INTUITIONISTIC H-FUZZY RELATIONS

KUL HUR, SU YOUN JANG, AND HEE WON KANG

Received 14 February 2005 and in revised form 19 June 2005

We introduce the category $\mathbf{IRel}(H)$ consisting of intuitionistic fuzzy relational spaces on sets and we study structures of the category $\mathbf{IRel}(H)$ in the viewpoint of the topological universe introduced by Nel. Thus we show that $\mathbf{IRel}(H)$ satisfies all the conditions of a topological universe over **Set** except the terminal separator property and $\mathbf{IRel}(H)$ is cartesian closed over **Set**.

1. Introduction

In 1965, Zadeh [30] introduced a concept of a fuzzy set as the generalization of a crisp set. Also, in 1971, he introduced a fuzzy relation naturally, as a generalization of a crisp relation in [31].

Nel [27] introduced the notion of a topological universe which implies concrete quasitopos [1]. Every topological universe satisfies all the properties of a topos except one condition on the subobject classifier. The notion of a topological universe has already been put to effective use in several areas of mathematics in [24, 25, 28]. In 1980, Cerruti [8] introduced the category of *L*-fuzzy relations and investigated some of its properties. After that time, Hur [14] introduced the category **Rel**(*H*) of the fuzzy relational spaces with a complete Heyting algebra *H* as a codomain and he studied the category **Rel**(*H*) in the sense of a topological universe.

In 1983, Atanassov [2] introduced the concept of an intuitionistic fuzzy set as the generalization of fuzzy sets and he also investigated many properties of intuitionistic fuzzy sets (cf. [3]). After that time, Banerjee and Basnet [4], Biswas [6], and Hur and his colleagues [15, 16, 17, 20] applied the concept of intuitionistic fuzzy sets to algebra. Also, Çoker [9], Hur and his colleagues [21], and S. J. Lee and E. P. Lee [26] applied one to topology. In particular, Hur and his colleagues [18] applied the notion of intuitionistic fuzzy sets to topological group.

In this paper, we introduce the category IRel(H) of intuitionistic *H*-fuzzy relational spaces and study the category IRel(H) in a topological universe viewpoint. In particular, we show that IRel(H) satisfies all the conditions of a topological universe over **Set** except

the terminal separator property. Also IRel(H) is shown to be cartesian closed over Set. For general categorical background, we refer to Herrlich and Strecker [12].

2. Preliminaries

In this section, we will introduce some basic definitions and well-known results which are needed in the next sections.

Let X be a set, let $(X_i)_{i \in I}$ be a family of sets indexed by a class I, and let f_i be a mapping with domain X for each $i \in I$. Then a pair $(X, (f_i)_I)$ (simply, $(f_i)_I)$ is called a *source of mappings*. A *sink of mappings* is the dual notion of a source of mappings.

Definition 2.1 [12]. Let **A** be a concrete category and let *I* be a class.

(1) A source in **A** is a pair $(X, (f_i)_I)$ (simply, (X, f_i) or $(f_i)_I$), where X is an **A**-object and $(f_i : X \to X_i)_I$ is a family of **A**-morphisms each with domain X. In this case, X is called the *domain of the source* and the family $(X_i)_I$ is called the *codomain of the source*.

(2) A source (X, f_i) is called a *monosource* provided that the f_i can be simutaneously canceled from the left; that is, provided that for any pair $Y \xrightarrow{r} X$ of morphisms such that $f_i \circ r = f_i \circ s$ for each $i \in I$, it follows that r = s.

Dual notions: *sink in* **A** and *episink*.

Definition 2.2 [23]. Let **A** be a concrete category and let $((Y_i, \xi_i))_I$ be a family of objects in **A** indexed by a class *I*. For any set *X*, let $(f_i : X \to Y_i)_I$ be a source of mappings indexed by *I*. An **A**-structure ξ on *X* is said to be *initial with respect to* $(X, (f_i), ((Y_i, \xi_i)))$ provided that the following conditions hold.

- (1) For each $i \in I$, $f_i : (X, \xi) \to (Y_i, \xi_i)$ is an **A**-morphism.
- (2) If (Z,ρ) is an **A**-object and $g: Z \to X$ is mapping such that for each $i \in Z$, the mapping $f_i \circ g: (Z,\rho) \to (Y_i,\xi_i)$ is an **A**-morphism, then $g: (Z,\rho) \to (X,\xi)$ is an **A**-morphism. In this case, $(f_i: (X,\xi) \to (Y_i,\xi_i))_I$ is called an *initial source in* **A**. Dual notions: *final structure* and *final sink*.

Definition 2.3 [23]. A concrete category **A** is said to be *topological over* **Set** provided that for each set *X*, for any family $((Y_i, \xi_i))_I$ of **A**-objects, and for any source $(f_i : X \to Y_i)_I$

of mappings, there exists a unique A-structure ξ on X which is initial with respect to $(X, (f_i), ((Y_i, \xi_i)))$.

Dual notions: cotopological category.

RESULT 2.4 [23, Theorem 1.5]. A concrete category \mathbf{A} is topological if and only if \mathbf{A} is co-topological.

RESULT 2.5 [23, Theorem 1.6]. Let **A** be a topological category over **Set**. Then **A** is complete and cocomplete.

Definition 2.6 [11]. A category **A** is called *cartesian closed* provided that the following conditions hold.

- (1) For any **A**-objects A and B, there exists a product $A \times B$ in **A**.
- (2) Exponential exists in **A**, that is, for any **A**-object *A*, the functor $A \times : \mathbf{A} \to \mathbf{A}$ has a right adjoint, that is, for any **A**-object *B*, there exists an **A**-object B^A and an **A**-morphism $e_{A,B}: A \times B^A \to B$ (called the *evaluation*) such that for any **A**-object *C*

and any **A**-morphism $f : A \times C \rightarrow B$, there exists a unique **A**-morphism $\overline{f} : C \rightarrow B^A$ such that the diagram

commutes.

Definition 2.7 [23]. Let **A** be a concrete category.

- (1) The **A**-*fiber* of a set *X* is the class of all **A**-structures on *X*.
- (2) A is called *properly fibered over Set* provided that the following conditions hold.
 - (i) *Fiber-smallness*. For each set *X*, the **A**-fiber of *X* is a set.
 - (ii) *Terminal separator property*. For each singleton set *X*, the **A**-fiber of *X* has precisely one element.
 - (iii) If ξ and η are **A**-structures on a set X such that $1_X : (X,\xi) \to (X,\eta)$ and $1_X : (X,\eta) \to (X,\xi)$ are **A**-morphisms, then $\xi = \eta$.

Definition 2.8 [27]. A category **A** is called a *topological universe over* **Set** provided that the following conditions hold.

- (1) **A** is well structured over **Set**, that is, (i) **A** is a concrete category; (ii) **A** has the fiber-smallness condition; (iii) **A** has the terminal separator property.
- (2) A is cotopological over Set.
- (3) Final episinks in **A** are preserved by pullbacks, that is, for any final episink $(g_{\lambda} : X \to Y)_{\Lambda}$ and any **A**-morphism $f : W \to Y$, the family $(e_{\lambda} : U_{\lambda} \to W)_{\Lambda}$, obtained by taking the pullback of f and g_{λ} for each λ , is again a final episink.

Definition 2.9 [29]. A category **A** is called a *topos* provided that the following conditions hold.

- (1) There is a terminal object *U* in **A**, that is, for each **A**-object *A*, there exists one and only one **A**-morphism from *A* to *U*.
- (2) A has equalizers, that is, for any A-objects A and B and A-morphisms

$$A \xrightarrow{f} B \tag{2.2}$$

there exist an **A**-object *C* and an **A**-morphism $h: C \rightarrow A$ such that

- (a) $f \circ h = g \circ h$,
- (b) for each A-object C' and A-morphism $h': C' \to A$ with $f \circ h' = g \circ h'$, there exists a unique A-morphism $\overline{h'}: C' \to C$ such that $h' = h \circ \overline{h'}$, that is, the diagram

commutes;

2726 Intuitionistic *H*-fuzzy relations

- (3) A is cartesian closed;
- (4) there is a subobject classifier in A, that is, there is an A-object Ω and A-morphism ν: U → Ω such that for each A-monomorphism m: A' → A, there exists a unique A-morphism φ_m: A → Ω such that the following diagram is a pullback:

Remark 2.10. Let A be any category with a subobject classifier. If f is any bimorphism in A, then f is an isomorphism in A (cf. [7]).

3. The category IRel(H)

First we will list some concepts and one result which are needed in this section and the next section. Next, we introduce the category **IRel(H)** of intuitionistic *H*-fuzzy relational spaces and show that it has similar structures as those of **ISet(H)**.

Definition 3.1 [5, 22]. A lattice *H* is called a *complete Heyting algebra* if *H* satisfies the following conditions:

- (1) H is a complete lattice;
- (2) for any $a, b \in H$, the set $\{x \in H : x \land a \le b\}$ has a greatest element denoted by $a \rightarrow b$ (called *pseudocomplement of a and b*), that is, $x \land a \le b$ if and only if $x \le (a \rightarrow b)$.

In particular, for each $a \in H$, $N(a) = a \rightarrow 0$ is called the *negation* or the *pseudocomplement* of *a*.

RESULT 3.2 [5, Example 6, page 46]. Let H be a complete Heyting algebra and let $a, b \in H$. Then

- (1) if $a \le b$, then $N(b) \le N(a)$, that is, $N : H \to H$ is an involutive order-reversing operation in (H, \le) ;
- (2) $a \leq NN(a)$;
- (3) N(a) = NNN(a);
- (4) $N(a \lor b) = N(a) \land N(b)$ and $N(a \land b) = N(a) \land N(b)$.

Throughout this paper, we use H as a complete Heyting algebra.

Definition 3.3 [19]. Let X be a set. A triple (X, μ, ν) is called an *intuitionistic H-fuzzy set* (in short, *IHFS*) on X if the following conditions holds:

- (i) $\mu, \nu \in H^X$, that is, μ and ν are *H*-fuzzy sets;
- (ii) $\mu \le N(\nu)$, that is, $\mu(x) \le N(\nu(x))$ for each $x \in X$, where $N : H \to H$ is an involutive order-reversing operation in (H, \le) .

Definition 3.4 [19]. Let (X, μ_X, ν_X) and (Y, μ_Y, ν_Y) be IHFSs. A mapping $f : X \to Y$ is called a *morphism* if $\mu_X \leq \mu_Y \circ f$ and $\nu_X \geq \nu_Y \circ f$.

From Definitions 3.3 and 3.4, we can form a concrete category ISet(H) consisting of all IHFSs and morphisms between them. In this case, each ISet(H)-morphism will be called an ISet(H)-mapping.

It is clear that if $f : (X, \mu_X, \nu_X) \to (Y, \mu_Y, \nu_Y)$ is an **ISet**(*H*)-mapping, then $f : (X, \mu_X) \to (Y, \mu_Y)$ is a **Set** (*H*)-mapping (cf. [13]).

Definition 3.5 [14]. (1) Let X be a set. R is called an *H*-fuzzy relation (or simply, a fuzzy relation) on X if $\mu_R : X \times X \to H$ is a mapping. In this case, (X, R) is called an *H*-fuzzy relational space (or simply, a fuzzy relational space).

(2) Let (X, R_X) and (Y, R_Y) be any fuzzy relational spaces. A map $f : X \to Y$ is called a *relation-preserving map* provided that $\mu_R \le \mu_R \circ f^2$, where $f^2 = f \times f$.

From Definition 3.5, we can form a concrete category Rel(H) consisting of all relational spaces and relation preserving mappings between them. Every Rel(H)-morphism will be called a *Rel* (*H*)-mapping.

Definition 3.6. Let *X* be a set. A pair $R = (\mu_R, \nu_R)$ is called an *intuitionistic H-fuzzy relation* (in short, *IHFR*) on *X* if it satisfies the following conditions:

- (i) μ_R : X × X → H and ν_R : X × X → H are mappings, where μ_R and ν_R denote the *degree of membership* (namely, μ_R(x, y)) and the *degree of nonmembership* (namely, ν_R(x, y)) of each (x, y) ∈ X × X to R;
- (ii) $\mu_R \le N(\nu_R)$, that is, $\mu_R(x, y) \le N(\nu_R(x, y))$ for each $(x, y) \in X \times X$. In this case, (X, R) or (X, μ_R, ν_R) is called an *intuitionistic H*-fuzzy relatinal space (in short, *IHFRS*).

Definition 3.7. Let (X, R_X) and (Y, R_Y) be an IHFRSs. A mapping $f : X \to Y$ is called a *relation-preserving mapping* if $\mu_{R_X} \le \mu_{R_Y} \circ f^2$ and $\nu_{R_X} \ge \nu_{R_Y} \circ f^2$, where $f^2 = f \times f$.

The following is the immediate result of Definition 3.7.

PROPOSITION 3.8. Let (X, R_X) , (Y, R_Y) , and (Z, R_Z) be IHFRSs.

(1) $1_X : (X, R_X) \to (X, R_X)$ is a relation-preserving mapping.

(2) If $f : (X, R_X) \to (Y, R_Y)$ and $g : (Y, R_Y) \to (Z, R_Z)$ are relation-preserving mappings, then $g \circ f : (X, R_X) \to (Z, R_Z)$ is a relation-preserving mapping.

From Definitions 3.6 and 3.7, and Proposition 3.8, we can form a concrete category **IRel**(*H*) consisting of all IHFRSs and relation-preserving mappings between them. Every **IRel**(*H*)-morphism will be called an **IRel**(*H*)-mapping. Moreover, it is clear that if $f : (X, R_X) \rightarrow (Y, R_Y)$ is an **IRel**(*H*)-mapping, then $f : (X, \mu_{R_X}) \rightarrow (Y, \mu_{R_Y})$ is a **Rel** (*H*)-mapping.

THEOREM 3.9. IRel(H) is topological over Set.

Proof. Let X be any set and let $((X_{\alpha}, R_{\alpha}))_{\Gamma}$ be any family of IHFRSs indexed by a class Γ . Let $(f_{\alpha} : X \to X_{\alpha})_{\Gamma}$ be any source of mappings. We define two mappings $\mu_R : X \times X \to H$ and $\nu_R : X \times X \to H$ by $\mu_R = \bigwedge_{\Gamma} \mu_{R_{\alpha}} \circ f_{\alpha}^2$ and $\nu_R = \bigvee_{\Gamma} \nu_{R_{\alpha}} \circ f_{\alpha}^2$. Then, by the definition of $R = (\mu_R, \nu_R), \ \mu_R \leq N(\nu_R)$. Thus $(X, R) \in \mathbf{IRel}(H)$. Moreover, $f_{\alpha} : (X, R) \to (X_{\alpha}, R_{\alpha})$ is an $\mathbf{IRel}(H)$ -mapping for each $\alpha \in \Gamma$.

For any $(Y, R_Y) \in \mathbf{IRel}(H)$, let $g : Y \to X$ be any mapping for which $f_\alpha \circ g : (Y, R_Y) \to (X_\alpha, R_\alpha)$ is an $\mathbf{IRel}(H)$ -mapping for each $\alpha \in \Gamma$. Then we can easily check that $g : (Y, R_Y) \to (X, R)$ is an $\mathbf{IRel}(H)$ -mapping. Hence $R = (\mu_R, \nu_R)$ is the initial structure on X with respect to $(X, (f_\alpha), ((X_\alpha, R_\alpha)))$. This completes the proof.

Example 3.10. (1) *Inverse image of an IHFR.* Let X be a set, let (Y, R_Y) be an IHFRS, and let $f : X \to Y$ be any mapping. Then there exists the initial IHFR R on X for which $f : (X,R) \to (Y,R_Y)$ is an **IRel**(H)-mapping. In this case, R is called the *inverse image* of R_Y under f. In particular, if $X \subset Y$ and $f : X \to Y$ is the canonical mapping, then (X,R) is called an *intuitionistic* H-*fuzzy relational subspace* of (Y,R_Y) , where $R = (\mu_R, \nu_R)$ is the inverse image of R_Y under f. In fact, $\mu_R = \mu_{R_Y}|_{X \times X}$ and $\nu_R = \nu_{R_Y}|_{X \times X}$.

(2) Intuitionistic fuzzy product structure. Let $((X_{\alpha}, R_{\alpha}))_{\Gamma}$ be any family of IHFRSs and let $X = \prod X_{\alpha}$ be the product set of $(X_{\alpha})_{\Gamma}$. Then there exists the initial IHFR *R* on *X* for which each projection $\pi_{\alpha} : (X, R) \to (X_{\alpha}, R_{\alpha})$ is an **IRel**(*H*)-mapping. In this case, *R* is called the *product* of $(R_{\alpha})_{\Gamma}$ and is denoted by $R = \prod R_{\alpha}$ and $(\prod X_{\alpha}, \prod R_{\alpha})$ is called the *intuitionistic H-fuzzy product relational space* of $((X_{\alpha}, R_{\alpha}))_{\Gamma}$. In fact, $\mu_{\Pi R} = \bigwedge_{\Gamma} \mu_{R_{\alpha}} \circ \pi_{\alpha}^2$ and $\nu_{\Pi R} = \bigvee_{\Gamma} \nu_{R_{\alpha}} \circ \pi_{\alpha}^2$.

In particular, if $H = \{1, 2\}$, then $\mu_{R_1 \times R_2}((x_1, y_1), (x_2, y_2)) = \mu_{R_1}(x_1, x_2) \land \mu_{R_2}(y_1, y_2)$ and $\nu_{R_1 \times R_2}((x_1, y_1), (x_2, y_2)) = \nu_{R_1}(x_1, x_2) \lor \nu_{R_2}(y_1, y_2)$ for any $(x_1, y_1), (x_2, y_2) \in X_1 \times X_2$.

COROLLARY 3.11. **IRel**(H) is complete and cocomplete. Moreover, by definition, it is easy to show that **IRel**(H) is well powered and co-well-powered.

From Result 2.4 and Theorem 3.9, it is clear that IRel(H) is cotopological. However, we show directly that IRel(H) is cotopological.

THEOREM 3.12. IRel(H) is cotopological over Set.

Proof. Let *X* be any set and let $((X_{\alpha}, R_{\alpha}))_{\Gamma}$ be any family of IHFRSs indexed by a class Γ . Let $(f_{\alpha} : X_{\alpha} \to X)_{\Gamma}$ be any sink of mappings. We define two mappings $\mu_R : X \times X \to H$ and $\nu_R : X \times X \to H$ by, for each $(x, y) \in X \times X$,

$$\mu_{R}(x,y) = \bigvee_{\Gamma} \bigvee_{(x_{\alpha},y_{\alpha})\in f_{\alpha}^{-1^{2}}(x,y)} \mu_{R_{\alpha}}(x_{\alpha},y_{\alpha}),$$

$$\nu_{R}(x,y) = \bigwedge_{\Gamma} \bigwedge_{(x_{\alpha},y_{\alpha})\in f_{\alpha}^{-1^{2}}(x,y)} \nu_{R_{\alpha}}(x_{\alpha},y_{\alpha}),$$
(3.1)

where $f_{\alpha}^{-1^2} = f_{\alpha}^{-1} \times f_{\alpha}^{-1}$. Then clearly $(X, R) \in \mathbf{IRel}(H)$. Moreover, $f_{\alpha} : (X_{\alpha}, R_{\alpha}) \to (X, R)$ is an $\mathbf{IRel}(H)$ -mapping for each $\alpha \in \Gamma$.

For any $(Y, R_Y) \in \mathbf{IRel}(H)$, let $g : X \to Y$ be any mapping for which $g \circ f_\alpha : (X_\alpha, R_\alpha) \to (Y, R_Y)$ is an $\mathbf{IRel}(H)$ -mapping for each $\alpha \in \Gamma$. Then we can easily check that $g : (X, R) \to (Y, R_Y)$ is an $\mathbf{IRel}(H)$ -mapping. Hence $R = (\mu_R, \nu_R)$ is the final structure on X with respect to $(((X_\alpha, R_\alpha)), (f_\alpha), X)$. This completes the proof.

Example 3.13. (1) *Intuitionistic H*-*fuzzy quotient relation.* Let $(X,R) \in \mathbf{IRel}(H)$, let ~ be an equivalence relation on *X*, and let $\varphi : X \to X/R$ the canonical mapping. Then there exists the final intuitionistic *H*-fuzzy relation $(\mu_{X/\sim}, \nu_{X/\sim})$ on X/\sim for which $\varphi : (X,R) \to (X/\sim, \mu_{X/\sim}, \nu_{X/\sim})$ is an **IRel**(*H*)-mapping. In this case, $(\mu_{X/\sim}, \nu_{X/\sim})$ is called the *intuitionistic H*-fuzzy quotient relation of *X* by *R*.

(2) Sum of intuitionistic *H*-fuzzy relations. Let $((X_{\alpha}, R_{\alpha}))_{\Gamma}$ be a family of IHFRSs, let X be the sum of $(X_{\alpha})_{\Gamma}$ and let $j_{\alpha} : X_{\alpha} \to X$ be the canonical (injection) mapping for each $\alpha \in \Gamma$. Then there exists the final IHFR *R* on *X*. In fact, for each $((x_{\alpha}, \alpha), (y_{\beta}, \beta)) \in X \times X$, $\mu_R((x_{\alpha}, \alpha), (y_{\beta}, \beta)) = \bigvee_{\Gamma} \mu_{R_{\alpha}}(x, y)$ and $\nu_R((x_{\alpha}, \alpha), (y_{\beta}, \beta)) = \bigwedge_{\Gamma} \nu_{R_{\alpha}}(x, y)$. In this case, *R* is called the *sum* of $(R_{\alpha})_{\Gamma}$ and (X, R) is called the *sum* of $((X_{\alpha}, R_{\alpha}))_{\Gamma}$.

THEOREM 3.14. Final episinks in IRel(H) are preserved by pullbacks.

Proof. Let $(g_{\alpha} : (X_{\alpha}, R_{\alpha}) \to (Y, R_Y))_{\Gamma}$ be any final episink in **IRel**(*H*) and let $f : (W, R_W) \to (Y, R_Y)$ be any **IRel**(*H*)-mapping. For each $\alpha \in \Gamma$, let $U_{\alpha} = \{(w, x_{\alpha}) \in W \times X_{\alpha} : f(w) = g_{\alpha}(x_{\alpha})\}$ and let us define two mappings $\mu_{R_{U_{\alpha}}} : U_{\alpha} \times U_{\alpha} \to H$ and $\nu_{R_{U_{\alpha}}} : U_{\alpha} \times U_{\alpha} \to H$ by for each $((w, x_{\alpha}), (w', x'_{\alpha})) \in U_{\alpha} \times U_{\alpha}$,

$$\mu_{R_{U_{\alpha}}}((w,x_{\alpha}),(w',x'_{\alpha})) = \mu_{R_{W}}(w,w') \wedge \mu_{R_{\alpha}}(x_{\alpha},x'_{\alpha}),$$

$$\nu_{R_{U_{\alpha}}}((w,x_{\alpha}),(w',x'_{\alpha})) = \nu_{R_{W}}(w,w') \vee \nu_{R_{\alpha}}(x_{\alpha},x'_{\alpha}).$$
(3.2)

Let $e_{\alpha}: U_{\alpha} \to W$ and $p_{\alpha}: U_{\alpha} \to X_{\alpha}$ denote the usual projections of U_{α} . Then clearly $(U_{\alpha}, R_{U_{\alpha}}) \in \mathbf{IRel}(H)$ for each $\alpha \in \Gamma$. Moreover, $e_{\alpha}: (U_{\alpha}, R_{U_{\alpha}}) \to (W, R_W)$ and $p_{\alpha}: (U_{\alpha}, R_{U_{\alpha}}) \to (X_{\alpha}, R_{\alpha})$ are $\mathbf{IRel}(H)$ -mappings for each $\alpha \in \Gamma$. And the following diagram is a pullback square in $\mathbf{IRel}(H)$:

$$\begin{array}{c|c} (U_{\alpha}, R_{\mu_{\alpha}}) & \xrightarrow{p_{\alpha}} & (X_{\alpha}, R_{\alpha}) \\ e_{\alpha} & & & \downarrow \\ e_{\alpha} & & & \downarrow \\ (W, R_{W}) & \xrightarrow{f} & (Y, R_{Y}) \end{array}$$

$$(3.3)$$

We will show that $(e_{\alpha} : (U_{\alpha}, R_{U_{\alpha}}) \to (W, R_{w}))_{\Gamma}$ is a final episink in **IRel**(*H*). By the process of the proof of [14, Theorem 2.5], $(e_{\alpha})_{\Gamma}$ is an episink in **IRel**(*H*). Suppose $R = (\mu_{R}, \nu_{R})$ is another final IHFR on *W* with respect to $(e_{\alpha})_{\Gamma}$. By the process of the proof of [14, Theorem 2.5], $\mu_{R} = \mu_{R_{W}}$. Thus it is sufficient to show that $\nu_{R} = \nu_{R_{W}}$. Let $(w, w') \in W \times W$. Then

$$\begin{aligned}
\nu_{R_{W}}(w,w') &= \nu_{R_{W}}(w,w') \lor \nu_{R_{W}}(w,w') \\
&\geq \nu_{R_{W}}(w,w') \lor \left[\nu_{R_{Y}} \circ f^{2}(w,w')\right] \\
&\qquad (since f: (W,R_{w}) \longrightarrow (Y,R_{Y}) is an IRel(H)-mapping) \\
&= \nu_{R_{W}}(w,w') \lor \nu_{R_{Y}}(f(w),f(w')) \\
&= \nu_{R_{W}}(w,w') \lor \left[\bigwedge_{\Gamma}\bigwedge_{(x_{\alpha},x_{\alpha}') \in g_{\alpha}^{-1^{2}}(f(w),f(w'))} \nu_{R_{\alpha}}(x_{\alpha},x_{\alpha}')\right] \\
&\qquad (since (g_{\alpha})_{\Gamma} is final) \\
&= \bigwedge_{\Gamma}\bigwedge_{(x_{\alpha},x_{\alpha}') \in g_{\alpha}^{-1^{2}}(f(w),f(w'))} \left[\nu_{R_{W}}(w,w') \lor \nu_{R_{\alpha}}(x_{\alpha},x_{\alpha}')\right] \\
&= \bigwedge_{\Gamma}\bigwedge_{((w,x_{\alpha}),(w',x_{\alpha}')) \in e_{\alpha}^{-1}(w,w')} \nu_{R_{U_{\alpha}}}((w,x_{\alpha}),(w',x_{\alpha}')).
\end{aligned}$$

Thus $\nu_{R_W}(w, w') \ge \nu_R(w, w')$ for each $(w, w') \in W \times W$. So $\nu_{R_W} \ge \nu_R$. On the other hand, since $(e_{\alpha} : (U_{\alpha}, R_{U_{\alpha}}) \to (W, R))_{\Gamma}$ is final, $1_W : (W, R) \to (W, R_W)$ is an **IRel**(*H*)-mapping. Thus $\nu_R \ge \nu_{R_W}$. So $\nu_R = \nu_{R_W}$. Hence $R = R_W$. This completes the proof.

For any singleton set $\{a\}$, since the IHFR *R* on $\{a\}$ is not unique, the category **IRel**(*H*) is not properly fibered over **Set**. Hence, by Theorems 3.12 and 3.14, we obtain the following result.

THEOREM 3.15. **IRel**(H) satisfies all the conditions of a topological universe over **Set** except the terminal separator property.

THEOREM 3.16. IRel(H) is cartesian closed over Set.

Proof. It is clear that IRel(H) has products by Corollary 3.11. We will show that IRel(H) has exponential objects.

For any IHFRSs $\mathbf{X} = (X, R_X)$ and $\mathbf{Y} = (Y, R_Y)$, let Y^X be the set of all mappings from X into Y. We define two mappings $\mu_R : Y^X \times Y^X \to H$ and $\nu_R : Y^X \times Y^X \to H$ as follows: for each $(f,g) \in Y^X \times Y^X$,

$$\mu_{R}(f,g) = \bigwedge \{h \in H : \mu_{R_{X}}(x,y) \land h \le \mu_{R_{Y}}(f(x),g(y)) \text{ for each } (x,y) \in X \times X\},$$

$$\nu_{R}(f,g) = \bigvee \{h \in H : \nu_{R_{X}}(x,y) \lor h \ge \nu_{R_{Y}}(f(x),g(y)) \text{ for each } (x,y) \in X \times X\}.$$
(3.5)

Then clearly $(Y^X, R) \in \mathbf{IRel}(H)$. Let $\mathbf{Y}^X = (Y^X, R)$. Then, by the definition of R,

$$\mu_{R_X}(x,y) \wedge \mu_R(f,g) \le \mu_{R_Y}(f(x),g(y)),$$

$$\nu_{R_X}(x,y) \vee \nu_R(f,g) \ge \nu_{R_Y}(f(x),g(y))$$
(3.6)

for each $(f,g) \in Y^X$ and $(x, y) \in X \times X$.

Define $e_{X,Y} : X \times Y^X \to Y$ by $e_{X,Y}(x, f) = f(x)$ for each $(x, f) \in X \times Y^X$. Let $((x, f), (y,g)) \in (X \times Y^X) \times (X \times Y^X)$. Then, by the process of the proof of [14, Theorem 2.7], $\mu_{R_X \times R}((x, f), (y,g)) \le \mu_{R_Y} \circ e_{X,Y}^2((x, f), (y,g))$. So $\mu_{R_X \times R} \le \mu_{R_Y} \circ e_{X,Y}^2$. On the other hand,

$$\begin{aligned}
\nu_{R_{X} \times R}((x, f), (y, g)) &= \nu_{R_{X}}(x, y) \vee \nu_{R}(f, g) \\
&\geq \nu_{R_{Y}}(f(x), g(y)) \\
&= \nu_{R_{Y}}(e_{X,Y}(x, f), e_{X,Y}(y, g)) \\
&= \nu_{R_{Y}} \circ e_{X,Y}^{2}((x, f), (y, g)).
\end{aligned}$$
(3.7)

Thus $\nu_{R_X \times R} \ge \nu_{R_Y} \circ e_{X,Y}^2$. Hence $e_{X,Y} : \mathbf{X} \times \mathbf{Y}^{\mathbf{X}} \to \mathbf{Y}$ is an **IRel**(*H*)-mapping.

For any $\mathbf{Z} = (Z, R_Z) \in \mathbf{IRel}(H)$, let $h : \mathbf{X} \times \mathbf{Z} \to \mathbf{Y}$ be an $\mathbf{IRel}(H)$ -mapping. We define $\overline{h} : Z \to Y^X$ by $[\overline{h}(z)](x) = h(x, z)$ for each $z \in Z$ and each $x \in X$. Let $z, z' \in Z$ and

let $x, x' \in X$. Then, by the process of the proof of [14, Theorem 2.7], $\mu_{R_Z}(z, z') \le \mu_R \circ \overline{h}^2(z, z')$. So $\mu_{R_Z} \le \mu_R \circ \overline{h}^2$. On the other hand,

$$\nu_{R_X \times R_Z}((x,z), (x',z')) = \nu_{R_X}(x,x') \vee \nu_{R_Z}(z,z')$$

$$\geq \nu_{R_Y} \circ h^2((x,z), (x',z'))$$
(since $h: \mathbf{X} \times \mathbf{Z} \longrightarrow \mathbf{Y}$ is an IRel(H)-mapping) (3.8)
$$= \nu_{R_Y}(h(x,z), h(x',z'))$$

$$= \nu_{R_Y}([\overline{h}(z)](x), [\overline{h}(z')](x')).$$

Thus, by the definition of R, $\nu_{R_Z}(z, z') \ge \nu_R(\overline{h}(z), \overline{h}(z')) = \nu_{R_Y} \circ \overline{h}^2(z, z')$. So $\nu_{R_Z} \ge \nu_R \circ \overline{h}^2$. Hence $\overline{h} : \mathbb{Z} \to \mathbb{Y}^X$ is an **IRel**(*H*)-mapping. Moreover, \overline{h} is the unique **IRel**(*H*)-mapping such that $e_{X,Y} \circ (1_X \times \overline{h}) = h$. This completes the proof.

Remark 3.17. IRel(H) has no subobject classifier. Hence IRel(H) is not topos.

Example 3.18. Let $H = \{0,1\}$ be the two points chain and let $X = \{a\}$. Let R_1 and R_2 be the IHFRs on X given by $\mu_{R_1}(a,a) = 0$, $\nu_{R_1}(a,a) = 1$ and $\mu_{R_2}(a,a) = 1$, $\nu_{R_2}(a,a) = 0$. Let $1_X : (X,R_1) \rightarrow (X,R_2)$ be the identity mapping. Then clearly, 1_X is both a monomorphism and an epimorphism in **IRel**(H). But, 1_X is not an isomorphism in **IRel**(H). Hence **IRel**(H) has no subobject classifier (see [7]).

4. The relations between IRel(H) and Rel(H)

LEMMA 4.1. Define $G_1, G_2 : \mathbf{IRel}(H) \to \mathbf{Rel}(H)$ by

$$G_{1}(X,\mu_{R},\nu_{R}) = (X,\mu_{R}),$$

$$G_{2}(X,\mu_{R},\nu_{R}) = (X,N(\nu_{R})),$$

$$G_{1}(f) = G_{2}(f) = f.$$
(4.1)

Then G_1 and G_2 are functors.

Proof. Clearly $G_1(X, \mu_{R_X}, \nu_{R_X}) = (X, \mu_{R_X}) \in \text{Rel}(H)$ for each $(X, \mu_R, \nu_R) \in \text{IRel}(H)$. Let $(X, \mu_{R_X}, \nu_{R_X}), (Y, \mu_{R_Y}, \nu_{R_Y}) \in \text{IRel}(H)$ and let $f : (X, \mu_{R_X}, \nu_{R_X}) \to (Y, \mu_{R_Y}, \nu_{R_Y})$ be an IRel(H)-mapping. Then $\mu_{R_X} \leq \mu_{R_Y} \circ f^2$. Thus $G_1(f) = f : (X, \mu_{R_X}) \to (Y, \mu_{R_Y})$ is a Rel(H)-mapping. Hence $G_1 : \text{IRel}(H) \to \text{Rel}(H)$ is a functor. Also $G_2(X, \mu_{R_X}, \nu_{R_X}) = (X, N(\nu_{R_X})) \in \text{Rel}(H)$ for each $(X, \mu_{R_X}, \nu_{R_X}) \in \text{IRel}(H)$. Now let $(X, \mu_{R_X}, \nu_{R_X}), (Y, \mu_{R_Y}, \nu_{R_Y}) \in \text{IRel}(H)$ and let $f : (X, \mu_{R_X}, \nu_{R_X}) \to (Y, \mu_{R_Y}, \nu_{R_Y})$ be an IRel(H)-mapping. Then $\nu_{R_X} \geq \nu_{R_Y} \circ f^2$. Thus $N(\nu_{R_X}) \leq N(\nu_{R_Y}) \circ f^2$. So $G_2(f) = f : (X, N(\nu_{R_X})) \to (Y, N(\nu_{R_Y}))$ is a Rel(H)-mapping. Hence G_2 : IRel $(H) \to \text{Rel}(H)$ is a functor. □

LEMMA 4.2. Define $F_1 : \operatorname{Rel}(H) \to \operatorname{IRel}(H)$ by $F_1(X,\mu_R) = (X,\mu_R,N(\mu_R))$ and $F_1(f) = f$. Then F_1 is a functor. *Proof.* For each $(X, \mu_{R_X}) \in \text{Rel}(H)$, $\mu \leq NN(\mu_{R_X})$. Thus $F_1(X, \mu_{R_X}) = (X, \mu_{R_X}, N(\mu_{R_X})) \in \text{IRel}(H)$. Let $(X, \mu_{R_X}), (Y, \mu_{R_Y}) \in \text{Rel}(H)$ and let $f : (X, \mu_{R_X}) \to (Y, \mu_{R_Y})$ be an Rel(H)-mapping. Then $\mu_{R_X} \leq \mu_{R_Y} \circ f$. Consider the mapping $F_1(f) = f : (X, \mu_{R_X}, N(\mu_{R_X})) \to (Y, \mu_{R_Y}, N(\mu_{R_Y}))$. Since $\mu_{R_X} \leq \mu_{R_Y} \circ f$, $N(\mu_{R_X}) \geq N(\mu_{R_Y}) \circ f$. So $f : (X, \mu_{R_X}, N(\mu_{R_X})) \to (Y, \mu_{R_Y}, N(\mu_{R_Y}))$ is an IRel(H)-mapping. Hence F_1 is a functor.

LEMMA 4.3. Define F_2 : **Rel**(H) \rightarrow **IRel**(H) by $F_2(X, \mu_R) = (X, NN(\mu_R), N(\mu_R))$ and $F_2(f) = f$. Then F_2 is a functor.

Proof. It is clear that $F_2(X,\mu_{R_X}) \in \mathbf{IRel}(H)$ for each $(X,\mu_{R_X}) \in \mathbf{Rel}(H)$. Let (X,μ_{R_X}) , $(Y,\mu_{R_Y}) \in \mathbf{Rel}(H)$ and let $f:(X,\mu_{R_X}) \to (Y,\mu_{R_Y})$ be an $\mathbf{Rel}(H)$ -mapping. Consider the mapping $F_2(f) = f: F_2(X,\mu_{R_X}) \to (Y,NN(\mu_{R_Y}),N(\mu_{R_Y}))$, where $F_2(X,\mu_{R_X}) = (X, NN(\mu_{R_X}),N(\mu_{R_X}))$ and $F_2(Y,\mu_{R_Y}) = (Y,NN(\mu_{R_Y}),N(\mu_{R_Y}))$. Since $f:(X,\mu_{R_X}) \to (Y,\mu_{R_Y})$ is a $\mathbf{Rel}(H)$ -mapping, $\mu_{R_X} \leq \mu_{R_Y} \circ f^2$. Thus $NN(\mu_{R_X}) \leq NN(\mu_{R_Y}) \circ f^2$. Moreover $N(\mu_{R_X}) \geq N(\mu_{R_Y}) \circ f^2$. So $F_2(f) = f: F_2(X,\mu_{R_X}) \to F_2(Y,\mu_{R_Y})$ is an $\mathbf{IRel}(H)$ -mapping. Hence F_2 is a functor. \Box

THEOREM 4.4. The functor $F_1 : \operatorname{Rel}(H) \to \operatorname{IRel}(H)$ is a left adjoint of the functor $G_1 : \operatorname{IRel}(H) \to \operatorname{Rel}(H)$.

Proof. For each $(X,\mu_R) \in \operatorname{Rel}(H)$, $1_X : (X,\mu_R) \to G_1F_1(X,\mu_R) = (X,\mu_R)$ is a $\operatorname{Rel}(H)$ mapping. Let $(Y,\mu_{R_Y},\nu_{R_Y}) \in \operatorname{IRel}(H)$ and let $f : (X,\mu_R) \to G_1(Y,\mu_{R_Y},\nu_{R_Y})$ be an $\operatorname{IRel}(H)$ mapping. We will show that $f : F_1(X,\mu_R) = (X,\mu_R,N(\mu_R)) \to (Y,\mu_{R_Y},\nu_{R_Y})$ is an $\operatorname{IRel}(H)$ mapping. Since $f : (X,\mu_R) = G_1(Y,\mu_{R_Y},\mu_{R_Y}) \to (Y,\mu_{R_Y})$ is a $\operatorname{Rel}(H)$ -mapping, $\mu_R \leq \mu_{R_Y} \circ$ f^2 . Then $N(\mu_R) \geq N(\mu_{R_Y}) \circ f^2$. Since $\mu_{R_Y} \leq N(\nu_{R_Y})$, $\nu_{R_Y} \leq NN(\nu_{R_Y}) \leq N(\mu_{R_Y})$. Thus $N(\mu_R) \geq \nu_{R_Y} \circ f^2$. So $f : F_1(X,\mu_R) = (Y,\mu_{R_Y},\nu_{R_Y})$ is an $\operatorname{IRel}(H)$ -mapping. Hence 1_X is a G_1 -universal map for (X,μ_R) in $\operatorname{Rel}(H)$. This completes the proof. \Box

For each $(X,\mu_R) \in \text{Rel}(H)$, $F_1(X,\mu_R) = (X,\mu_R,N(\mu_R))$ is called an *intuitionistic H*-fuzzy set in X induced by (X,μ_R) . Let us denote the category of all induced intuitionistic *H*-fuzzy sets and IRel(*H*)-mappings as IRel*(*H*). Then it is clear IRel*(*H*) is a full subcategory of IRel(*H*).

THEOREM 4.5. Two categories Rel(H) and $IRel^*(H)$ are isomorphic.

Proof. It is clear that F_1 : **Rel**(H) → **IRel**^{*}(H) is a functor by Lemma 4.2. Consider the restriction G_1 : **IRel**^{*}(H) → **Rel**(H) of the functor G_1 in Lemma 4.1. Let $(X, \mu_R) \in$ **Rel**(H). Then, by Lemma 4.2, $F_1(X, \mu_R) = (X, \mu_R, N(\mu_R))$. Thus $G_1F_1(X, \mu_R) = G_1(X, \mu_R, N(\mu_R)) = (X, \mu_R)$. So $G_1 \circ F = 1_{\text{Rel}(H)}$. Now let $(X, \mu_R, N(\mu_R)) \in$ **ISet**^{*}(H). Then, by Lemma 4.1, $G_1(X, \mu_R, N(\mu_R)) = (X, \mu_R)$. Thus $FG_1(X, \mu_R, N(\mu_R)) = (X, \mu_R, N(\mu_R))$. So $F \circ G_1 = 1_{\text{ISet}^*(H)}$. Hence F: **Rel**(H) → **ISet**^{*}(H) is an isomorphism. This completes the proof. □

Remark 4.6. We are going to investigate "intuitionistic *H*-fuzzy reflexive relations," "some subcategories of the category IRelk (H)," and "intuitionistic *H*-fuzzy relations on intuitionistic *H*-fuzzy sets" in the viewpoint of topological universe.

Acknowledgment

The authors are highly grateful to the referee for his valuable comments and suggestions for improving the paper.

References

- J. Adámek and H. Herrlich, Cartesian closed categories, quasitopoi and topological universes, Comment. Math. Univ. Carolin. 27 (1986), no. 2, 235–257.
- [2] K. T. Atanassov, Intuitionistic fuzzy sets, VII ITKR'S Session, Sofia (June 1983) (V. Sgurev, ed.), Central Sci. and Techn, Library, Bulg. Academy of Sciences, Sofia, 1984.
- [3] _____, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96.
- B. Banerjee and D. K. Basnet, *Intuitionistic fuzzy subrings and ideals*, J. Fuzzy Math. 11 (2003), no. 1, 139–155.
- [5] G. Birkhoff, *Lattice Theory*, 3rd ed., American Mathematical Society Colloquium Publications, vol. 25, American Mathematical Society, Rhode Island, 1967.
- [6] R. Biswas, Intuitionistic fuzzy subgroups, Mathematical Forum X, 1989, pp. 37–46.
- [7] J.-C. Carrega, The categories Set H and Fuz H, Fuzzy Sets and Systems 9 (1983), no. 3, 327–332.
- U. Cerruti, *Categories of L-fuzzy relations*, Proc. Int. Conf. on Cybernetics and Applied Systems Research (Acapulco 1980), vol. 5, Pergamon Press, Oxford, 1980.
- [9] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), no. 1, 81–89.
- [10] E. J. Dubuc, *Concrete quasitopoi*, Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Lecture Notes in Math., vol. 753, Springer, Berlin, 1979, pp. 239–254.
- [11] H. Herrlich, Cartesian closed topological categories, Math. Colloq. Univ. Cape Town 9 (1974), 1–16.
- [12] H. Herrlich and G. E. Strecker, *Category Theory: An Introduction*, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Massachusetts, 1973.
- [13] K. Hur, A note on the category Set(H), Honam Math. J. 10 (1988), no. 1, 89–94.
- [14] _____, H-fuzzy relations. I. A topological universe viewpoint, Fuzzy Sets and Systems 61 (1994), no. 2, 239–244.
- [15] K. Hur, S. Y. Jang, and H. W. Kang, *Intuitionistic fuzzy subgroupoids*, International Journal of Fuzzy Logic and Intelligent Systems 3 (2003), no. 1, 72–77.
- [16] _____, Intuitionistic fuzzy normal subgroups and intuitionistic fuzzy cosets, Honam Math. J. 26 (2004), no. 4, 559–587.
- [17] _____, Intuitionistic fuzzy subgroups and cosets, Honam Math. J. 26 (2004), no. 1, 17–41.
- [18] K. Hur, Y. B. Jun, and J. H. Ryou, Intuitionistic fuzzy topological groups, Honam Math. J. 26 (2004), no. 2, 163–192.
- [19] K. Hur, H. W. Kang, and J. H. Ryou, *Intuitionistic H-fuzzy sets*, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 12 (2005), no. 1, 33–45.
- [20] K. Hur, H. W. Kang, and H. K. Song, *Intuitionistic fuzzy subgroups and subrings*, Honam Math. J. 25 (2003), no. 1, 19–41.
- [21] K. Hur, J. H. Kim, and J. H. Ryou, *Intuitionistic fuzzy topological spaces*, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 11 (2004), no. 3, 243–265.
- [22] P. T. Johnstone, *Stone Spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982.
- [23] C. Y. Kim, S. S. Hong, Y. H. Hong, and P. H. Park, Algebras in Cartesian closed topological categories, Lecture Note Series 1, 26 (1985).
- [24] A. Kriegl and L. D. Nel, A convenient setting for holomorphy, Cahiers Topologie Géom. Différentielle Catég. 26 (1985), no. 3, 273–309.
- [25] _____, Convenient vector spaces of smooth functions, Math. Nachr. 147 (1990), 39–45.
- [26] S. J. Lee and E. P. Lee, *The category of intuitionistic fuzzy topological spaces*, Bull. Korean Math. Soc. 37 (2000), no. 1, 63–76.

2734 Intuitionistic H-fuzzy relations

- [27] L. D. Nel, *Topological universes and smooth Gel'fand-Naĭmark duality*, Mathematical Applications of Category Theory (Denver, Col., 1983), Contemp. Math., vol. 30, American Mathematical Society, Rhode Island, 1984, pp. 244–276.
- [28] _____, Enriched locally convex structures, differential calculus and Riesz representation, J. Pure Appl. Algebra 42 (1986), no. 2, 165–184.
- [29] D. Ponasse, Some remarks on the category Fuz(H) of M. Eytan, Fuzzy Sets and Systems 9 (1983), no. 2, 199–204.
- [30] L. A. Zadeh, *Fuzzy sets*, Information and Control 8 (1965), 338–353.
- [31] _____, Similarity relations and fuzzy orderings, Information Sci. 3 (1971), 177–200.

Kul Hur: Division of Mathematics and Informational Statistics and Institute of Basic Natural Science, Wonkwang University, Iksan, Chonbuk 579-792, Korea *E-mail address*: kulhur@wonkwang.ac.kr

Su Youn Jang: Division of Mathematics and Informational Statistics and Institute of Basic Natural Science, Wonkwang University, Iksan, Chonbuk 579-792, Korea *E-mail address*: suyoun123@yahoo.co.kr

Hee Won Kang: Department of Mathematics Education, Woosuk University, Hujong-Ri, Samrae-Eup, Wanju-kun, Chonbuk 565-701, Korea

E-mail address: khwon@woosuk.ac.kr