞

uk(p)= lim
k→∞

lk(p)= S(p). (38)

Proof. The convergence of (uk(p))∞k=2 follows from the fact that it is nonincreasing and
bounded below by any term of the sequence (lk(p))∞k=2. Likewise, the convergence of
(lk(p))∞k=2 follows from the fact that it is nondecreasing and bounded above by any term
of (uk(p))∞k=2. Now, from (37), one concludes that (uk(p))∞k=2 and (lk(p))∞k=2 have the
same limit S(p). �

Example 9. The p-series
∑∞

i=1 1/i2 with p = 2 is known to converge to π2/6. Let us sum it
correct to one decimal place using the sequences (lk(p))∞k=2 and (uk(p))∞k=2.
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Table 1

k lk(2) uk(2) uk(2)− lk(2)

2 1.50 2.00 0.50

3 1.54 1.88 0.33

4 1.56 1.81 0.25

5 1.58 1.78 0.20

6 1.59 1.76 0.17

7 1.60 1.74 0.14

8 1.60 1.73 0.13

9 1.61 1.72 0.11

10 1.61 1.71 0.10

11 1.61 1.70 0.09

Solving the inequality obtained from (37) for p = 2,

k− 1
k2− k

< 10−1, (39)

we have

k > 10. (40)

Table 1 shows the details of the computation as obtained using Microsoft Excel.
By averaging l11(2) and u11(2), we obtain

∞∑

i=1

1
i2
≈ 1.655, (41)

while π2/6 ≈ 1.645. It is important to realize that the values of l2(2) and u2(2) are the
same as those obtained in [2]; however, unlike in [2], our algorithm allows any given
accuracy, thanks to the adjacent sequences (lk(p))∞k=2 and (uk(p))∞k=2 that it generates.

Conclusion. While the convergence of p-series has been extensively studied in the liter-
ature with different levels of sophistication (see, e.g., [1, 3, 4]), the generalization of the
elegant approach developed in [2] has led us to two types of results that translate into the
following applications: the estimation of the sum of a convergent p-series as the limit of
adjacent sequences and the limit of the ratio of partial sums containing different multiples
of n terms.
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