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The system ẋ = (A+εQ(t))x, where A is a constant matrix whose eigenvalues are
not necessarily simple and Q is a quasiperiodic analytic matrix, is considered. It
is proved that, for most values of the frequencies, the system is reducible.
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1. Introduction and results. Consider the quasiperiodic linear differential

equation

ẋ = (A+εQ(t))x (1.1)

with x an n-dimensional vector, A a constant square matrix of order n, and

Q a square matrix of order n, quasiperiodic in time t. We say that a change

of variables x = P(t)y is a Lyapunov-Perron (LP) transformation if P(t) is

nonsingular and P(t), P−1(t), and Ṗ (t) are bounded for all t ∈R. Moreover, if P ,

P−1, and Ṗ are quasiperiodic in time t, we refer to x = P(t)y as a quasiperiodic

LP transformation. If there is a quasiperiodic LP transformation x = P(t)y
such that y satisfies the equation

ẏ = By (1.2)

with B a constant matrix, then we say that (1.1) is reducible.

The concept of the reducibility was first considered by Lyapunov (see [5]).

There are several authors who investigated the reducibility of (1.1) (see, e.g., [1,

2, 6]). The present paper complements the results obtained by Jorba and Simó

[2], which we will briefly recall. To this end, we will introduce some notation

and definitions that will be used throughout the paper.

We say that a function F is a quasiperiodic function in time t, with the

basic frequencies ω = (ω1, . . . ,ωr ), if there exists a function �(θ1, . . . ,θr )
which is 2π -periodic in all its arguments θj , j = 1, . . . ,r , and such that F(t)=
�(ω1t, . . . ,ωr t). We call � the hull of F(t). The function F will be called an-

alytic quasiperiodic in a strip of width δ if, furthermore, � is analytic in the

complex strip |Imθ|< δ.
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Let λ= (λ1, . . . ,λn) be the eigenvalues of A and λ0(ε)= (λ0
1(ε), . . . ,λ0

n(ε)) the

eigenvalues of Ā :=A+εQ̄, where Q̄ is the average of Q(t),

Q̄= lim
T→∞

1
2T

∫ T
−T
Q(t)dt. (1.3)

Assume that Q(t) is analytic on the strip of width δ0 > 0 and that the vector

(λ,
√−1ω) satisfies the nonresonance conditions

∣∣√−1k·ω+l·λ∣∣≥ c
|k|γ , (1.4)

where l∈ Zn with |l| = 0,2 and 0≠ k∈ Zr . It was shown by Jorba and Simó [2]

that (1.1) is reducible for ε in some Cantorian set �⊂ (0,ε0), with ε0 sufficiently

small, provided that

(1) the eigenvalues λ1, . . . ,λn of A are different;

(2) the eigenvalues λ0
1(ε), . . . ,λ0

n(ε) of Ā satisfy

∣∣∣∣ ddε
(
λ0
i (ε)−λ0

j (ε)
)∣∣∣∣
ε=0

> 2ρ > 0 (1.5)

for some constant ρ and any 1≤ i < j ≤n.

In [2], the basic idea is to kill the small perturbation εQ(t) by KAM iteration.

Condition (2) is used to overcome the problem arising from the frequency

shift which comes up in this procedure. By a well-known theorem [3, pages

113–115], condition (1) guarantees that the eigenvalues λ0
j (ε) of Ā = A+ εQ̄

are differentiable in ε, and that therefore condition (2) can be imposed.

A natural question is: what happens when condition (1) or (2) is not satisfied?

The main result of the present paper is the following theorem which gives an

answer to this question.

Theorem 1.1. LetΩ0 ⊂Rr+ be a compact set with positive Lebesgue measure

and assume that Q(t) is quasiperiodic with frequency ω ∈ Ω0 and analytic in

the strip of width δ0 > 0. Then, for a sufficiently small positive constant γ, there

exist a subset Ω ⊂Ω0 with Meas(Ω0 \Ω)=Meas(Ω0)(1−O(γ1/n2)) and a suffi-

ciently small constant ε	 = ε	(δ0,γ) > 0 such that for any ε ∈ (0,ε	), system

(1.1) is reducible. More exactly, there is an analytic quasiperiodic transformation

x = P(t)y such that (1.1) is changed into

ẏ = By, (1.6)

where B is a constant matrix with ‖A−B‖ =O(ε).
The proof is based on the construction of an iterative lemma, Lemma 2.1.

In this construction, a finite number of terms in the Fourier expansion of the

perturbation are killed in each iteration, and the remainder is included in the

higher-order perturbation. The averaged perturbation is included in the time-

independent term. To solve the homological equation, avoiding the problem
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of small divisors, certain frequencies must be removed from the original fre-

quency set Ω0 at each iteration step. Showing that the remaining frequencies

form a big subset ofΩ0 through the estimates of Section 3 concludes the proof.

Remark 1.2. When one of λj is not simple, the functions λ0
j (ε) are not nec-

essarily differentiable in ε. Therefore, in the hypothesis of Theorem 1.1, we

have to regard the tangent frequenciesω, instead of ε, as the parameters used

to overcome the frequency shift in KAM iterative steps. Thus, we cannot find

explicitly a tangent frequency vector ω satisfying some Diophantine condi-

tions such that Theorem 1.1 holds true. On the other hand, in Theorem 1.1 it

is not necessary to excise a subset of small measure from (0,ε∗). In this sense,

Theorem 1.1 complements the results of [2]. Yet another complementary ap-

proach is that of [1], where ω is fixed and reducibility is proved for “most”

matrices A.

2. Proof of Theorem 1.1. The proof of Theorem 1.1 is based on Newton

iteration. Before we state the main iterative lemma, we need to introduce some

notation.

In the following, we denote by C , C1, C2, . . . positive constants which arise

in the estimates, by � the hull of a quasiperiodic function Q(t), and by �̃ the

average of � on the r -torus. For a matrix-valued function Q(t), define

‖Q‖D := sup
t∈D

∥∥Q(t)∥∥, (2.1)

where ‖·‖ is the sup-norm of the matrix.

Denote by m the number of the iterative step, and let

(1) εm be the sequence that bounds the size of the perturbation before the

mth iteration step with εm = ε(1+ρ)m−1
and ρ = 1/3, for example;

(2) δm be the sequence that measures the size of the analyticity domain in

the angular variables after m iteration steps with

δm = δ0− δ0

2

(
1+···+m−2) ∞∑

j=1

j−2 for m≥ 1; (2.2)

(3) Um =U(δm)= {θ ∈ (C/2πZ)N : | Imθ|< δm};
(4) qm be the sequence that measures the width of the analyticity domain

in the frequency space after m iteration steps with qm = ε1/4n2

m+1 , where

n is the dimensional number of system (1.1);

(5) C(m) be a constant of the form C1mC2 .

Let Ω0 = Π0 ⊃ Π1 ⊃ ··· ⊃ Πm−1 be the closed sets in Rr+ and let Πm ⊂ Πm−1

be as defined inductively in Section 3. Let �l be the complex ql-neighborhood

of Πl for l= 0,1, . . . ,m. Assume that, after m−1 steps of Newton iteration, we
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get a quasiperiodic linear differential equation

ẋ = (Am−1+εmQm(t;ω)
)
x, (2.3)

where the following conditions are satisfied:

(H1)m Am−1 =A+ε1�̃1(ω)+···+εm−1�̃m−1(ω),m≥ 2, A0 =A with �̃l(ω)
analytic in �l, and ‖�̃l‖�l ≤ 1 for l= 1, . . . ,m−1;

(H2)m the hull �m of Qm(t;ω) is analytic in Um−1×�m−1 and

∥∥�m(θ,ω)
∥∥Um−1×�m−1 ≤ 1. (2.4)

Let

Am =Am−1+εm�̃m. (2.5)

Then (2.3) can be rewritten as

ẋ = (Am+εmQ∗
m(t)

)
x, (2.6)

where Q∗
m(t)=Qm(t)− �̃m. Following [2], we will find a change of variables

x = (E+εmPm(t))y, (2.7)

where E is the unit matrix such that (2.3) is changed into

ẋ = (Am+O(εm+1
))
x (2.8)

verifying conditions (H1)m+1 and (H2)m+1. This change of variables is given by

the following lemma.

Lemma 2.1 (iterative lemma). Assume that (H1)m and (H2)m are fulfilled.

Then there is a quasiperiodic LP transformation

x = (E+Pm(t))y, (2.9)

where Pm(t) is quasiperiodic with frequencyω and its hull �m(θ;ω) is analytic

in Um×�m such that (2.3) is changed into

ẏ = (Am+εm+1Qm+1(t)
)
y, (2.10)

where Am and Qm+1 satisfy the conditions (H1)m+1 and (H2)m+1.

Proof. Rewrite (2.3) as

ẋ = (Am+εmQ∗
m(t)

)
x, (2.11)

where Q∗
m(t)=Qm(t)− �̃m and Am =Am−1+ �̃m. Hence, we can write

�∗m(θ,ω)=
∑

0≠k∈Zr
�̂∗m(k;ω)e

√−1k·θ, (2.12)
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where �̂∗m(k;ω) is the k Fourier coefficient of �∗m(θ,ω) in θ. Let Mm =
(1/bm)| lnεm|, where bm = δm−1−δm, and let

�∗1
m (θ,ω)=

∑
0≠|k|≤Mm

�̂∗m(k;ω)e
√−1k·θ,

�∗2
m (θ,ω)=

∑
|k|>Mm

�̂∗m(k;ω)e
√−1k·θ,

(2.13)

so that

�∗m(θ,ω)= �∗1
m (θ,ω)+�∗2

m (θ,ω). (2.14)

We claim that

∥∥�∗2
m (θ,ω)

∥∥Um×�m ≤ C(m)εm, (2.15)

where C(m) is a constant of the form C1mC2 . In fact,

∥∥�∗2
m (θ,ω)

∥∥Um×�m ≤
∑

|k|>Mm

∥∥�̂∗m(k;ω)
∥∥�m∣∣e√−1k·θ∣∣Um

≤
∑

|k|>Mm

∥∥�̂∗m(θ;ω)
∥∥Um−1×�me−|k|δm−1e|k|δm

≤
∑

|k|>Mm
e−|k|(δm−1−δm) = εm

∑
|k|>0

e−|k|(δm−1−δm)

≤ C(m)εm.

(2.16)

Next, we perform the change of variables as in (2.7), where E is the unit

matrix in Rn, to transform (2.10) into

ẏ =
((
E+εmPm

)−1(Am+εm(AmPm− Ṗm+Q∗1
m
)+εm+1Qm+1

))
y, (2.17)

where

εm+1Qm+1 = εmQ∗2
m +ε2

m
(
E+εmPm

)−1Q∗
mPm. (2.18)

We would like to have

(
E+εmPm

)−1(Am+εm(AmPm− Ṗm+Q∗1
m
))=Am (2.19)

and this implies that

Ṗm =AmPm−PmAm+Q∗1
m . (2.20)

In order to solve this equation, we consider

ω· ∂�m

∂θ
=Am�m−�mAm+�∗1

m , (2.21)
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where � is the hull of P(t). Write

�m(θ,ω)=
∑

0≠|k|≤Mm
�̂m(k;ω)e

√−1k·θ. (2.22)

Then we get

√
−1(k·ω)�̂m(k)=Am�̂m(k)−�̂m(k)Am+ �̂∗1

m (k), 0< |k| ≤Mm, (2.23)

where we omit the dependence on ω to simplify the notation. That is,

(√−1(k·ω)E−Am
)
�̂m(k)+�̂m(k)Am = �̂∗1

m (k), 0< |k| ≤Mm. (2.24)

By Lemmas A.2 and 3.1, (2.24) is solvable for ω∈ �m and

∥∥�̂m(k;ω)
∥∥�m ≤

∥∥∥((√−1k·ω)En2−En⊗Am+ATm⊗En
)−1

∥∥∥�m∥∥�̂∗m(k)
∥∥�m

≤ C|k|
τ

γm

∥∥�∗m
∥∥Um−1×�m−1e−|k|δm−1

≤ C|k|
τ

γm

∥∥�m
∥∥Um−1×�m−1e−|k|δm−1

≤ C|k|
τ

γm
e−|k|δm−1 ,

(2.25)

where in the last inequality we have used (H2)m. Therefore,

∥∥�m(θ,ω)
∥∥Um×�m ≤

∑
0<|k|≤Mm

∥∥�̂m(k;ω)
∥∥�m∣∣e√−1k·θ∣∣Um

≤
∑
k∈Zr

C|k|τ
γm

e−|k|(δm−1−δm)

≤ C
γm

∑
k∈Zr

|k|τe−C3|k|(δ0/m2) ≤ C(m),

(2.26)

where the last inequality follows from Lemma A.1. Then, the function

Pm(t)=�m
(
ω1t, . . . ,ωr t;ω

)
(2.27)

solves (2.20). By (2.26) and (2.18), it is easy to show that ‖�m+1‖Um×�m ≤ 1. We

omit the details.

Proof of Theorem 1.1. Obviously, (1.1) satisfies the conditions (H)m with

m = 1. In fact, condition (H2)1 may always be fulfilled by a suitable rescaling

of ε. Thus, by Lemma 2.1, there exists a sequence of transformations x = (E+
εmPm(t))y , m = 1,2, . . . , such that the hulls �m of the Pm(t) are analytic in

the domains Um×�m, and

∥∥�m
∥∥Um×�m ≤ C(m). (2.28)
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Let

U∞×�∞ =
∞⋂
m=1

Um×�m. (2.29)

Then, all the �m, m= 1,2, . . . , are well defined in the domain U∞×�∞. Set

Φ(θ,ω)= ···◦(E+εm�m(θ,ω)
)◦···◦(E+ε2�2(θ,ω)

)◦(E+ε1�1(θ,ω)
)
,

Φ(t;ω)= ···◦(E+εmPm(t;ω))◦···◦(E+ε2P2(t;ω)
)◦(E+ε1P1(t;ω)

)
.

(2.30)

Note that ‖E+εm�m(θ;ω)‖U∞×�∞ ≤ 1+εmC(m)≤ 1+2−m. We see that Φ, and

thus Φ, are well defined. Let

x = Φ(t)y. (2.31)

Since εm‖�m‖U∞×�∞ ≤ εm → 0 as m → ∞, the transformation x = Φ(t)y
changes (1.1) into

ẏ = By, (2.32)

where B =A+∑∞
j=1 εm�̃m. This, together with Lemma 3.3, completes the proof

of Theorem 1.1.

3. Estimates on the allowed frequencies set. Let Πl (0 ≤ l ≤m−1) be a

sequence of compact subsets ofRr+ withΩ=Π0 ⊃Π1 ⊃ ··· ⊃Πm−1 and denote

by �l the complex ql-neighborhood of Πl, l= 0, . . . ,m−1. Recall that

Am(ω)=A+ε1�̃1(ω)+···+εm�̃m(ω), (3.1)

where, for l = 1, . . . ,m−1, the �̃l(ω) are analytic, and real for real arguments

in the domain �l, and ‖�̃l(ω)‖�l ≤ 1; and �̃m(ω) is analytic, and real for real

arguments in the domain �m−1, and ‖�̃m(ω)‖�m−1 ≤ 1. Denote by | · |d the

determinant of a matrix. Let

�k(m) :=
{
ω∈Πm−1 :

∣∣∣∣∣(√−1k·ω)En2−En⊗Am+ATm⊗En
∣∣
d

∣∣∣< γm
|k|τ1

}
,

(3.2)

where γm = γ/m2n2
and τ1 = (r +1)n2,

Πm =Πm−1 \
⋃

0<|k|≤Mm
�k(m), (3.3)

whereMm = | lnεm|/(δm−1−δm) is the number of Fourier coefficients we must

consider at the mth step of the iteration, and denote by �m the complex qm-

neighborhood of Πm.



4078 X. YUAN AND A. NUNES

Lemma 3.1. Let τ = τ1+n2−1 and

G(ω)= (√−1k·ω)En2−En⊗Am(ω)+ATm(ω)⊗En. (3.4)

Then, forω∈ �m and 0< |k| ≤Mm, the inverse of G(ω) exists and it is analytic

in the domain �m with

∥∥G−1(ω)
∥∥�m ≤ Cγ−1

m |k|τ . (3.5)

Proof. By the definition of Πm, we get that for ω∈Πm and 0< |k| ≤Mm,

∣∣�k(ω)
∣∣≥ γm

|k|τ1
. (3.6)

It is easy to see that

∥∥G(ω)∥∥�m ≤ C5|k|, k≠ 0, (3.7)

where C5 = 2(max{|ω| :ω ∈ Π}+‖A‖+1). Since detG(ω) =�k(ω), G−1(ω)
exists for ω∈Πm and

G−1(ω)= adjG(ω)
�k(ω)

, (3.8)

where adj is the adjoint of a matrix. Thus, for 0< |k| ≤Mm,

∥∥G−1(ω)
∥∥Πm ≤ C6

|k|n2−1

γm/|k|τ1
= C6γ−1

m |k|τ . (3.9)

Now, we assume that ω∈ �m. Then there is an ω0 ∈Πm such that |ω−ω0|<
qm. Thus,

∥∥G−1(ω0
)∥∥∥∥G(ω)−G(ω0

)∥∥
≤ ∥∥G−1(ω)

∥∥Πm∥∥∇ωG(ω)∥∥�m ·∣∣ω−ω0

∣∣
≤ C6γ−1

m |k|τ
∥∥G(ω)∥∥�m−1 qm

qm−1−qm
≤ C6γ−1

m |k|τ+1 qm
qm−1−qm

≤ C6Mτ+1
m γ−1

m
qm

qm−1−qm

≤ C6m(6+2r)n2∣∣ lnεm
∣∣τ+1ε1/4n2

m+1

(
γδ0

)−1

ε1/4n2
m −ε1/4n2

m+1

<
1
2
.

(3.10)
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Therefore, E+G−1(ω0)(G(ω)−G(ω0)) has its inverse which is analytic in

�m since

(
E+G−1(ω0

)(
G(ω)−G(ω0

)))−1

=
∞∑
j=0

(−G−1(ω0
)(
G(ω)−G(ω0

)))j . (3.11)

So, G(ω) has its inverse for ω∈ �m and

∥∥G−1(ω)
∥∥= ∥∥∥(E+G−1(ω0

)(
G(ω)−G(ω0

)))−1 ·G−1(ω0
)∥∥∥

≤
∥∥∥(E+G−1(ω0

)(
G(ω)−G(ω0

)))−1
∥∥∥·∥∥G−1(ω0

)∥∥
≤ Cγ−1

m |k|τ .
(3.12)

Lemma 3.2. Let K =n2(n+1)2(diamΠ0)r−1. Then the Lebesgue measure of

�k(m) verifies

Meas�k(m)≤ Kγ
1/n2

|k|r+1

1
m2

. (3.13)

Proof. Recall that ql = ε1/4n2

l+1 , let q1
l = (5/6)ql + (1/6)ql+1, and denote

by �1
l the complex q1

l -neighborhood of Πl. Obviously, �l+1 ⊂ �1
l ⊂ �l and

dist(∂�1
l ,∂�l) = (1/6)(ql−ql+1) > (1/12)ql. Noting that ‖�̃l‖�l ≤ 1 and using

Cauchy’s theorem, we get for 1≤ s ≤n2 and 0≤ l≤m−1,

εl
∥∥∂sω�̃l

∥∥�1
l ≤ εl

(
12q−1

l
)s∥∥�̃l

∥∥�l ≤ ε1/2
l . (3.14)

The combination of (3.1) and (3.14) leads to

∥∥∂sωAm(ω)∥∥�1
m−1 ≤ ε1/2. (3.15)

Let

B(ω) :=−En⊗Am(ω)+ATm⊗En. (3.16)

Then

∥∥∂sωB(ω)∥∥�1
m−1 ≤ ε1/2. (3.17)

Set

�k(ω)=
∣∣(√−1k·ω)En2+B(ω)∣∣d. (3.18)

We are now in a position to estimate ∂sω�k. To this end, write B(ω) = (bij).
Then

�k(ω)=
(√−1

)n2
(k·ω)n2+

∑
1≤l≤n2−1

φl(ω)(k·ω)n2−l, (3.19)
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where

φl(ω)=
∑

1≤ji≤n2

σj1···jlb1j1 ···bljl (3.20)

and σj1···jl ∈ {−1,+1,−√−1,+√−1}.
Observe that for 1≤ l≤n2 and ω∈ �1

m−1,

∣∣∂sω1
bij
∣∣≤ ∥∥∂sωB(ω)∥∥�1

m−1 ≤ ε1/2. (3.21)

Thus, for ω∈ �1
m−1 and 1≤ s ≤n2,

∣∣∣∣ ds

dωs
1

(
b1j1 ···bljl

)∣∣∣∣≤
∣∣∣∣∣

∑
s1+···+sl=s

(
ds1

dωs1
1

b1j1

)
···

(
dsl

dωsl
1

b1jl

)∣∣∣∣∣
≤ ε(1/2)(s1+···+sl)

∑
s1+···+sl=s

1

≤ (2ε1/2)s ,
(3.22)

and therefore,

∣∣∣∣ ds

dωs
1
φl(ω)

∣∣∣∣≤
(
n2

l

)(
2ε1/2)s . (3.23)

Without loss of generality, assume that |k| = |k1|+···+|kr | ≤ r |k1|. Hence,

for every ω∈ �1
m−1,

∣∣∣∣∣∣
dn2

dωn2

1

∑
1≤l≤n2−1

φl(ω)(k·ω)n2−l
∣∣∣∣∣∣

≤
∑

1≤l≤n2−1

∣∣∣∣∣ dn2

dωn2

1

(
φl(ω)(k·ω)n2−l

)∣∣∣∣∣
≤

∑
1≤l≤n2−1

∑
l≤s≤n2

(
n2

s

)∣∣∣∣∣ ds2

dωs2

1

φl(ω)

∣∣∣∣∣
∣∣∣∣∣ dn2−s

dωn2−s
1

(k·ω)n2−l
∣∣∣∣∣

≤
∑

1≤l≤n2−1

∑
l≤s≤n2

(
n2

l

)(
n2

s

)(
2ε1/2)s∣∣k1

∣∣n2−s|k·ω|s−ln2!

≤ C4ε1/2∣∣k1

∣∣n2−1n2!,

(3.24)

where C4 is some constant which depends only on n, r , and on the maximum

of |ω| in Π0. Obviously,

dn2

dωn2

1

(k·ω)n2 =n2!
∣∣k1

∣∣n2
. (3.25)
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Thus, in �1
m−1, we have

∣∣∣∣∣ dn2

dωn2

1

�k(ω)

∣∣∣∣∣≥n2!
∣∣k1

∣∣n2(
1−C4ε1/2∣∣k1

∣∣−1
)
>

1
2
n2!

∣∣k1

∣∣n2
(3.26)

provided that ε is small enough so that C4ε1/2 < 1/2. Using (3.26) and Lemma

A.3, we get

Meas�k(m)≤n2(n2+1
)( γm
|k|τ1

)1/n2(
diamΠ0

)r−1

≤ Kγ
1/n2

|k|r+1
· 1
m2

.

(3.27)

This completes the proof.

By Lemma 2.1, the nested sequence of closed sets

Ω0 =Π0 ⊃Π1 ⊃ ··· ⊃Πm ⊃ ··· (3.28)

is defined inductively. The following lemma is a corollary of Lemma 3.2.

Lemma 3.3. Let

Π∞ =
∞⋂
m=0

Πm. (3.29)

Then MeasΠ∞ = (MeasΠ0)(1−O(γ1/n2)).

Appendix

Lemma A.1. For δ > 0 and ν > 0, the following inequality holds true:

∑
k∈ZN

e−2|k|δ|k|ν ≤
(
ν
e

)ν 1
δν+N

(1+e)N. (A.1)

Proof. This lemma can be found in [1]. We will find the value of z ≥ 1

yielding a maximum value for the expression ν lnz−δz. Differentiating it in

z and equating the result to zero, we get that ν/z = δ and z = ν/δ > 1. From

this it follows that

ν lnz−δz ≤ ν
(

ln
ν
δ
−1

)
. (A.2)

This expression yields

zν ≤ exp(δz)exp
(
ν
(

ln
ν
δ
−1

))
=
(
ν
e

)ν exp(δz)
δν

. (A.3)



4082 X. YUAN AND A. NUNES

Thus,

∑
k∈ZN

e−2|k||k|ν ≤
(
ν
e

)ν 1
δν

∑
k
e−|k|δ

=
(
ν
e

)ν 1
δν

(
1+exp(−δ)
1−exp(−δ)

)N

≤
(
ν
e

)ν 1
δν

(
1+e
δ

)N
.

(A.4)

Lemma A.2. Let A, B, and C be r ×r , s×s, and r ×s matrices, respectively;

and let X be an r ×s unknown matrix. Then the matrix equation

AX+XB = C (A.5)

is solvable if and only if the vector equation

(
Es⊗A+BT ⊗Er

)
X′ = C′ (A.6)

is solvable, where X′ = (XT1 , . . . ,XTs )T , C′ = (CT1 , . . . ,CTs )T if we write X = (X1, . . . ,
Xs) and C = (C1, . . . ,Cs). Moreover,

‖X‖ ≤
∥∥∥(Es⊗A+BT ⊗Er )−1

∥∥∥‖C‖ (A.7)

if the inverse exists.

Proof. This lemma can be found in many textbooks on matrix theory; for

example, [4, page 256].

The following lemma can be found in [7, page 23].

Lemma A.3. Let � be an interval in R1 and �̄ its closure. Suppose that g : �̄→
C is k times continuously differentiable. Let �h = {x ∈ �̄ : |g(x)| ≤ h}, h> 0. If,

for some constant d> 0, |dkg(x)/dxk| ≥ d for any x ∈ �, then MeasIh ≤ ch1/k

with c = 2(2+3+···+k+d−1).
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