
IJMMS 2003:44, 2787–2801
PII. S0161171203210395

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ARCHIMEDEAN UNITAL GROUPS WITH FINITE
UNIT INTERVALS

DAVID J. FOULIS

Received 23 October 2002

Let G be a unital group with a finite unit interval E, let n be the number of atoms in
E, and let κ be the number of extreme points of the state spaceΩ(G). We introduce
canonical order-preserving group homomorphisms ξ : Zn → G and ρ : G → Zκ

linking G with the simplicial groups Zn and Zκ . We show that ξ is a surjection and
ρ is an injection if and only if G is torsion-free. We give an explicit construction
of the universal group (unigroup) for E using the canonical surjection ξ. If G is
torsion-free, then the canonical injection ρ is used to show that G is Archimedean
if and only if its positive cone is determined by a finite number of homogeneous
linear inequalities with integer coefficients.

2000 Mathematics Subject Classification: 06F20.

1. Introduction and basic definitions. In this paper, we continue the study

of unital groups with finite unit intervals begun in [2, 3]. Motivation for this

study can be found in [2]. Although we will attempt to keep this paper some-

what self-contained, we make free use of the notation, nomenclature, and re-

sults of [2, 3].

We begin by setting forth notation and recalling some basic definitions. We

write a partially ordered abelian group G additively, and denote the positive

cone in G by G+ := {g ∈ G | 0 ≤ g} [7]. If G+ generates G as an abelian group,

that is, ifG =G+−G+, thenG is said to be directed. A subset F ofG+ is cone gen-

erating if and only if every element of G+ is a sum of a finite sequence of (not

necessarily distinct) elements of F . Various definitions of “Archimedean” can

be found in the literature. We use the following [7, page 20]: G is Archimedean

if and only if, for a,b ∈ G, the condition na ≤ b for every positive integer n
implies that a≤ 0.

If G is a partially ordered abelian group and u ∈ G+, we define the interval

E :=G+[0,u] := {g ∈G | 0≤ g ≤u}. Thus E forms a bounded partially ordered

set under the restriction of the partial order ≤ on G to E. The interval E can be

organized into an effect algebra under the partial binary operation ⊕ obtained

by restriction of + to E. For the details see [1, 5].

An element u∈G+ is called an order unit if and only if each element of G is

dominated by a positive integer multiple of u [7, page 4]. A unital group [2] is a

partially ordered abelian group G with a specified order unit u, called the unit,

such that the interval E :=G+[0,u], called the unit interval, is cone generating.
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If G is a unital group with unit u, then G is directed, and G �= {0}�u �= 0. If G
is directed, u ∈ G+, and G+[0,u] is cone generating, then G is a unital group

with unit u.

If G is a unital group with unit interval E, and if K is an abelian group,

then a mapping φ : E → K is called a K-valued measure on E if and only if

p,q,p+q ∈ E ⇒φ(p+q) =φ(p)+φ(q). For instance, if Φ : G→ K is a group

homomorphism, then the restriction φ := Φ|E of Φ to E is a K-valued measure

on E. If every K-valued measure on E is the restriction to E of a group ho-

momorphism from G to K, then G is called a K-unital group. A unigroup is a

unital group that is K-unital for every abelian group K [5, 6].

Let G and H be unital groups with unit intervals E and L, respectively, and

units u and v , respectively. A mappingφ : E→ L is an effect-algebra morphism

[5, Definition 6.1] if and only if φ(u)= v and, regarded as a mapping φ : E →
H, it is an H-valued measure. Let φ : E → L be an effect-algebra morphism.

If pi ∈ E, ki are nonnegative integers for i = 1,2, . . . ,n, and
∑n
i=1kipi ∈ E,

then φ(
∑n
i=1kipi) =

∑n
i=1kiφ(pi) ∈ L. If φ : E → L is a bijective effect-algebra

morphism and φ−1 : L→ E is also an effect-algebra morphism, then φ : E → L
is an effect-algebra isomorphism.

We use the usual notation R, Q, and Z for the ordered field of real num-

bers, the ordered field of rational numbers, and the ordered ring of integers,

respectively. Thus, the standard positive cone in R is R+ := {x2 | x ∈ R} and

the standard positive cones in Q and Z are Q+ :=Q∩R+ and Z+ := Z∩Q+. We

often disregard the multiplicative structures of R, Q, and Z and regard them

as partially ordered additive abelian groups. As such, and with 1 as the unit,

R, Q, and Z provide examples of unigroups.

Let G �= {0} be a unital group with unit u and unit interval E. Then a state for

G is a group homomorphism ω :G→R such that ω(G+)⊆ R+ and ω(u)= 1.

The set of all states for G, called the state space of G, is denoted byΩ(G). By [7,

Corollary 4.4, Proposition 6.2], Ω(G) is a nonempty compact convex subset of

the locally convex Hausdorff linear topological space RG with the topology of

pointwise convergence. Ifω∈Ω(G) andω(G)⊆Q, thenω is called aQ-valued

state. Evidently, ω∈Ω(G) is Q-valued if and only if ω(E)⊆Q+. A probability

measure on E is an R-valued measure π on E such that π(E)⊆ [0,1]⊆R and

π(u)= 1. The restriction to E of a state ω∈Ω(G) is a probability measure on

E. If G is R-unital, then each probability measure π on E is the restriction to

E of a uniquely determined state ω∈Ω(G).
Let ∆ ⊆ Ω(G). Then ∆ is said to be strictly positive if and only if, for each

0 �= p ∈ G+, there exists ω ∈ ∆ with 0 < ω(p). If ω ∈ Ω(G), and {ω} is

strictly positive, we say that ω is a strictly positive state. If G+ = {p ∈ G |
0≤ω(p) for all ω∈∆}, then ∆ is said to be cone determining. By [7, Theorem

4.14], G is Archimedean if and only if Ω(G) is cone determining. By defini-

tion, ∆ is separating if and only if, for all g �= 0 ∈ G, there exists ω ∈ ∆ with

ω(g) �= 0.
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If r is a positive integer, we understand that Rr , Qr , and Zr are organized

into additive abelian groups with coordinatewise operations. The standard par-

tial order for each of these groups is the coordinatewise partial order deter-

mined by the standard total orders on R, Q, and Z, and the corresponding

standard positive cones are (R+)r , (Q+)r , and (Z+)r .

With the standard partial order, Zr forms the so-called simplicial group

[7, page 47]. As a simplicial group, Zr is an Archimedean lattice-ordered

group with the smallest order unit, namely (1,1, . . . ,1). An element v ∈ (Z+)r
is an order unit if and only if all of its coordinates are strictly positive. If v

is an order unit in the simplicial group Zr , then the unit interval (Z+)r [0,v]
forms a finite MV-algebra [4]. Conversely, every finite MV-algebra has this

form. If v = (1,1, . . . ,1), then (Z+)r [0,v] is isomorphic to the finite Boolean

algebra 2r .

This paper is focused on the study of a unital group G with a finite unit

interval E and on the question of just when G is Archimedean (i.e., carries a

cone-determining set of states). If G carries a cone-determining set of states,

then it is clear that G is torsion-free, that is, 0 is the only element of finite

order in G, so in Sections 4 and 5 we will be paying special attention to the

torsion-free case. If G �= {0} is a unital group with a finite unit interval E, then

there are atoms (minimal nonzero elements) in E, and every nonzero element

in E dominates at least one atom. Thus, we will be working with the following

data.

1.1. Standing assumptions and notation. For the remainder of this paper,

G is a unital group with unit u �= 0 and with a finite unit interval E =G+[0,u].
The distinct atoms in E are denoted by a1,a2, . . . ,an.

By [2, Lemma 5.1], the finite set {a1,a2, . . . ,an} ⊆ E ⊆G+ is cone generating,

and since G is directed, {a1,a2, . . . ,an} is a finite set of generators for the

abelian group G. By the fundamental theorem for finitely generated abelian

groups, the torsion subgroup Gτ of G is finite and G is a direct sum of Gτ and

a torsion-free subgroup H ⊆ G of finite rank r > 0. If η : G→H is the natural

projection homomorphism with ker(η)=Gτ , then by [2, Theorem 4.1]H can be

organized into a unital group with unit η(u), with positive cone H+ = η(G+),
and with a finite unit interval L. Moreover, there is an affine isomorphismω�
ω̃ from Ω(G) onto Ω(H) such that ω = ω̃ ◦η for all ω ∈ Ω(G). As H is a

torsion-free group of finite rank r , there is a group isomorphism φ : H → Zr

and, by [3, Lemma 3.2], φ can be chosen in such a way that φ(H+)⊆ (Z+)r . By

[2, Lemma 3.5], the set of Q-valued states on H is separating.

2. The canonical surjection ξ. In this section, we introduce a surjective

order-preserving group homomorphism ξ from the simplicial group Zn onto

the unital group G. Recall that if Z is a free abelian group, B ⊂ Z is a free basis

for Z , K is an abelian group, and f : B→K is a function, then there is a unique

group homomorphism φ : Z →K that agrees with f on B.
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Definition 2.1. Let d1 = (1,0, . . . ,0),d2 = (0,1, . . . ,0), . . . ,dn = (0,0, . . . ,1)
be the standard free basis for the additive abelian group Zn. Define the canoni-

cal surjection ξ : Zn→G to be the uniquely determined group homomorphism

ξ : Zn→G such that ξ(di)= ai for i= 1,2, . . . ,n.

Lemma 2.2. (i) If x= (x1,x2, . . . ,xn)∈ Zn, then ξ(x)=∑n
i=1xiai.

(ii) The mapping ξ : Zn→G satisfies G+ = ξ((Z+)n).
(iii) The mapping ξ : Zn→G satisfies G = ξ(Zn).
(iv) The mapping ξ : Zn→G is a surjective order-preserving group homomor-

phism and its kernel satisfies the condition ker(ξ)∩(Z+)n = {0}.
Proof. Part (i) follows immediately from Definition 2.1. Part (ii) follows

from (i) and the fact that {a1,a2, . . . ,an} is a cone-generating set. Part (iii)

follows from (ii) and the fact that G is directed. To prove (iv), we begin by

observing that the group homomorphism ξ : Zn → G is order preserving by

(ii) and surjective by (iii). Suppose x = (x1,x2, . . . ,xn) ∈ ker(ξ)∩ (Z+)n. Then∑n
i=1xiai = 0 and 0≤ xi for i= 1,2, . . . ,n. Since xiai ∈G+ for i= 1,2, . . . ,n, it

follows that xiai = 0 for i = 1,2, . . . ,n. Therefore, since 0 �= ai ∈ G+, we have

xi = 0 for i= 1,2, . . . ,n.

Definition 2.3. Define T := ξ−1(u)∩(Z+)n. Vectors t∈ T are called multi-

plicity vectors for G (cf. [2, Definition 5.2]). Define D to be the subgroup of Zn

generated by the set of all differences t−s for t,s ∈ T , let G∗ be the quotient

group Zn/D, and let ξ∗ : Zn → G∗ be the natural surjective group homomor-

phism with ker(ξ∗)=D.

Lemma 2.4. (i) If s,t∈ T , then s≤ t⇒ s= t.

(ii) The set T is finite and nonempty.

(iii) If x∈ (Z+)n, then ξ(x)∈ E� ∃t∈ T , x≤ t.

Proof. (i) If s,t ∈ T and s ≤ t, then t− s ∈ ker(ξ)∩ (Z+)n, so s = t by

Lemma 2.2(iv).

(ii) By (i), T forms an antichain in the positive cone (Z+)n of the simplicial

group Zn, hence T is a finite set [8].

(iii) Let x ∈ (Z+)n. If t ∈ T and x ≤ t, then 0 ≤ ξ(x) ≤ ξ(t) = u, so ξ(x) ∈ E.

Conversely, suppose ξ(x) ∈ E. Then u−ξ(x) ∈ G+, so there exists y ∈ (Z+)n
with ξ(y)=u−ξ(x). Therefore, x+y∈ (Z+)n with ξ(x+y)=u, and it follows

that t := x+y∈ T with x≤ t.

Definition 2.5. Let T = {t1,t2, . . . ,tm}. Then the m×n matrix [tij] with

t1,t2, . . . ,tm as its successive row vectors is called the multiplicity matrix for

G. The m× (n+ 1) matrix M obtained by appending a final column to the

matrix [tij] consisting entirely of −1’s is called the relation matrix for G (cf.

[2, Definition 5.3]).

The relation matrix M encodes m fundamental relations
∑n
j=1 tijaj−u = 0

for i = 1,2, . . . ,m satisfied by the generators aj for G and the unit u (see [2,

Theorem 5.4]).
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Theorem 2.6. (i) rank(T)= rank(M).
(ii) rank(G)+rank(T)≤n+1.

(iii) If G is torsion-free, then G is R-unital if and only if rank(G)+rank(T)=
n+1.

Proof. We will prove that the last column of M is a rational linear com-

bination of its first n columns, from which (i) follows. There is a Q-valued

state ω ∈ Ω(G). Let qj := −ω(aj) for j = 1,2, . . . ,n. As
∑n
i=1 tijaj = u for

i = 1,2, . . . ,m, we have
∑n
i=1 tijqj = −ω(u) = −1 for i = 1,2, . . . ,m. Parts (ii)

and (iii) now follow from [2, Theorem 5.6].

Theorem 2.7. The abelian group G∗ can be organized into a unigroup with

unit u∗ := ξ∗(t), independent of the choice of t ∈ T , and with positive cone

(G∗)+ := ξ∗((Z+)n). Then there is an effect-algebra isomorphism p� p∗ from

E onto the unit interval E∗ := (G∗)+[0,u∗], and ξ∗ is the canonical surjection

for G∗. Moreover, there is a surjective order-preserving group homomorphism

β :G∗ →G such that β((G∗)+)=G+, β(p∗)= p for all p ∈ E, and ξ = β◦ξ∗.

Proof. Evidently,D⊆ ker(ξ), whenceD∩(Z+)n = {0} by Lemma 2.2(iv), so

G∗ can be organized into a partially ordered abelian group with positive cone

(G∗)+ := ξ∗((Z+)n). Since the simplicial group Zn is directed and ξ∗ : Zn→G∗
is a surjective order-preserving group homomorphism, it follows that G∗ is

directed. Clearly, u∗ := ξ∗(t) is independent of the choice of t ∈ T , whence

u∗ ∈ (G∗)+.

We claim that if x∈ (Z+)n, then

ξ(x)∈ E⇐⇒ ξ∗(x)∈ E∗. (2.1)

To prove (2.1), suppose x∈ (Z+)n. If ξ(x)∈ E, then by Lemma 2.4(iii) there ex-

ists t∈ T with x≤ t, whence 0≤ ξ∗(x)≤ ξ∗(t)=u∗, so ξ∗(x)∈ (G∗)+[0,u∗]=
E∗. Conversely, if ξ∗(x) ∈ E∗, there exists y ∈ (Z+)n such that u∗ −ξ∗(x) =
ξ∗(y), whence ξ∗(x+y)= ξ∗(t) for any choice of t∈ T , x+y−t∈D⊆ ker(ξ),
and ξ(x)+ξ(y)= ξ(t)=u. Therefore, ξ(x)∈ E, and (2.1) follows.

For each i = 1,2, . . . ,n, we have di ∈ (Z+)n with ξ(di) = ai ∈ E, whence by

(2.1), ξ∗(di)∈ E∗. Since (Z+)n is the set of all linear combinations of d1,d2, . . . ,
dn with nonnegative integer coefficients, it follows that {ξ∗(di) | i= 1,2, . . . ,n}
is a finite cone-generating subset of E∗ in G∗. Therefore, u∗ is an order unit

in (G∗)+ and G∗ is a unital group with unit u∗ and unit interval E∗.

We claim that if x,y∈ (Z+)n, then

ξ(x)= ξ(y)∈ E⇐⇒ ξ∗(x)= ξ∗(y)∈ E∗. (2.2)

To prove (2.2), suppose x,y ∈ (Z+)n. If ξ(x) = ξ(y) ∈ E, then there exists z ∈
(Z+)n such that u− ξ(x) = ξ(z), whence x+ z ∈ T and likewise y+ z ∈ T ,

so x−y = (x+ z)− (y+ z) ∈ D = ker(ξ∗), and ξ∗(x) = ξ∗(y) ∈ E∗ by (2.1).
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Conversely, if ξ∗(x)= ξ∗(y)∈ E∗, then x−y∈ ker(ξ∗)=D⊆ kerξ, so ξ(x)=
ξ(y)∈ E by (2.1), proving (2.2).

If p ∈ E, we define p∗ ∈ E∗ as follows: choose x∈ (Z+)n with p = ξ(x) and

let p∗ := ξ∗(x). By (2.2), p∗ is well defined and the mapping ∗ : E → E∗ given

by p� p∗ is a bijection. Evidently, this notation is consistent with u∗ = ξ∗(t),
t∈ T , as defined previously. Because ker(ξ∗)=D⊆ ker(ξ), there is a uniquely

determined surjective group homomorphism β : G∗ → G such that β◦ξ∗ = ξ.

Clearly, β((G∗)+) = ξ((Z+)n) = G+, so β is order preserving. If h ∈ E∗, there

exists x ∈ (Z+)n with h = ξ∗(x), whence β(h) = β(ξ∗(x)) = ξ(x) ∈ E by (2.1)

and (β(h))∗ = ξ∗(x) = h. If p ∈ E, there exists x ∈ (Z+)n with p = ξ(x) ∈ E,

whence p∗ = ξ∗(x) ∈ E∗ with β(p∗) = β(ξ∗(x)) = ξ(x) = p. Therefore, the

restriction β|E∗ of β to E∗ is a bijective effect-algebra morphism of E∗ onto E
with ∗ : E→ E∗ as its inverse.

Suppose p,q,p+q ∈ E and choose x,y∈ (Z+)n with p = ξ(x) and q = ξ(y).
Then x+y ∈ (Z+)n with ξ(x+y) = p+q ∈ E. Therefore, (p+q)∗ = ξ∗(x+
y) = ξ∗(x)+ ξ∗(y) = p∗ + q∗, so ∗ : E → E∗ is an effect-algebra morphism.

Consequently, both ∗ : E → E∗ and its inverse β|E∗ : E∗ → E are effect-algebra

isomorphisms.

Because ∗ : E→ E∗ is an effect-algebra isomorphism, the atoms in E∗ are a∗i
for i = 1,2, . . . ,n. Also, ξ∗(di) = a∗i for i = 1,2, . . . ,n, and it follows that ξ∗ is

the canonical surjection for G∗.

To prove that G∗ is a unigroup, suppose that K is an abelian group and φ :

E∗ →K is a K-valued measure. Define Φ : Zn→K to be the unique group homo-

morphism such that Φ(di)=φ(a∗i ) for i= 1,2, . . . ,n. Suppose t= (t1, t2, . . . , tn)
∈ T . Thus, u = ∑n

i=1 tiai, whence u∗ = ∑n
i=1 tia

∗
i , and since φ is a K-valued

measure, φ(u∗) = ∑n
i=1 tiφ(a

∗
i ) =

∑n
i=1 tiΦ(di) = Φ(

∑n
i=1 tidi) = Φ(t). There-

fore, if t,s∈ T , we have Φ(t−s)=φ(u∗)−φ(u∗)= 0, so ker(ξ∗)=D⊆ ker(Φ),
and it follows that there exists a group homomorphism φ∗ : G∗ → K such

that φ∗ ◦ ξ∗ = Φ. Consequently, φ∗(a∗i ) = φ∗(ξ∗(di)) = Φ(di) = φ(a∗i ) for

i = 1,2, . . . ,n. Since every element in E∗ is a linear combination of the atoms

a∗i with nonnegative integer coefficients and φ is a K-valued measure, it fol-

lows that the group homomorphism φ∗ agrees with φ on E∗.

Corollary 2.8. The unital group G is a unigroup if and only if ker(ξ)⊆D.

The unigroup G∗ in Theorem 2.7 is uniquely determined (up to an isomor-

phism of unital groups) by the structure of the effect algebra E, and it is called

the unigroup for the effect algebra E [1]. As can be seen from the proof of

Theorem 2.7, the structure of G∗ is encoded in the set T of multiplicity vec-

tors, hence it is implicit in the canonical surjection ξ.

3. Q-valued states. We maintain the assumptions and notation of Section

1.1 and Definition 2.3. In this section, we establish a bijective correspondence

ω ↔ ω̄ between Q-valued states ω ∈ Ω(G) and surjective order-preserving
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group homomorphisms ω̄ : G→ Z, and we use the mapping ω� ω̄ to define

an order-preserving group homomorphism ρ from G into a simplicial group

Zκ .

By [3, Theorem 5.3], the state spaceΩ(G) is a polytope and its set of extreme

points ∂e(Ω(G)) is a finite set of Q-valued states. A state ω∈Ω(G) is said to

be dispersion free if and only if it takes on only the values 0 and 1 on the

unit interval E = G+[0,u]. Every dispersion-free state ω ∈ Ω(G) belongs to

∂e(Ω(G)).

Notation 3.1. Let {ω1,ω2, . . . ,ωκ} := ∂e(Ω(G)) be the set of extreme

points of the polytope Ω(G).

Lemma 3.2. Let φ : G → Q be a group homomorphism and assume that

φ(G+)⊆Q+ (i.e., φ is order preserving). Then

(i) 0 < φ(u) if and only if there is at least one i ∈ {1,2, . . . ,n} with 0 <
φ(ai);

(ii) φ(u)= 0 if and only if φ is the zero homomorphism;

(iii) if φ(u) �= 0, then ω : G→Q defined by ω := (1/φ(u))φ is a Q-valued

state.

Proof. (i) If 0 < φ(ai), then the fact that ai ≤ u implies 0 < φ(ai) ≤
φ(u). Conversely, suppose 0 < φ(u) and let t = (t1, t2, . . . , tn) ∈ T . Then u =∑n
i=1 tiai, whence 0 < φ(u) = ∑n

i=1 tiφ(ai), and it follows that at least one

φ(ai) must be strictly positive.

(ii) Suppose φ(u) = 0. Then φ(ai) = 0 for i = 1,2, . . . ,n by (i) and, since

{a1,a2, . . . ,an} is a set of generators for G, it follows that φ is the zero homo-

morphism. The converse is obvious.

(iii) Suppose φ(u) �= 0. Then ω = (1/φ(u))φ is a group homomorphism

from G to Q, ω(G+)⊆Q+, and ω(u)= 1.

Lemma 3.3. Let ζ : G → Z be a group homomorphism. Then the following

conditions are mutually equivalent:

(i) ζ(G)= Z;

(ii) ζ−1(1) �= ∅;

(iii) the nonzero integers in the list ζ(a1),ζ(a2), . . . ,ζ(an) are relatively

prime.

Proof. (i)�(ii). Obviously (i)⇒(ii). Conversely, if (ii) holds, there exists g1 ∈
G with ζ(g1)= 1, whence ζ(kg1)= kζ(g1)= k and ζ(G)= Z.

(ii)�(iii). Suppose (ii) holds, so there exists g1 ∈ G with ζ(g1) = 1. Because

{a1,a2, . . . ,an} is a set of generators forG, there are integers x1,x2, . . . ,xn such

that g1 =
∑n
i=1xiai, whence 1 = ∑n

i=1xiζ(ai), and (iii) follows. Conversely,

if (iii) holds, there are integers x1,x2, . . . ,xn such that 1 = ∑n
i=1xiζ(ai) and

g1 :=∑n
i=1xiai ∈ ζ−1(1).

Definition 3.4. Suppose that φ : G → Q is a nonzero group homomor-

phism such that φ(G+)⊆Q+. We define the group homomorphism φ̄ :G→Q
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as follows: 0 ≤ φ(ai) for i = 1,2, . . . ,n and 0 < φ(ai) for at least one i by

Lemma 3.2. Write the strictly positive rational numbers in the listφ(a1),φ(a2),
. . . ,φ(an) as reduced fractions, let q > 0 be the least common multiple of the

denominators of the positive fractions in the list, and let p > 0 be the greatest

common divisor of the positive integers in the list qφ(a1),qφ(a2), . . . ,qφ(an).
Define φ̄ :G→Q by φ̄(g) := (q/p)φ(g) for all g ∈G.

Lemma 3.5. Let φ : G → Q be a nonzero group homomorphism such that

φ(G+)⊆Q+. Then

(i) φ̄ : G → Z is a surjective group homomorphism, φ̄(G+) ⊆ Z+, and 0 <
φ̄(u);

(ii) ω := (1/φ̄(u))φ̄ is a Q-valued state for G;

(iii) if ω= (1/φ̄(u))φ̄, then ω̄= φ̄;

(iv) φ̄=φ if and only if φ(G)= Z.

Proof. (i) By our choices of q and p in Definition 3.4, φ̄(ai) ∈ Z+ for i =
1,2, . . . ,m, at least one of these integers is positive, and the positive integers

are relatively prime. Because {a1,a2, . . . ,an} is a cone-generating set in G and

φ̄(ai)∈ Z+ for i= 1,2, . . . ,n, we have φ̄(G+)⊆ Z+, whence, since G is directed,

φ̄(G)⊆ Z. By Lemma 3.3, φ̄(G)= Z, and by Lemma 3.2, 0< φ̄(u).
(ii) That ω= (1/φ̄(u))φ̄ is a Q-valued state follows from Lemma 3.2(iii).

(iii) We have ω(ai) = φ̄(ai)/φ̄(u) for i = 1,2, . . . ,n, and the nonzero nu-

merators of these fractions are relatively prime, whence q̄ := φ̄(u) is the

least common multiple of denominators of the positive fractions in the list

ω(a1),ω(a2), . . . ,ω(an), and p̄ := 1 is the greatest common divisor of the

positive integers in the list q̄ω(a1), q̄ω(a2), . . . , q̄ω(an). Therefore, ω̄(ai) =
(q̄/p̄)ω(ai)= φ̄(ai) for i= 1,2, . . . ,n and, since {a1,a2, . . . ,an} is a set of gen-

erators for the group G, it follows that ω̄= φ̄.

(iv) If φ̄ = φ, then φ(G) = φ̄(G) = Z by (i). Conversely, suppose φ(G) = Z.

Then φ(ai) ∈ Z+ for i = 1,2, . . . ,n and by Lemma 3.3 the positive integers

in the list φ(a1),φ(a2), . . . ,φ(an) are relatively prime. Hence, p = q = 1 in

Definition 3.4, and we have φ̄=φ.

Theorem 3.6. The mappingω� ω̄ is a bijection from the set of allQ-valued

states onG onto the set of all surjective order-preserving group homomorphisms

ζ :G→ Z.

Proof. If ω ∈ Ω(G) and ω(G) ⊆ Q, then ω̄ : G → Z is a surjective order-

preserving group homomorphism by Lemma 3.5(i). Let ζ : G → Z be a sur-

jective order-preserving group homomorphism. By Lemma 3.2, 0 < ζ(u) and

ω := (1/ζ(u))ζ is a Q-valued state on G. By Lemma 3.5(iv), ζ̄ = ζ, so by

Lemma 3.5(iii), ω̄ = ζ. We have only to prove that the mapping ω � ω̄ is

injective on the set of Q-valued states. Thus, suppose ω is a Q-valued state

on G and ζ = ω̄. Then, by Definition 3.4, there is a positive rational number

λ such that ζ = λω, and it follows that ζ(u) = λω(u) = λ · 1 = λ, whence

ω= (1/ζ(u))ζ is uniquely determined by ζ.
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Evidently, a stateω∈Ω(G) is dispersion free if and only ifω(G)⊆ Z. Thus,

in Theorem 3.6, the dispersion-free states (if any) onG are exactly theQ-valued

states ω∈Ω(G) such that ω̄=ω.

Definition 3.7. Since the extreme points ω1,ω2, . . . ,ωκ of Ω(G) are Q-

valued states, we can define ω̄i :=ωi for i= 1,2, . . . ,κ. The mapping ρ :G→ Zκ
is defined by ρ(g) := (ω̄1(g),ω̄2(g), . . . ,ω̄κ(g)) for all g ∈ G. We also define

v := ρ(u)∈ Zκ .

Theorem 3.8. (i) The mapping ρ : G → Zκ is a group homomorphism and

ρ(G+)⊆ (Z+)κ .

(ii) The element v = (ω̄1(u),ω̄2(u), . . . ,ω̄κ(u)) ∈ (Z+)κ is an order unit in

the simplicial group Zκ .

(iii) With the standard positive cone (Z+)κ and with v as unit, the simplicial

group Zκ is a unigroup with unit interval (Z+)κ[0,v].
(iv) ker(ρ)= {g ∈G |ω(g)= 0 for all ω∈Ω(G)}.
(v) As an abelian group, G is torsion-free if and only if ρ :G→ Zκ is an injec-

tion.

Proof. (i) Clearly ρ is a group homomorphism and, since each ω̄i maps

G+ into Z+, it follows that ρ(G+)⊆ (Z+)κ .

(ii) We have 0< ω̄1(u),ω̄2(u), . . . ,ω̄κ(u), so all coordinates of the vector v

are strictly positive, and it follows that v is an order unit in (Z+)κ .

(iii) The standard free basis vectors

(1,0,0, . . . ,0),(0,1,0, . . . ,0),(0,0,1, . . . ,0), . . . ,(0,0,0, . . . ,1) (3.1)

belong to (Z+)κ[0,v] and they form a set of generators for the positive cone

(Z+)κ . Therefore, Zκ is a unital group with unit v. Since the simplicial group

Zκ is lattice ordered and v is an order unit, Zκ is a unigroup with unit v.

(iv) Let g ∈ G. Then ρ(g) = 0 if and only if ω̄i(g) = 0 for i = 1,2, . . . ,κ if

and only if ωi(g) = 0 for i = 1,2, . . . ,κ. But, since every ω ∈Ω(G) is a convex

combination ofω1,ω2, . . . ,ωκ , it follows thatωi(g)= 0 for i= 1,2, . . . ,κ if and

only if ω(g)= 0 for all ω∈Ω.

(v) Suppose G is torsion-free and let 0 �= g ∈G. By [3, Lemma 3.2], there is a

group isomorphism φ : G→ Zr such that φ(G+) ⊆ (Z+)r , hence by [2, Lemma

3.5] there is a Q-valued state ω ∈ Ω(G) with ω(g) �= 0, so g �∈ kerρ by (iv).

Therefore, if G is torsion-free, then ρ is injective. Conversely, suppose ρ is

injective, k is a positive integer, g ∈ G, and kg = 0. Then kρ(g) = 0 ∈ Zκ , so

ρ(g)= 0, and therefore g = 0. Consequently, G is torsion-free.

In Theorem 3.8, the unit interval (Z+)κ[0,v] is an MV-algebra and the re-

striction ρ|E of ρ to E is an effect-algebra morphism of E into (Z+)κ[0,v].

4. The canonical injection ρ. We now begin to focus on the question of

just when G is Archimedean. If G is Archimedean, then G is torsion-free, so

in this section and the next one we will adopt as a standing hypothesis the



2796 DAVID J. FOULIS

assumption that G is torsion-free. Thus, by [3, Lemma 3.3], we can cast our

standing hypothesis as follows.

Standing assumptions and notation. In this section and the next one,

we assume that r is a positive integer, G = Zr as an additive abelian group, G is

a unital group with unit u = (u1,u2, . . . ,ur ), G+ ⊆ (Z+)r , and the unit interval

E =G+[0,u] is finite. The atoms in E are denoted by a1,a2, . . . ,an.

All of the previous results are applicable to the unital group G, and now

we have the advantage of a representation of the elements of G as vectors

in Zr in such a way that all vectors in G+ have nonnegative coordinates. By

Theorem 3.8(v), ρ : G → Zκ is an order-preserving injective group homomor-

phism from G into the simplicial group Zκ , whence ρ(G) is a subgroup of Zκ

that is isomorphic (as a group) to G. Also, Zκ is a lattice-ordered unigroup

with unit v = ρ(u) and the restriction ρ|E of ρ to E = G+[0,u] is an injective

effect-algebra morphism of E into the MV-algebra (Z+)κ[0,v].

Definition 4.1. (i) The mapping ρ :G→ Zκ is called the canonical injection.

(ii) The n×r matrix over Z+ with a1,a2, . . . ,an as its successive row vectors

is denoted by A0 = [aij].
(iii) Let e1 = (1,0, . . . ,0),e2 = (0,1, . . . ,0), . . . ,er = (0,0, . . . ,1) be the standard

free basis vectors for the abelian group Zr .

(iv) Because a1,a2, . . . ,an generate the group G, there are (not necessarily

uniquely determined) integers cij for i= 1,2, . . . ,r and j = 1,2, . . . ,n such that

ei =
∑n
j=1 cijaj . Let C be the r ×n matrix C := [cij].

(v) For j = 1,2, . . . ,r , let πj : Zr → Z be the projection homomorphism onto

the jth coordinate.

The rows of the matrix A0 are the n atoms in the unit interval E =G+[0,u].
The canonical surjection ξ : Zn → G = Zr is given by the formula ξ(x1,x2, . . . ,
xn) = (x1,x2, . . . ,xn)A0, and (t1, t2, . . . , tn) ∈ (Z+)n is a multiplicity vector if

and only if (t1, t2, . . . , tn)A0 = (u1,u2, . . . ,ur ). The r ×n matrix C over Z is a

left inverse for A0, that is, CA0 = 1r = the r×r identity matrix. Therefore, for

each j = 1,2, . . . ,r , we have
∑n
i=1 cjiaij = 1, whence the nonzero integers in the

jth row of the matrix C are relatively prime, as are the positive integers in the

jth column of A0.

If 1≤ j ≤ r , the projection homomorphism πj :G→ Z is surjective and, ow-

ing to the fact thatG+ ⊆ (Z+)r , we haveπj(G+)⊆ Z+. Therefore, by Lemma 3.2,

there exists i with 1 ≤ i ≤ n such that πj(ai) = aij > 0, that is, there is at

least one strictly positive integer in the jth column of A0. Also, by Lemma 3.2,

πj(u)=uj > 0 and, by Theorem 3.6, there is a uniquely determined Q-valued

state γj ∈ Ω(G) such that γj = πj . Evidently, γj = (1/uj)πj . The Q-valued

states γ1,γ2, . . . ,γr , which correspond to the columns of the matrix A0, form a

separating set of states for G.

Lemma 4.2. Every state ω ∈ Ω(G) is a unique affine linear combination of

the states γj := (1/uj)πj for j = 1,2, . . . ,r .
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Proof. For i,j = 1,2, . . . ,r , we have γj(ei) = (1/uj)πj(ei) = (1/uj)δij ,
where δij is the Kronecker delta. Letω∈Ω(G) and let si :=uiω(ei)=ω(uiei)
for i = 1,2, . . . ,r . Then

∑r
i=1 si = ω(u) = 1. Also φ := ∑r

j=1 sjγj is a group

homomorphism φ : G → R, and φ(ei) =
∑r
i=1(sj/uj)δij = si/ui = ω(ei) for

i= 1,2, . . . ,r . Since the group homomorphismsφ andω agree on the free basis

e1,e2, . . . ,er for G, it follows that ω=φ, and ω is an affine linear combination

of the states γj for j = 1,2, . . . ,r . To prove that the coefficients are uniquely

determined by ω, suppose ω =∑r
j=1hjγj with hj ∈ R for j = 1,2, . . . ,r . Then

ω(ei)=
∑r
j=1hj(1/uj)δij = hi/ui, whence hi = si for i= 1,2, . . . ,r .

Since {ai | i = 1,2, . . . ,n} is a finite set of generators for G, it follows that

{ρ(ai) | i= 1,2, . . . ,n} is a finite set of generators for ρ(G)⊆ Zκ . This observa-

tion brings us to our next definition.

Definition 4.3. (i) Let wi := ρ(ai) = (ω̄1(ai),ω̄2(ai), . . . ,ω̄κ(ai)) ∈ Zκ for

i= 1,2, . . . ,n.

(ii) Let W := [wij] be the n×κ matrix with the vectors w1,w2, . . . ,wn as its

successive rows.

(iii) Let P = [pij] be the r ×κ matrix over Z given by the product P := CW .

Since 0 ≤ ai ≤ u for i = 1,2, . . . ,n, it follows that 0 ≤ ρ(ai) ≤ ρ(u), whence

wi ∈ (Z+)κ[0,v] for i= 1,2, . . . ,n. By Definition 4.3(ii),

wij = ω̄j
(
ai
)

for i= 1,2, . . . ,n, j = 1,2, . . . ,κ. (4.1)

The columns of the matrixW correspond to the extreme pointsω1,ω2, . . . ,ωκ

of Ω(G) and its row vectors wi, i = 1,2, . . . ,n, generate the subgroup ρ(G) of

Zκ . By part (ii) of Theorem 4.4, the canonical injection ρ corresponds to right

multiplication of vectors in G = Zr by the r ×κ matrix P . By part (v) of the

theorem, the columns of the matrix P = CW are coefficients of homogeneous

linear inequalities over Z that must be satisfied by vectors in the positive cone

G+.

Theorem 4.4. Let y= (y1,y2, . . . ,yr )∈G = Zr . Then

(i) ω̄j(y)=
∑r
i=1yipij for j = 1,2, . . . ,κ;

(ii) ρ(y)= yP ;

(iii) ρ(y)∈ (Z+)κ� 0≤∑r
i=1pijyi for j = 1,2, . . . ,κ;

(iv) ρ(y)∈ (Z+)κ� 0≤ω(y) for all ω∈Ω(G);
(v) y∈G+ ⇒ 0≤∑r

i=1pijyi for j = 1,2, . . . ,κ.

Proof. (i) We have y = ∑r
i=1yiei =

∑r
i=1yi

∑n
k=1 cikak, whence, for j = 1,

2, . . . ,κ,

ω̄j(y)=
r∑
i=1

n∑
k=1

yicikω̄j
(
ak
)= r∑

i=1

yi
n∑
k=1

cikwkj =
r∑
i=1

yipij. (4.2)

Parts (ii) and (iii) follow from (i) and the definition of ρ.
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(iv) Suppose ρ(y) ∈ (Z+)κ . Then 0 ≤ ω̄i(y), so 0 ≤ωi(y) for i = 1,2, . . . ,κ.

If ω∈Ω(G), then ω is a convex combination of ω1,ω2, . . . ,ωκ , and it follows

that 0 ≤ω(y). Conversely, if 0 ≤ω(y) for all ω ∈ Ω(G), then 0 ≤ωi(y), so

0≤ ω̄i(y) for i= 1,2, . . .κ, whence ρ(y)∈ (Z+)κ .

(v) It follows from (iii) and the fact that ρ(G+)⊆ (Z+)κ .

5. The Archimedean property. We maintain the hypotheses and notation

of Section 4. The canonical surjection ξ and the canonical injection ρ are order-

preserving group homomorphisms

Zn
ξ
������������������������������→G ρ

���������������������������������→ Zκ (5.1)

that link the torsion-free unital group G with the simplicial groups Zn and Zκ

and that satisfy

di
ξ� �→ ai

ρ� �→wi for i= 1,2, . . . ,n (5.2)

as well as

G+ = ξ((Z+)n), ρ
(
G+
)⊆ (Z+)κ∩ρ(G). (5.3)

As attractive as the setup in (5.1), (5.2), and (5.3) may be, there is an obvious

asymmetry in (5.3). Indeed, although ξ determines the positive cone in G via

G+ = ξ((Z+)n), ρ does not necessarily determineG+. For symmetry, one would

like to have

G+ = ρ−1((Z+)κ). (5.4)

Evidently, (5.4) holds if and only if the inclusion in (5.3) is an equality, that is,

if and only if

ρ
(
G+
)= (Z+)κ∩ρ(G), (5.5)

and condition (5.5) is equivalent to the requirement that, for a,b∈G,

a ≤ b in G⇐⇒ ρ(a)≤ ρ(b) in the simplicial group Zκ. (5.6)

The image ρ(G) of G under ρ is the subgroup of Zκ generated by the vectors

w1,w2, . . . ,wn, and it can be organized into a partially ordered abelian group

in either of the following two natural ways.

(i) Use the restriction to ρ(G) of the partial order on the simplicial group

Zκ . In this case, the positive cone for ρ(G) is the induced positive cone (ρ(G))+

= ρ(G)∩(Z+)κ .

(ii) Partially order ρ(G) with the subcone (ρ(G))+ = ρ(G+) of the induced

positive cone ρ(G)∩ (Z+)κ as its positive cone. In this case, ρ(G) is a unital

group with unit v = ρ(u) and is isomorphic as a unital group to G under ρ :

G→ ρ(G).
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The equivalent conditions (5.4), (5.5), and (5.6) are themselves equivalent

to the requirement that these two partial orders are the same. By the follow-

ing theorem, all of these conditions are equivalent to the condition that G is

Archimedean, or equivalently, that Ω(G) is cone determining.

Theorem 5.1. The following conditions are mutually equivalent:

(i) G+ = ρ−1((Z+)κ);
(ii) G is Archimedean;

(iii) Ω(G) is cone determining, that is, G+ = {y ∈ G | 0 ≤ω(y) for all ω ∈
Ω(G)};

(iv) G+ = {(y1,y2, . . . ,yr )∈ Zr | 0≤∑r
i=1pijyi for j = 1,2, . . . ,κ};

(v) the positive cone G+ is determined by a finite system of homogeneous

linear inequalities over Z, that is, there exists an r×s matrix [bij] over Z
such that G+ = {(y1,y2, . . . ,yr )∈ Zr | 0≤∑r

i=1bijyi for j = 1,2, . . . ,s}.
Proof. (i)⇒(ii). Assume that (i) holds. The abelian group G is isomorphic

under ρ :G→ ρ(G) to the subgroup ρ(G) of Zκ . Organize ρ(G) into a partially

ordered abelian group under the restriction to ρ(G) of the standard partial

order on Zκ . Then ρ(G) inherits the Archimedean property from the simplicial

group Zκ . Also, condition (i) is equivalent to the requirement that the isomor-

phism ρ : G → ρ(G) is an isomorphism of partially ordered abelian groups,

whence G acquires the Archimedean property.

(ii)�(iii). Follows from [7, Theorem 4.14].

(iii)�(iv). Follows from parts (iii) and (iv) of Theorem 4.4.

(iv)⇒(i). Follows from Theorem 4.4(iv).

(iv)⇒(v). This is obvious.

(v)⇒(iii). Assume (v) and for j = 1,2, . . . ,s define the group homomorphism

φj : G → Z by φj(y) :=∑r
i=1bijyi for y = (y1,y2, . . . ,yr ) ∈ G = Zr . By (v), we

have φj(G+)⊆ Z+ for j = 1,2, . . . ,s. By dropping all occurrences (if any) of the

zero homomorphism from the list φ1,φ2, . . . ,φs , we can and do assume that

φj �= 0 for j = 1,2, . . . ,s. For j = 1,2, . . . ,s, define φ̄j :=φj as in Definition 3.4.

By Lemma 3.5(i), φ̄j : G → Z is a surjective order-preserving group homomor-

phism for j = 1,2, . . . ,s. Furthermore, by (i), G+ = {y ∈ G | 0 ≤ φ̄j(y) for j =
1,2, . . . ,s}. By Lemma 3.5(ii), νj := (1/φ̄j(u))φ̄j is a Q-valued state in Ω(G) for

j = 1,2, . . . ,s. Therefore, by (i), G+ = {y∈G | 0≤ νj(y) for j = 1,2, . . . ,s}, from

which (iii) follows.

Corollary 5.2. If G is Archimedean, then the restriction ρ|E of ρ to E em-

beds the effect algebra E into the MV-algebra (Z+)κ[0,v] as a subeffect algebra

ρ(E).

To help fix ideas, we present a very simple example with n = 3, r = 2, and

κ = 2 to illustrate some of the ideas developed in this paper.

Example 5.3. Let G = Z2 as an additive abelian group and define ai ∈G for

i= 1,2,3 by a1 := (1,0), a2 := (1,1), and a3 := (1,2). Let ξ : Z3 →G be defined by
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ξ(x1,x2,x3) := ∑3
i=1xiai, and let G+ := ξ((Z+)3) = {(x1+x2+x3,x2+2x3) |

x1,x2,x3 ∈ Z+}. Then G+ +G+ ⊆ G+ and −G+ ∩G+ = {0}, so G can be or-

ganized into a partially ordered abelian group with positive cone G+. Define

u := (3,2) ∈ G. Suppose (y1,y2) ∈ G, choose a positive integer k larger than

both y1−y2 and y2/2, and let x1 := k+y2−y1, x2 := 2k−y2, and x3 = 0. Then

(x1,x2,x3) ∈ (Z+)3 and ξ(x1,x2,x3) = (3k−y1,2k−y2) = k(3,2)− (y1,y2),
whence (y1,y2) ≤ ku. Therefore, u is an order unit in G. By direct computa-

tion, E :=G+[0,u] consists of the eight elements 0, u, a1, a2, a3, u−a1, u−a2,

and u−a3. Also, a1, a2, a3 are the atoms in E, G is a unital group with unit u,

E is the unit interval in G, and ξ : Z3 →G is the canonical surjection.

There are exactly two multiplicity vectors in T = ξ−1(u)∩(Z+)3, namely, t1 :=
(2,0,1) and t2 := (1,2,0). Also ker(ξ) = {x(1,−2,1) | x ∈ Z}, so D = ker(ξ),
and it follows from Corollary 2.8 that G is a unigroup.

We have

A0 =

1 0

1 1

1 2

 , (5.7)

and C =
[

1 0 0
−1 1 0

]
is a left inverse over Z for A0. The state space Ω(G) is one-

dimensional and has two extreme points ω1 and ω2, where ω1(y1,y2) =
(1/4)(2y1−y2) and ω2(y1,y2)=y2/2 for (y1,y2)∈G. Hence,

W =

2 0

1 1

0 2

 , P = CW =
[

2 0

−1 1

]
. (5.8)

Thus, the canonical injection ρ : G → Z2 is given by ρ(y1,y2) = (y1,y2)P =
(2y1 −y2,y2) for (y1,y2) ∈ Z2 = G. The two columns of P encode two ho-

mogeneous linear inequalities that must be satisfied by all (y1,y2) ∈ G+,

namely, 0 ≤ 2y1−y2 and 0 ≤ y2, that is, 0 ≤ y2 ≤ 2y1. Computation reveals

that, conversely, 0 ≤ y2 ≤ 2y1 ⇒ (y1,y2) ∈ G+, whence G is Archimedean by

Theorem 5.1.

The order unit v= ρ(u) in the simplicial group Z2 is v= (4,2), and the MV-

algebra (Z+)2[(0,0),(4,2)] = {(z1,z2) ∈ Z2 | 0 ≤ z1 ≤ 4 and 0 ≤ z2 ≤ 2} with

coordinatewise partial order. The effect-algebra morphism ρ|E embeds E into

the MV-algebra (Z+)2[(0,0),(4,2)] in such a way that a1 � (2,0), a2 � (1,1),
and a3 � (0,2).
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