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MINIMIZING ENERGY AMONG HOMOTOPIC MAPS
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We study an energy minimizing sequence {ui} in a fixed homotopy class of smooth maps
from a 3-manifold. After deriving an approximate monotonicity property for {ui} and a
continuous version of the Luckhaus lemma (Simon, 1996) on S2, we show that, passing to
a subsequence, {ui} converges strongly in W1,2 topology wherever there is small energy
concentration.
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1. Introduction. Letφ :M →N be a continuous map between two compact Riemann-

ian manifolds. In general, there may not exist a harmonic map homotopic toφ (see [2]).

Hence, a map u that minimizes energy among all smooth maps homotopic to φ may

not exist. However, it is still a basic question to understand the analytical property of

a minimizing sequence. If the domain M is a compact surface, it is known to experts

that any minimizing sequence that converges weakly indeed converges strongly inW 1,2

topology away from a finite number of points, where energy concentrates and bubble

forms (see [3, 7]). If the domain is of higher dimension, B. White showed that the in-

fimum of the energy functional over the homotopy class of φ is determined only by

the restriction of φ to a 2-skeleton of M (see [8]). It is our goal in this paper to apply

White’s result to derive a similar theorem for 3-manifolds.

Theorem 1.1. Let φ : M → N be a smooth map between two compact Riemannian

manifolds without boundary. Assume that M has dimension 3. Then there exists a con-

stant ε0 = ε0(M,N) > 0 such that, for any sequence of maps {ui}which minimizes energy

among all smooth maps homotopic to φ and converges weakly in W 1,2(M,N), if

liminf
i→∞

1
σ

∫
Bσ (x)

∣∣dui∣∣2dV ≤ ε0, (1.1)

then {ui} converges strongly in W 1,2(Bσ/4(x),N).

As an application of Theorem 1.1, we prove a partial regularity result for the weak

limit of an energy minimizing sequence.

Corollary 1.2. Let φ :M →N be a smooth map between two compact Riemannian

manifolds without boundary, where M has dimension 3. Let {ui} be a sequence of maps

which minimizes energy among all smooth maps homotopic to φ. Suppose that {ui}
converges weakly to some u∈W 1,2(M,N); then there exists a closed set Σ⊂M with finite
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1-dimensional Hausdorff measure such that u is a smooth harmonic map from M \Σ
to N. In particular, u is a weakly harmonic map from M to N.

We remark that the dimension restriction of the domain space comes only from

the lemma proved in Section 4. If a similar lemma could be established on a general

sphere Sn−1 ⊂Rn, the rest of the argument in this paper would imply that Theorem 1.1

holds for arbitrary dimension n with the small energy concentration assumption (1.1)

replaced by

liminf
i→∞

1
σn−2

∫
Bσ (x)

∣∣dui∣∣2dV ≤ ε0. (1.2)

2. Preliminaries. Let (M3,g) and (Nm,h) be compact Riemannian manifolds of di-

mensions 3 andm. We assume thatM andN have no boundary. By the Nash embedding

theorem, it is convenient to regard N as isometrically embedded in some Euclidean

space RK . We define

W 1,2(M,N)= {u∈W 1,2(M,RK) |u(x)∈N a.e. x ∈M}, (2.1)

whereW 1,2(M,RK) is the separable Hilbert space of mapsu :M →RK whose component

functions areW 1,2 Sobolev functions onM . We note thatW 1,2(M,N) inherits both strong

and weak topologies from W 1,2(M,RK). Moreover, it is a strongly closed set with the

property that, for any C > 0,

{
u∈W 1,2(M,N) | ‖u‖W1,2 ≤ C} (2.2)

is weakly compact in W 1,2(M,N) (see [4]).

For any u∈W 1,2(M,N), the energy of u is defined by

E(u)=
∫
M

Trg
(
u∗h

)
dV =

∫
M

∣∣du2
∣∣dV, (2.3)

where u∗h is the pullback of h by u and dV is the volume measure determined by g
on M .

Let C∞(M,N)⊂W 1,2(M,N) be the space of smooth maps. For any φ∈ C∞(M,N), we

define

�φ =
{
u∈ C∞(M,N) |u is homotopic to φ},
Eφ = inf

{
E(u) |u∈�φ

}
.

(2.4)

The following result, which is due to White [8], gives a fundamental characterization

of Eφ.

White’s theorem. Let �(2)
φ = {u ∈ C∞(M,N) | u is 2-homotopic to φ}, where two

continuous maps v and w are said to be 2-homotopic if their restrictions to the 2-

dimensional skeleton of some triangulation of M are homotopic. Then

inf
{
E(u) |u∈�(2)

φ
}= Eφ. (2.5)
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Let {ui} ⊂�φ be an arbitrary sequence which minimizes the energy functional, that

is,

lim
i→∞

E(ui)= Eφ. (2.6)

Then the above theorem suggests that {ui} is also a minimizing sequence in �(2)
φ . This

fact is very useful since it allows more competitors to be compared with ui.
By the weak compactness of bounded sets in W 1,2(M,N), we may assume that, pass-

ing to a subsequence, {ui} converges weakly in W 1,2(M,N), strongly in L2(M,N), and

pointwise almost everywhere to some u∈W 1,2(M,N), which has the property that

E(u)≤ lim
i→∞

E(ui)= Eφ. (2.7)

Moreover, by the Riesz representation theorem, we know that there exists a Radon

measure µ on M so that

∣∣dui∣∣2(x)dV ⇀ µ. (2.8)

Throughout the paper, we use c1,c2,c3, . . . to denote constants depending only on

(M,g) and (N,h).

3. Approximate monotonicity of {|dui(x)|2dV}. Given a C1 vector field X on M ,

we let {Ft} denote the one-parameter group of diffeomorphism on M generated by X.

For any v ∈W 1,2(M,N), we define Ev(t,X)= E(v ◦Ft), where v ◦Ft(x)= v(Ft(x)). The

first variation formula for the energy functional (see [4]) then gives that

d
dt
Ev(t,X)=

∫
M

〈
v∗h,−g′(t)+ 1

2

{
Trg(t)g′(t)

}
g(t)

�
g(t)
dV(t), (3.1)

where v∗h is the pullback of h by v , g(t)= F∗−t(g), and dV(t) is the volume measure

determined by g(t). In particular, at t = 0, we have that

d
dt
Ev(0,X)=

∫
M

〈
v∗h,�Xg− 1

2

{
Trg

(
�Xg

)}
g
�
g
dV. (3.2)

The following lemma says that, for large n, un is “almost stationary” with respect to a

large class of domain variations.

Lemma 3.1. Given Λ> 0, let VΛ = {C1 vector field X with ‖X‖C1 ≤Λ}. Then

sup
X∈VΛ

{
d
dt
En(0,X)

}
�→ 0 as n �→∞, (3.3)

where En(t,X)= Eun(t,X).
Proof. Let σ0 be a sufficiently small positive constant depending only on (M,g)

such that for any geodesic ball Bσ(x0) ⊂ M with σ ≤ σ0 and any geodesic normal

coordinate chart {x1,x2,x3} in Bσ(x0), all the eigenvalues of the matrix [gij(x)]3×3 lie
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in [1/2,2] for each x ∈ Bσ(x0). With such a choice of σ , we have that

∫
Bσ (x0)

∣∣dv∣∣2dV =
K∑
α=1

∫
Bσ (x0)

∂vα

∂xi
∂vα

∂xj
gij(x)dV

≥ 1
2

K∑
α=1

∫
Bσ (x0)

3∑
i=1

∣∣∣∣∂vα∂xi

∣∣∣∣
2

(x)dx

(3.4)

for any v ∈W 1,2(M,RK), where dx denotes the Lebesgue measure in R3.

To prove the lemma, we first consider VΛ,σ instead of VΛ, where σ ≤ σ0 and

VΛ,σ =
{
X ∈ VΛ | support{X} ⊂ Bσ(x0) for some x0 ∈M}. (3.5)

For any X ∈ VΛ,σ , we write

G(t)=−g′(t)+ 1
2

{
Trg(t) g′(t)

}
g(t),

Hij(t,x)=Gkl(t,x)gik(t,x)gjl(t,x)
√

det
(
gij(t,x)

)
.

(3.6)

It follows from (3.1) that

d
dt
Em(t,X)− d

dt
Em(0,X)=

∫
Bσ (x0)

(
u∗mh

)
ij(x)

{
Hij(t,x)−Hij(0,x)

}
dx, (3.7)

where

(
u∗mh

)
ij(x)=

K∑
α=1

∂uαm
∂xi

(x)
∂uαm
∂xj

(x). (3.8)

Hence,

∣∣∣∣ ddt Em(t,X)−
d
dt
Em(0,X)

∣∣∣∣
≤ 6

3∑
i,j=1

(
sup

x∈Bσ (x0)

∣∣Hij(t,x)−Hij(0,x)
∣∣)·(

∫
Bσ (x0)

∣∣dum∣∣2dV
) (3.9)

by the Cauchy-Schwartz inequality and (3.4). We note that Hij(t,x) is a known func-

tion of {gij(t,x)} and {(d/dt)gij(t,x)}, while g(t,x) = F∗−tg(x) and (d/dt)g(t,x) =
F∗−t(�Xg)(x). Since ‖X‖C1 ≤ Λ, it follows from the standard ODE theory that, for any

ε > 0, there exists t0 depending only on ε, Λ, and g so that, for any t ∈ [−t0, t0], we have

that ‖g(t)−g‖C1 ≤ ε, hence |Hij(t,x)−Hij(0,x)| ≤ Cε for some constant C depending

only on the algebraic expression of Hij .

Now assume that the lemma is not true for VΛ,σ ; then there exist δ0 > 0, a sequence

of {Xk} ⊂ VΛ,σ , and a subsequence {uik} of {ui} such that

∣∣∣∣ ddt Eik
(
0,Xk

)∣∣∣∣> δ0. (3.10)
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Our above analysis then shows that there exists t0 = t0(δ0,g,Λ,Eφ) such that

∣∣∣∣ ddt Eik
(
t,Xk

)∣∣∣∣> 1
2
δ0 ∀t ∈ [−t0, t0]. (3.11)

Since limk→∞E(uik) = Eφ, we conclude that, for some k large enough and some t ∈
[−t0, t0], E(uik ◦Ft) < Eφ−(1/4)δ0t0, which is a contradiction to the fact uik ◦Ft ∈�φ

and the definition of Eφ.

To replace VΛ,σ by VΛ, we can simply apply a partition of unity argument considering

that (d/dt)En(0,X) is linear in X. Hence, the lemma is proved.

Now we are ready to derive an approximate monotonicity property for {ui}. Let ξ(t)
be any C1 decreasing function on [0,+∞)whose support lies in [0,1]. We fix x0 ∈M and

let {x1,x2,x3} be a geodesic normal coordinate chart in Bσ(x0). For 0< ρ <σ ≤ σ0 and

x ∈ Bσ(x0), we define Xρ(x)= ξ(|x|/ρ)xi(∂/∂xi) and view Xρ as a vector field defined

globally on M . It is easily checked that ‖Xρ‖C1 ≤ Λ for some constant Λ = Λ(ξ) > 0.

Thus Lemma 3.1 implies that there exists a sequence {κi} depending on Λ(ξ) but not

on ρ such that

∣∣∣∣ ddt Ei
(
0,Xρ

)∣∣∣∣≤ κi, lim
i→∞

κi = 0. (3.12)

A direct calculation shows that

d
dt
Ei
(
0,Xρ

)= error(ρ)+(−1)
∫
Bσ (x0)

ξ
( |x|
ρ

)∣∣dui∣∣2dV

+(−1)
∫
Bσ (x0)

ξ′
( |x|
ρ

)( |x|
ρ

)∣∣dui∣∣2dV

+2
∫
Bσ (x0)

ξ′
( |x|
ρ

)( |x|
ρ

)∣∣∣∣∂ui∂ν

∣∣∣∣
2

dV,

(3.13)

where ν = (xi/|x|)(∂/∂xi), |error(ρ)| ≤ c̄ρ2(
∫
Bσ (x0) |dui|2dV), and c̄ = c̄(ξ,g). We then

define

Ei(ρ)= 1
ρ

∫
Bσ (x0)

ξ
( |x|
ρ

)∣∣dui∣∣2dV. (3.14)

It follows from (3.12) and (3.13) that

E′i(ρ)+ c̄
∫
Bσ (x0)

∣∣dui∣∣2dV ≥−κi 1
ρ2
, (3.15)

which gives that

Ei(τ)≤ Ei(ρ)+ c̄(ρ−τ)
∫
Bσ (x0)

∣∣dui∣∣2dV +κi
(

1
τ
− 1
ρ

)
(3.16)

for any 0< τ < ρ < σ . Hence, we have proved the following proposition.
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Proposition 3.2. For any C1 decreasing function ξ(t) with support in [0,1], there

exists a sequence {κi} such that limi→0κi = 0 and

1
τ

∫
Bσ (x0)

ξ
( |x|
τ

)∣∣dui∣∣2dV ≤ 1
ρ

∫
Bσ (x0)

ξ
( |x|
ρ

)∣∣dui∣∣2dV

+ c̄(ρ−τ)
∫
Bσ (x0)

∣∣dui∣∣2dV +κi
(

1
τ
− 1
ρ

) (3.17)

for any x0 ∈M and any 0< τ < ρ < σ ≤ σ0. Here {κi} is independent of ρ and τ , and c̄
is a constant depending only on ξ and g.

Letting i go to ∞, we have the following “monotonicity” formula for the limiting

measure µ.

Corollary 3.3. For any C1 decreasing function ξ(t) with its support in [0,1],

1
τ

∫
Bσ (x0)

ξ
( |x|
τ

)
dµ ≤ 1

ρ

∫
Bσ (x0)

ξ
( |x|
ρ

)
dµ+ c̄µ(Bσ (x0

))
(3.18)

for any x0 ∈M , 0 < τ < ρ < σ ≤ σ0, and some constant c̄ = c̄(ξ,g). Choosing ξ to be 1

on [0,1/2],

1
τ
µ
(
Bτ
(
x0
))≤ 2

ρ
µ
(
Bρ
(
x0
))+ c̄µ(Bσ (x0

))
(3.19)

for any 0< 2τ < ρ < σ ≤ σ0, where c̄ = c̄(g).
As an application of this “monotonicity” property of µ, we show that u can be well

approximated by smooth maps into N from the region where {ui} has small energy

concentration.

Proposition 3.4. There exists a number ε1 depending only on M and N such that

if µ(Bσ (x0))/σ < ε1, then there exists a sequence of smooth maps {uτ}0<τ<τ0 from

Bσ/2(x0) to N such that limτ→0‖uτ−u‖W1,2(Bσ/2(x0)) = 0.

Proof. We use the idea in [5] to mollify u. Letϕ :R3 →R+ be a smooth radial molli-

fying function so that support (ϕ)⊂ B1 and
∫
R3ϕdx = 1. Assume that µ(Bσ (x0))/σ <

ε1 for some ε1 to be determined later; by Corollary 3.3, we have that

µ
(
Bτ(y)

)
τ

≤ 4
µ
(
Bσ/2(y)

)
σ

+ c̄σε1 ≤ 4
µ
(
Bσ
(
x0
))

σ
+ c̄σε1 ≤ 5ε1 (3.20)

for any y ∈ Bσ/2(x0) and 0 < 2τ < σ/2 provided c̄σ ≤ 1. Now define uτ(y) =
(1/τ3)

∫
Bτ(y)ϕ(|y−z|/τ)u(z)dz inside a normal coordinate chart around x0; we can

apply a version of the Poincare inequality to assert that

1
τ3

∫
Bτ(y)

∣∣u(x)−uτ(y)∣∣2dx ≤ c2
1
τ

∫
Bτ(y)

|du|2dx ≤ c2
µ
(
Bτ(y)

)
τ

, (3.21)

where the last inequality holds because of the lower semicontinuity of energy with

respect to weak convergence. It follows from (3.20) and (3.21) that uτ(y) lies near
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many values of u(z) for z ∈ Bτ(y). In particular, we see that

dist
(
uτ(y),N

)≤ c3ε
1/2
1 . (3.22)

Let �ε be a ε-tubular neighborhood of N in RK , and let Φ : �ε → N denote the smooth

nearest point projection map. We see that if c3ε
1/2
1 < ε, then u(τ)(y) ∈ �ε for all y ∈

Bσ/2(x0). Hence, we can define a smooth map uτ : Bσ/2(x0)→N by uτ(y)= Φ◦uτ(y).
Since uτ(y) is the standard mollification of u by ϕ with a scaling factor τ , we see

immediately that limτ→0‖uτ−u‖W1,2(Bσ/2x0) = 0.

4. A continuous version of Luckhaus lemma. In this section, we use∇(·) to denote

the gradient operator on S2 ⊂R3 anddω to denote the Euclidean surface measure on S2.

For a map u defined on a cylinder [a,b]×S2, we use ∇xu, ∇tu to denote the partial x,

t gradient of u, where (t,x) ∈ [a,b]×S2. The following technical lemma, which may

be viewed as a continuous version of the 2-dimensional Luckhaus lemma (see [6]) in

the study of energy minimizing maps, will help us construct comparison maps in the

proof of the main theorem.

Lemma 4.1. Assume that N ⊂ RK is an isometrically embedded compact manifold.

Then there exists ε2 = ε2(N) > 0 such that if v,w ∈W 1,2(S2,N)∩C0(S2,N) and

∫
S2
|∇v|2dω≤ ε2,

∫
S2
|∇w|2dω≤ ε2, (4.1)

then for all β > 0, there exists η= η(ε2,β) > 0, where η does not depend on the choice of

v and w, such that if

∫
S2
|v−w|2dω<η, (4.2)

then there exist β′ ∈ [0,β) and v′ ∈W 1,2([0,β′]×S2,N)∩C0([0,β′]×S2,N) with prop-

erties that

v′(0,x)= v(x), v′(β′,x)=w(x),∫
[0,β′]×S2

∣∣∇(t,x)v′∣∣2dωdt ≤ β. (4.3)

Proof. Let v,w ∈ W 1,2(S2,N) ∩ C0(S2,N) such that (4.1) holds for some ε2 to

be determined later. Let ϕ : R2 → R+ be a smooth radial mollifying function so that

support(ϕ)⊂ B1 and
∫
R2ϕdx = 1. For any 0<h�π/2 and any (t,x)∈ (0,h]×S2, we

define

v(t,x)=
∫
S2
v(y)ϕt(dist(x,y)

)
dω(y), (4.4)

where dist(x,y) represents the sphere distance between x and y on S2 and ϕt(r) =
(1/t2)ϕ(r/t). Let �2ε be a 2ε-tubular neighborhood of N in RK ; by the argument used

in the proof of Proposition 3.4, we know that, if we choose ε2 = ε2(N) to be sufficiently

small, then v(t,x)∈ �ε for all (t,x)∈ (0,h]×S2. (We note that the monotonicity of the
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energy of v , which is crucial in the proof of Proposition 3.4, is automatically satisfied

in this case because the domain of v is of 2-dimensional.) Since v is continuous on S2,

we have that

lim
(t,z)→(0,x)

v(t,z)= v(x). (4.5)

Thus v(t,x) is a continuous map on the closed cylinder [0,h]×S2 with v(0,x)= v(x).
On the other hand, if Bσ(z) is a geodesic ball with a normal coordinate chart such that

x ∈ Bσ/2(z), then for 0<h= h(ε2)� 1, we have that

v(t,x)=
∫
S2
v(y)ϕt(dist(x,y)

)
dω(y)≈

∫
Bσ (0)⊂R2

v(x−ty)ϕ(|y|)dy, (4.6)

which implies that

∣∣∇xv(t,x)∣∣2 ≤ c4

∫
S2

∣∣∇v(y)∣∣2ϕt(dist(x,y)
)
dω(y)+ε2,

∣∣∇tv(t,x)∣∣2 ≤ c4

∫
S2

∣∣∇v(y)∣∣2ϕt(dist(x,y)
)
dω(y)+ε2

(4.7)

by the Cauchy-Schwartz inequality. Then it follows from (4.7) that

∫
[0,h]×S2

∣∣∇(t,x)v(t,x)∣∣2dω(x)dt ≤ c5h
(∫

S2

∣∣∇v(y)∣∣2dω(y)+ε2

)
(4.8)

by the Fubini theorem. Similarly, we define w(t,x) : [l+h,l+2h]×S2 → �ε by

w(t,x)=
∫
S2
w(y)ϕ(l+2h−t)(dist(x,y)

)
dω(y) (4.9)

for some l determined later.

Now we want to connect v(h,x) and w(l+h,x) on [h,l+h]×S2. We first estimate

|v(h,x)−w(l+h,x)| pointwise. It follows from the definition and the Cauchy-Schwartz

inequality that

∣∣v(h,x)−w(l+h,x)∣∣=
∫
S2

∣∣v(y)−w(y)∣∣ϕh(dist(x,y)
)
dω(y)

≤ c6
1
h

(∫
S2

∣∣v(y)−w(y)∣∣2dω(y)
)1/2

.
(4.10)

We define z(t,x) on [h,l+h]×S2 to be

z(t,x)=
(
t−h
l

)
w(l+h,x)+

(
l+h−t

l

)
v(h,x). (4.11)

Then (4.7) and (4.10) imply that

∫
[h,l+h]×S2

∣∣∇(t,x)z(t,x)∣∣2dω(x)dt ≤ c7l
{∫

S2

[|∇v|2+|∇w|2]dω+2ε2

}

+c7
1
l

1
h2

∫
S2

∣∣v(y)−w(y)∣∣2dω(y).
(4.12)
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Now we consider

ṽ =



v(t,x), 0≤ t ≤ h,
z(t,x), h≤ t ≤ l+h,
w(t,x), l+h≤ t ≤ l+2h.

(4.13)

Clearly, ṽ ∈ C0∩W 1,2([0, l+2h]×S2,RK). Furthermore,

∫
[0,l+2h]×S2

∣∣∇(t,x)ṽ(t,x)∣∣2dωdt ≤ c8
1
l

1
h2

∫
S2

∣∣v(y)−w(y)∣∣2dω(y)

+c8(h+l)ε2.
(4.14)

For any β > 0, we first choose h= h(β,ε2) and l= l(β,ε2) such that

l+2h< β, c8(h+l)ε2 <
β
2
, (4.15)

then we let ‖v−w‖L2(S2) < η, where η= η(l,h,β,ε2) is so small that

c8
1
l

1
h2
η <

β
2
, c6

1
h
η1/2 < ε. (4.16)

It follows from (4.10) and (4.14) that ṽ(t,x)∈ �2ε for all (t,x)∈ [0, l+2h]×S2 and the

total energy of ṽ is bounded by β. To get v′ finally, we compose ṽ with the nearest

point projection map Φ : �2ε →N. Hence, the lemma is proved.

5. Proof of Theorem 1.1. Throughout this section, we fix a geodesic ball Bσ(x0),
where

1
σ
µ
(
Bσ
)= lim

i→∞
1
σ

∫
Bσ

∣∣dui∣∣2dV < ε0 (5.1)

for some ε0 to be determined. For each τ , we let Bτ denote Bτ(x0).
Assume that ε0 < ε1; Proposition 3.4 implies that there exists a sequence {vi} ⊂

C∞(Bσ/2,N) such that

lim
i→∞

∥∥vi−u∥∥W1,2(Bσ/2) = 0. (5.2)

We then choose ρ ∈ (σ/4,σ/2) such that u|∂Bρ , ui|∂Bρ ∈W 1,2(∂Bρ,N),

lim
i→∞

∥∥vi−u∥∥W1,2(∂Bρ) = 0,

lim
i→∞

∥∥ui−u∥∥L2(∂Bρ) = 0,∫
∂Bρ
|du|2dΣ≤ c9

1
σ

∫
Bσ
|du|2dV,

liminf
i→∞

∫
∂Bρ

∣∣dui∣∣2dΣ≤ c9
1
σ

lim
i→∞

∫
Bσ

∣∣dui∣∣2dV,

(5.3)
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where dΣ is the induced surface measure on ∂Bρ ⊂M . After fixing a geodesic normal

coordinate chart centered at x0, we may also view u|∂Bρ ,ui|∂Bρ , vi|∂Bρ as defined on the

Euclidean sphere Sρ with radius ρ; then we have that

∫
Sρ
|∇u|2dωρ ≤ c10

∫
∂Bρ
|du|2dΣ,

∫
Sρ

∣∣∇ui∣∣2dωρ ≤ c10

∫
∂Bρ

∣∣dui∣∣2dΣ,
∫
Sρ

∣∣∇vi∣∣2dωρ ≤ c10

∫
∂Bρ

∣∣dvi∣∣2dΣ,

(5.4)

where dωρ represents the Euclidean surface measure on Sρ . Now we choose ε0 <
min{ε1,(c9c10)−1ε2} and we claim that

lim
i→∞

∫
Bρ

∣∣dui∣∣2dV =
∫
Bρ
|du|2dV. (5.5)

We remark that, once (5.5) is established, it will readily imply that

lim
i→∞

∥∥ui−u∥∥W1,2(Bρ) = 0 (5.6)

by the fact that {ui} converges to u weakly and the standard Hilbert space theories.

Assume that (5.5) does not hold; we have that

lim
i→∞

∫
Bρ(x0)

∣∣dui∣∣2dV >
∫
Bρ(x0)

|du|2dV +2δ (5.7)

for some δ > 0. The idea for the rest of the proof is to construct a sequence of compar-

ison maps which are almost vi inside Bρ and ui outside Bρ . For that purpose, we need

to connect ui and vi on the boundary of Bρ using Lemma 4.1. We first note that (5.3)

imply that there exists a subsequence {uik}, {vik} such that

∫
Sρ

∣∣∇uik∣∣2dωρ < ε2,
∫
Sρ

∣∣∇vik∣∣2dωρ < ε2 ∀k,

lim
k→∞

∥∥vik−uik∥∥L2(Sρ) = 0.
(5.8)

We then consider ūik(ω)=uik(ρω) and v̄ik(ω)= vik(ρω), whereω denotes the point

on S2. It follows from (5.8) and Lemma 4.1 that for all β > 0, there exist k0 = k0(β,ε2)
and β′ = β′(β,ε2) < β such that for all k > k0, there exists w̄k ∈W 1,2∩C0([0,β′]×S2,N)
such that

w̄k(0,x)= ūik(x),
w̄k(β′,x)= v̄ik(x),∫

[0,β′]×S2

∣∣∇(t,x)w̄k
∣∣2dωdt ≤ β.

(5.9)
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Next, we use polar coordinates to transplant w̄k to the shell region between Sρ and

S(1−β′)ρ by defining wk((1− t)ρω) = w̄k(t,ω). Rescaling vik(x) on Bρ to v′ik(x) =
v′ik(rω)= vik(rω/(1−β′)) on B(1−β′)ρ , we then have that

wk(x)=uik(x), x ∈ ∂Bρ,
wk(x)= v′ik(x), x ∈ ∂B(1−β′)ρ,∫
Bρ\B(1−β′)ρ

∣∣dwk
∣∣2dV ≤ c10ρβ.

(5.10)

Now we consider a new sequence {ûk} ⊂W 1,2∩C0(M,N) given by

ûk =



uik , x ∉ Bρ,

wk, x ∈ Bρ \B(1−β′)ρ,
v′ik , x ∈ B(1−β′)ρ.

(5.11)

First, we note that the fact that ûk = uik outside Bρ and π2(S3) = 0 implies that ûk is

2-homotopic to uik . Second, we have the following energy estimate:

E
(
ûk
)=

∫
M\Bρ

∣∣duik∣∣2dV +
∫
Bρ\B(1−β′)ρ

∣∣dwk
∣∣2dV +

∫
B(1−β′)ρ

∣∣dv′k∣∣2dV

≤ E(uik)−
∫
Bρ

∣∣duik∣∣2dV +c10ρβ+c(β′)
∫
Bρ

∣∣dvik∣∣2dV,
(5.12)

where c(β′) is the supremum of the Jacobian of the scaling diffeomorphism from

B(1−β′)ρ to Bρ , which satisfies limβ′→0 c(β′) = 1 with the convergence only depending

on (M,g). We now fix β such that

β <
(
c10ρ

)−1δ,
∣∣c(β′)−1

∣∣∫
Bρ(x0)

|du|2dV < δ
2
. (5.13)

Letting k→∞, we then have that

limsup
k→∞

E
(
ûk
)≤ Eφ− δ

2
. (5.14)

Finally, we note that the fact that ûk ∈ W 1,2 ∩C0(M,N) implies that ûk can be well

approximated in W 1,2 norm by smooth maps from M to N which are homotopic to ûk.
One way to see this is to consider the standard mollification of ûk into RK , where the

uniform continuity of ûk on M will guarantee that the image of the mollification will

be inside a tubular neighborhood of N. Composing it with the nearest point projection

map, we then have the desired approximation. Hence, we know that there exists another

sequence {ũk} ⊂ C∞(M,N) such that ũk is homotopic to ûk and

limsup
k→∞

E
(
ũk
)= limsup

k→∞
E
(
ûk
)
< Eφ− δ

2
. (5.15)
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Since ûk and uik are 2-homotopic, we know that {ũk} ⊂�(2)
φ . Thus (5.15) gives a contra-

diction to the fact that Eφ = inf{E(u) | u ∈ �(2)
φ } by White’s theorem. Therefore, (5.5)

holds and Theorem 1.1 is proved.

Next, we prove Corollary 1.2 on the partial regularity of the weak limit of {ui}. We

recall the following ε-regularity theorem for stationary harmonic maps obtained by

Bethuel [1].

Bethuel’s theorem. There exists a number ε3 = ε3(M,N) > 0 such that if u :

Bσ(x0) ⊂ M → N is a stationary harmonic map and (1/σ)
∫
Bσ (x0) |du|2dV ≤ ε3, then

u is smooth inside Bσ/2(x0).

Proof of Corollary 1.2. Let ε̄ be a number to be determined and let Bσ(x0) be a

geodesic ball, where (1/σ)µ(Bσ (x0)) < ε̄. Assume that ε̄ < ε0; our main theorem implies

that {uk} converges strongly to u in W 1,2(Bσ/4(x0),N). Then it follows from this W 1,2

strong convergence and the fact that {ui} is a minimizing sequence that u is stationary

with respect to both the first and the second variation (see [4]) inside Bσ/4(x0), hence

u : Bσ/4(x0)→N is a stationary harmonic map. We note that

4
σ

∫
Bσ/4(x0)

|du|2dV ≤ 4
σ

∫
Bσ (x0)

|du|2dV ≤ 4
σ
µ
(
Bσ
(
x0
))
. (5.16)

Hence, assuming that ε̄ < (1/4)ε3 and applying Bethuel’s theorem, we know that u is

smooth inside Bσ/8(x0). With such a choice of ε̄, we define

Σ=
{
x ∈M | lim

σ→0

1
σ
µ
(
Bσ(x)

)≥ ε̄}. (5.17)

A standard covering argument (see [4]) then shows that Σ is a closed set with finite

1-dimensional Hausdorff measure. Hence, we conclude that u is a smooth harmonic

map from M \Σ to N, where Σ is a close set with �1(Σ) <∞.
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