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We investigate p-adic completions of clopen (i.e., closed and open at the same
time) subgroupsW of loop groups and diffeomorphism groupsG of compact man-
ifolds over non-Archimedean fields. We outline two different compactifications of
loop groups and one compactification of diffeomorphism groups, describe asso-
ciated finite groups in projective limits, and discuss relations with the represen-
tation theory.
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1. Introduction. The importance of such groups in the non-Archimedean

functional analysis, representation theory, and mathematical physics is clear

(see [1, 8, 10, 11, 14, 18, 19]). This paper is devoted to one aspect of such

groups: their structure from the point of view of the p-adic compactification

(see also about Banaschewski compactification in [18]). The p-adic compactifi-

cations are constructed below such that they are also groups. This also opens

new possibilities for studying their representations as restrictions of represen-

tations of p-adic compactifications.

First, we recall basic facts and notation, which are given in detail in [10, 11,

13, 17, 18]. For a diffeomorphism group Diff(M) of a Banach manifold over a

local field K, there are clopen (i.e., closed and open at the same time) subgroups

W such that they contain a sequence of profinite subgroupsGn withGn ⊂Gn+1

for each n∈N and
⋃
nGn is dense inW , whereN is the set of natural numbers.

A loop group Lt(M,N) is defined as a quotient space of a family of mappings

f : M → N of class Ct of one Banach manifold M into another N over the

same local field K such that limz→s(Φ̄vf)(z;h1, . . . ,hn;ζ1, . . . ,ζn) = 0 for each

0≤ v ≤ t, whereM andN are embedded into the corresponding Banach spaces

X and Y , cl(M) = M ∪{s}, cl(M) and N are clopen in X and Y , respectively,

0 ∈ N, (Φ̄vf)(z;h1, . . . ,hn;ζ1, . . . ,ζn) are continuous extensions of difference

quotients, z ∈M , h1, . . . ,hn are nonzero vectors in X, ζ1, . . . ,ζn ∈ K such that

z+ζ1h1+···+ζnhn ∈M ,n= [v]+sign{v}. As usual, [v] denotes the integral

part of v such that [v]≤v and {v} := v−[v] denotes the fractional part of v .

The p-adic completions of clopen subgroupsW of loop groups G and diffeo-

morphism groups G are considered. In the case of the diffeomorphism group,
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the p-adic completion produces weakened topology on W relatively to which

it remains a topological group. In the case of the loop group, the p-adic com-

pletion produces a new topological group V in which the initial group W is

embedded as a dense subgroup such that V ≠W . The topology onW inherited

from V is weaker than the initial one. For the compact manifold M in the case

of the diffeomorphism group, the p-adic completion of W produces the profi-

nite group. For the locally compact manifolds M and N in the case of the loop

group Lt(M,N), the p-adic completion of W produces its embedding into QN
p ,

where Qp denotes the field of p-adic numbers. When W is bounded relatively

to the corresponding metric in Lt(M,N), then W is embedded into ZNp , where

Zp denotes the ring of p-adic integers. The group Diff(M) is perfect and sim-

ple, on the other hand, the group Lt(M,N) is commutative. The notation given

below and the corresponding definitions are given in detail in [10, 13].

2. p-adic completion of diffeomorphism groups

2.1. Notation and remarks. Let N be a compact manifold over a local field

K, that is, K is a finite algebraic extension of the field ofp-adic numbers Qp [20].

Let also N be embedded into B(Kξ,0,1) as a clopen subset [2, 9], where ξ ∈N,

B(X,y,r) := {z : z ∈X;dX(y,z)≤ r} denotes a clopen ball in a spaceX with an

ultrametric dX . The ball B(Kξ,0,1) has the ring structure with coordinatewise

addition and multiplication, in particular, B(Qp,0,1)= Zp is the ring of entire

p-adic numbers. The ring B(Kξ,0,1) is homeomorphic with the projective limit

B(Kξ,0,1) = pr-limk S
ξ
|π|−k , where S|π|−k is a finite ring consisting of |π|−kc

elements such that S|π|−k is equal to the quotient ring B(K,0,1)/B(K,0,|π|k),
S
ξ
|π|−k is a product of ξ copies of S|π|−k , c is a dimension dimQp K of K over Qp

as a Qp-linear space, π is an element of K such that p−1 ≤ |π| < 1 and |π| is

the generator of the valuation group of K (see also about local fields in [20]). In

particular, B(Qp,0,1)/B(Qp,0,p−k)= Zp/pkZp = Fpk is a finite ring consisting

of pk elements, aB := {x : x = ab,b ∈ B} for a multiplicative group E and its

element a∈ E and a subset B ⊂ E, k∈N [18, 20]. For eachm≥ k there are the

following quotient mappings (ring homomorphisms): π̃m : B(K,0,1)→ S|π|−m
and π̃mk : S|π|−m → S|π|−k . This induces the quotient mappings π̃m :N →Nm and

π̃mk :Nm →Nk, where Nm ⊂ S|π|−m , π̃mk ◦π̃m = π̃k, π̃m(B(Kξ,0,1))= S
ξ
|π|−m for

each ξ ∈N.

Let now M and N be two analytic compact manifolds embedded into B(Kψ,
0,1) and B(Kξ,0,1), respectively, as clopen subsets and f ∈ Ct(M,N), where

Ct(M,N) denotes the space of functions f :M → N of class Ct , t ≥ 0. For an

integer t it is the space of t-times continuously differentiable functions in the

sense of partial difference quotients (see [10, 13, 17]). Then f = pr-limk fk,
where fk := π̃k ◦ f . We introduce the notation Ct(M,Nk) := π̃k ◦Ct(M,N) =
{fk : f ∈ Ct(M,N)}, hence Ct(M,N) = pr-limkCt(M,Nk) algebraically without

taking into account topologies (or the limit of the inverse sequence, see [5,

Section 2.5] and [15, Sections 3.3, 12.202]. Each function f ∈ Ct(M,N) has a
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Ct(B(Kψ,0,1),Kξ)-extension by zero on B(Kψ,0,1), hence it has the decom-

position f = ∑
l,m f lmQ̄mel in the Amice polynomial basis Q̄m, where el is

the standard orthonormal basis in Kξ such that el = (0, . . . ,0,1,0, . . .) with 1

in the lth place, Z � ml ≥ 0 for each l, m = (m1, . . . ,mξ), f lm ∈ K are ex-

pansion coefficients such that liml+|m|→∞ |f lm|KJ(t,m)= 0, Q̄m are polynomi-

als on B(Kψ,0,1) with values in K, J(t,m) := ‖Q̄m‖Ct(B(Kψ,0,1),K). The space

Ct(M,N) is supplied with the uniformity inherited from the Banach space

Ct(Kψ,Kξ).
Let Mξ denote π̃ξ(M) and Nξ denote π̃ξ(N). For two sets E and F , as usual

EF is the set of all mappings f : F → E.

Lemma 2.1. Each f ∈ Ct(M,N) is a projective limit f = pr-limk fk of polyno-

mials fk =
∑
l,m f lm,kQ̄m,kel on rings Sψ|π|−k with values in S

ξ
|π|−k , where f lm,k ∈

S|π|−k and Q̄m,k are polynomials on Sψ|π|−k with values in S|π|−k .

Proof. In view of Section 2.1,

fk = π̃k ◦f , π̃k ◦f(x)=
∑

l,m

(
π̃k
(
f lm
))×(π̃kQ̄m(x)

)
el, (2.1)

since π̃k is a ring homomorphism and π̃k(el) = el. Then π̃k(axm) = akxm(k)
for each a ∈ K and x ∈ B(Kψ,0,1), where xm := xm1

1 , . . . ,xmψψ , x1, . . . ,xψ ∈
B(K,0,1); m := (m1, . . . ,mψ), Z�ml ≥ 0 for each l=1, . . . ,ψ, x= (x1, . . . ,xψ),
x(k) := π̃k(x), ak = π̃k(a) with ak ∈ S|π|−k and xm(k) = π̃k(xm) with x(k) ∈
Sψ|π|−k , consequently, π̃k(Q̄m(x))= Q̄m,k(x(k)). The series for fk is finite since

π̃k(a)= 0 for each a∈K with |a|< |π|k and liml+|m|→∞ |f lm|KJ(t,m)= 0.

Corollary 2.2. The uniform space Ct(M,Nk) is isomorphic with the space

NMkk of all mappings from Mk into Nk. Moreover, (Sξ|π|−k)
(Sψ|π|−k ) is a finite-

dimensional module over the ring S|π|−k .

Proof. From the proof of Lemma 2.1, there is only a finite number of S|π|−k -
linearly independent polynomials Q̄m,k(x(k)) (i.e., in the module of the ring

S|π|−k ), since the rings Sψ|π|−k and S|π|−k are finite, also za = zb for each natural

numbers a and b such that a≡ b (mod (pk)) and each z ∈ S|π|−k . The space

Ct(M,Nk) is discrete and isomorphic with NMkk , since Mk and Nk are discrete.

Corollary 2.3. The quotient group π̃k ◦Difft(M) is isomorphic with the

symmetric group Sξk , where ξk is the cardinality of Mk.

Proof. If h ∈ Difft(M), then hk(Mk) = Mk since h(M) = M . In view of

Corollary 2.2, π̃k ◦Difft(M) is isomorphic with the following group Hom(Mk)
of all homeomorphisms hk of Mk, that is, bijective surjective mappings hk :

Mk→Mk. Using an enumeration of elements of Mk, we get an isomorphism of

Hom(Mk) with Sξk .
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2.2. Let Cw(M,N) := pr-limkN
Mk
k be a uniform space of continuous map-

pings f : M→N supplied with a uniformity inherited from products of uni-

form spaces
∏∞
k=1N

Mk
k (see also [5, Section 8.2]). The uniform spaces Ct(M,N)

and Cw(M,N) are subsets of K-linear spaces Ct(M,Kξ) and C0(M,Kξ), respec-

tively. We consider algebraic structures of subsets of the latter K-linear spaces

as inherited from them.

Corollary 2.4. The space Ct(M,N) is not algebraically isomorphic with

Cw(M,N), when t > 0. The uniform space Cw(M,N) is uniformly isomorphic

with C0(M,N), when the latter space is supplied with a weak uniformity inher-

ited from C0(M,Kξ). The space Cw(M,N) is compact.

Proof. In view of [5, Section 2.5], C0(M,N) and Cw(M,N) coincide alge-

braically since the connecting mappings π̃mn are uniformly continuous for each

m ≥ n. The space C0(M,Kξ) is K-linear and its uniformity is completely de-

fined by a neighbourhood base of zero. The set of all evaluation mappings

in points of M produces the base of the topology of C0(M,Kξ). In its weak

topology, the latter space is isomorphic with the product
∏
x∈M Kξ = Kcard(M),

since card(M) = card(R) = Υ , where card(M) denotes the cardinality of M .

Then C0(M,N) and Cw(M,N) have embeddings into B(K,0,1)card(M) as closed

bounded subspaces. The latter space is uniformly homeomorphic with pr-

limk(S|π|−k)Mk , which is compact by the Tychonoff theorem [5, Theorem 3.2.4].

Since C0(M,N)≠ Ct(M,N) for t > 0, then Cw(M,N) and Ct(M,N) are different

algebraically.

2.3. Let Diffw(M) := pr-limkHom(Mk) be supplied with the uniformity in-

herited from Cw(M,M). The group Diffw(M) is called the p-adic compacti-

fication of Difft(M). The following theorem shows that this terminology is

justified.

Theorem 2.5. The group Diffw(M) is a compact topological group and it is

the compactification of Difft(M) in the weak topology. If t > 0, then Difft(M)
does not coincide with Diffw(M).

Proof. Since Difft(M) ⊂ Ct(M,M), then Difft(M) has the corresponding

embedding into Cw(M,M). Since Cw(M,M) is compact and Hom(M) is a closed

subset inCw(M,M), then due to Corollary 2.4, Hom(M)∩Cw(M,M)=Diffw(M)
is compact. The space Ct(M,M) is dense in C0(M,M), consequently, Difft(M)
is dense in Diffw(M). If t > 0, then Difft(M)≠Hom(M), hence the two groups

Difft(M) and Diffw(M) do not coincide algebraically. It remains to verify that

Diffw(M) is the topological group in its weak topology. If f ,g ∈ Ct(M,N), then

π̃k(Q̄m(g(x)))= Q̄m,k(gk(x(k))), consequently,

π̃k(f ◦g)=
∑

l,m
π̃k
(
f lm
)
Q̄m,k

(
gk
(
x(k)

))
el (2.2)

and inevitably (f ◦ g)k = fk ◦ gk. On the other hand, π̃k(x) = x(k) hence
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π̃k(id(x))= idk(x(k)), where id(x)= x for each x ∈M . Therefore, for f = g−1

we have (f ◦g)k = fk ◦gk = idk, hence π̃k(g−1)= g−1
k . The associativity of the

composition (fk◦gk)◦hk = fk◦(gk◦hk) of all functions fk,gk,hk ∈Hom(Mk),
together with other properties given above, means that Diffw(M) is the alge-

braic group, since f = pr-limk fk, g = pr-limk gk, and h= pr-limkhk also satisfy

the associativity axiom, each f has the inverse element f−1(f (x)) = id, and

e= id is the unit element. By the definition of the weak topology in Diffw(M),
for each neighbourhood of e = id in Diffw(M) there exist k ∈ N and a subset

Wk ⊂ Hom(Mk) such that ek ∈Wk and e ∈ π̃−1
k (Wk) ⊂W . But Hom(Mk) is dis-

crete, hence there are neighbourhoods Vk ⊂ Hom(Mk) and Uk ⊂ Hom(Mk) of

ek such that VkUk ⊂Wk, for example, Vk = {ek} and Uk = {ek}, since ek ∈Wk,
hence there are neighbourhoods e∈ V ⊂Diffw(M) and e∈U ⊂Diffw(M) such

that VU ⊂ W , where V = π̃−1
k (V), U = π̃−1

k (U), and VU = {h : h = f ◦g, f ∈
V, g ∈U}. If W ′ is a neighbourhood of f−1, then V :=W ′f−1 is the neighbour-

hood of e and there exists k ∈ N such that π̃−1
k (ek) =: U ⊂ V−1 since e−1

k = ek
and π̃k is the homomorphism. Therefore, fU := W is the neighbourhood of

f such that W−1 ⊂ W ′, which demonstrates the continuity of the inversion

operation f � f−1.

2.4. Notes. Each projection π̃k : B(Ct(M,Kξ),0,1)→(Sξ|π|−k)Mk produces the

quotient metric ρk in the S|π|−k -module (Sξ|π|−k)
Mk such that

ρk
(
fk,gk

)
:= inf

z,π̃k(z)=0
‖f −g+z‖Ct(M,Kξ), (2.3)

where S|π|−k := B(K,0,1)/B(K,0,|π|k) is the quotient ring and π̃k is induced by

such quotient mapping from B(K,0,1) onto S|π|−k . If B(Ct(M,Kξ),0,1) embeds

into
∏
k π̃k(B(Ct(M,Kξ),0,1)) and supplies the latter space with the box topol-

ogy given by the following norm ‖f −g‖′ := supk ρk(fk,gk), then it produces

the uniformity in B(Ct(M,Kξ),0,1) equivalent with the initial one.

Theorem 2.5 means that thep-adic completion Diffw(M) is a profinite group.

It is the projective limit of the finite groups Hom(Mk). If the compact mani-

fold M is decomposed into the disjoint union M = ⋃i B(Kψ,xi,ri) of clopen

balls, then orders of the latter groups are divisible by (|π|−a)!, where a=∑i li,
li = k−maxl{l : |π|−l ≤ ri}, xi ∈ B(Kψ,0,1), 0 < ri ≤ 1, since card(Mk) is di-

visible by |π|−a. Then the representations of symmetric groups known from

the classical works of Littlewood and Weyl [7, 21] with the help of the projec-

tive limit decompositions produce finite-dimensional representations of the

diffeomorphism groups.

3. p-adic completion of loop groups. At first, we recall shortly the main

details of definitions from [13].

3.1. Definitions and notes. Let X be a Banach space over K. Suppose thatM
is an analytic manifold modeled onX with an atlas At(M) consisting of disjoint
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clopen charts (Uj,φj), j ∈ ΛM , ΛM ⊂ N. That is, Uj and φj(Uj) are clopen in

M and X, respectively, φj : Uj → φj(Uj) are homeomorphisms, φj(Uj) are

bounded in X.

Then Ct(M,Y) for M with a finite atlas At(M), card(ΛM) < ℵ0, denotes a

Banach space of functions f :M → Y with an ultranorm

‖f‖t = sup
j∈ΛM

∥∥f
∣∣
Uj

∥∥
Ct(Uj ,Y) <∞, (3.1)

where Y is the Banach space over K, 0 ≤ t ∈ R, their restrictions f |Uj are in

Ct(Uj,Y) for each j.
By Ct0(M,Y) we denote a completion of a subspace of cylindrical functions

restrictions of which on each chart f |Ul are finite K-linear combinations of

functions {Q̄m̄(xm̄)qi|Ul : i∈ β,m} relatively to the following norm:

‖f‖Ct0(M,Y) := sup
i,m,l

∣∣a(m,f i
∣∣
Ul

)∣∣Jl(t,m), (3.2)

where multipliers Jl(t,m) are defined as follows:

Jl(t,m) := ∥∥Q̄m̄
∣∣
Ul

∥∥
Ct(φl(Ul)∩Kn,K), (3.3)

m= (mi : i)with componentsmi ∈N0, nonzero components ofm aremi1 , . . . ,
min with n ∈ N, m̄ := (mi1 , . . . ,min) for each m ≠ 0, xm̄ := (xi1 , . . . ,xin) ∈
Kn↩X, Q̄0 := 1.

Let N be an analytic manifold modeled on Y with an atlas:

At(N)= {(Vk,ψk
)

: k∈ΛN
}
, (3.4)

such that ψk : Vk → ψk(Vk) ⊂ Y are homeomorphisms, card(ΛN) ≤ ℵ0, and

θ : M → N is a Ct′ -mapping, also card(ΛM) < ℵ0, where Vk are clopen in N,

t′ ≥max(1, t) is the index of a class of smoothness, that is, for each admissible

(i,j)

θi,j ∈ Ct′∗
(
Ui,j ,Y

)
, (3.5)

with ∗ either empty or taking the value 0, respectively,

θi,j :=ψi ◦θ|Ui,j , (3.6)

whereUi,j :=[Uj∩θ−1(Vi)]are nonvoid clopen subsets. We denote byCθ,ξ∗ (M,N),
for 0≤ ξ ≤∞, a space of mappings f :M →N such that

fi,j−θi,j ∈ Cξ∗
(
Ui,j,Y

)
. (3.7)
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In view of formulas (3.4), (3.5), (3.6), and (3.7), we supply it with an ultrametric

ρξ∗(f ,g)= sup
i,j

∥∥fi,j−gi,j
∥∥
Cξ∗(Uj ,Y)

, (3.8)

for each 0≤ ξ <∞.

3.2. For infinite atlases we use the traditional procedure of inductive limits

of spaces. For M with the infinite atlas, card(ΛM)=ℵ0, and Y is the Banach

space over K; we denote by Cθ,ξ∗ (M,Y), for 0≤ ξ ≤∞, a locally K-convex space,

which is the strict inductive limit

Cθ,ξ∗ (M,Y) := str- ind
{
Cθ,ξ∗

(
UE,Y

)
,πFE ,Σ

}
, (3.9)

where E ∈ Σ, Σ is the family of all finite subsets of ΛM directed by the inclusion

E < F if E ⊂ F , UE :=⋃j∈E Uj .
For mappings from one manifold into another f : M → N we therefore get

the corresponding uniform spaces denoted by Cθ,ξ∗ (M,N).
We introduce the notation

G(ξ,M) := Cθ,ξ0 (M,M)∩Hom(M),

Diffξ(M)= Cθ,ξ(M,M)∩Hom(M),
(3.10)

which are called groups of diffeomorphisms (and homeomorphisms for 0 ≤
ξ < 1), θ = id, id(x)= x for eachx ∈M , where Hom(M) := {f : f ∈ C0(M,M), f
is bijective, f(M) = M, f and f−1 ∈ C0(M,M)} denotes the usual homomor-

phism group.

3.3. Notes. Henceforth, ultrametrizable separable complete manifolds M̄
and N are considered. Since a large inductive dimension Ind(M̄) = 0 (see [5,

Theorem 7.3.3]), M̄ does not have boundaries in the usual sense. Therefore,

At(M̄)= {(Ūj,φ̄j
)

: j ∈ΛM̄
}

(3.11)

has a refinement At′(M̄), which is countable, and its charts (Ū ′j ,φ̄
′
j) are clopen,

disjoint, and homeomorphic with the corresponding balls B(X,yj, r̄ ′j ), where

φ̄′j : Ū ′j �→ B
(
X,y ′j , r̄

′
j
) ∀j ∈Λ′M̄ (3.12)

are homeomorphisms (see [5, 9]). For M̄ we fix such At′(M̄).
We define topologies of groupsG(ξ,M̄) and locally K-convex spacesCξ∗(M̄,Y )

relatively to At′(M̄), where Y is the Banach space over K. Therefore, we sup-

pose also that M̄ and N are clopen subsets of the Banach spaces X and Y ,

respectively. Up to the isomorphism of loop semigroups, we can suppose that

s0 = 0∈ M̄ and y0 = 0∈N.
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ForM=M̄ \{0} let At(M) be consisted of charts (Uj,φj), j∈ΛM , while At′(M)
consists of charts (U ′j,φ

′
j), j ∈Λ′M , where due to formulas (3.11) and (3.12) we

define

U1 = Ū1 \{0}, φ1 = φ̄1

∣∣
U1
, Uj = Ūj, φj = φ̄j, ∀j > 1,

0∈ Ū1, ΛM =ΛM̄ , U ′1 = Ū ′1 \{0}, φ′1 = φ̄′1
∣∣
U′1 ,

U ′j = Ū ′j, φ′j = φ̄′j, ∀j > 1, j ∈Λ′M =Λ′M̄ , Ū ′1 � 0.

(3.13)

3.4. Definitions and notes. Let the spaces be the same as in Section 3.2 (see

formulas (3.9) and (3.10)) with the atlas ofM defined by conditions (3.13). Then

we consider their subspaces of mappings preserving marked points:

Cθ,ξ0

((
M,s0

)
,
(
N,y0

))

:= {f ∈ Cθ,ξ0

(
M̄,N

)
: lim
|ζ1|+···+|ζk|→0

Φ̄v(f −θ)(s0;h1, . . . ,hk;ζ1, . . . ,ζk
)= 0

∀v∈{0,1, . . . ,[t],t}, k=[v]+sign{v}},
(3.14)

for each v ∈ {[t]+nγ,t+nγ}, and the following subgroup:

G0(ξ,M) := {f ∈G(ξ,M̄) : f
(
s0
)= s0

}
(3.15)

of the diffeomorphism group.

With the help of them we define the following equivalence relations Kξ :

fKξg if and only if the following sequences exist:

{
ψn ∈G0(ξ,M) :n∈N}, (3.16)

{
fn ∈ Cθ,ξ0 (M,N) :n∈N}, (3.17)
{
gn ∈ Cθ,ξ0 (M,N) :n∈N}, (3.18)

such that

fn(x)= gn
(
ψn(x)

) ∀x ∈M, lim
n→∞fn = f , lim

n→∞gn = g. (3.19)

Due to condition (3.19) these equivalence classes are closed, since (g(ψ(x))′ =
g′(ψ(x))ψ′(x), ψ(s0)= s0, g′(s0)= 0 for t+s ≥ 1. We denote them by 〈f 〉K,ξ .
Then forg∈〈f〉K,ξwe writegKξf also. We denote the quotient spaceCθ,ξ0 ((M,s0),
(N,y0))/Kξ by Ωξ(M,N), where θ(M)= {y0}.

3.5. Let as usually A∨B :=A×{b0}∪{a0}×B ⊂A×B be the wedge product

of pointed spaces (A,a0) and (B,b0), whereA and B are topological spaces with
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marked points a0 ∈A and b0 ∈ B. Then the composition g◦f of two elements

f ,g ∈ Cθ,ξ0 ((M,s0),(N,y0)) is defined on the domain M̄∨M̄ \{s0×s0} =:M∨M .

Let M = M̄ \ {0} be as in Section 3.3. We fix an infinite atlas Ãt′(M) :=
{(Ũ ′j ,φ′j) : j ∈N} such that φ′j : Ũ ′j → B(X,y ′j ,r ′j) are homeomorphisms,

lim
k→∞

r ′j(k) = 0, lim
k→∞

y ′j(k) = 0, (3.20)

for an infinite sequence {j(k)∈N : k∈N} such that clM̄ [
⋃∞
k=1 Ũ

′
j(k)] is a clopen

neighbourhood of 0 in M̄ , where clM̄ A denotes the closure of a subset A in M̄ .

In M ∨M we choose the following atlas Ãt′(M ∨M) = {(Wl,ξl) : l ∈ N} such

that ξl :Wl→ B(X,zl,al) are homeomorphisms,

lim
k→∞

al(k) = 0, lim
k→∞

zl(k) = 0, (3.21)

for an infinite sequence {l(k) ∈ N : k ∈ N} such that clM̄∨M̄ [
⋃∞
k=1Wl(k)] is a

clopen neighbourhood of 0×0 in M̄∨M̄ and

card
(
N\{l(k) : k∈N})= card

(
N\{j(k) : k∈N}). (3.22)

Then we fix a C(∞)-diffeomorphism χ :M∨M →M such that

χ
(
Wl(k)

)= Ũ ′j(k) ∀k∈N,

χ
(
Wl
)= Ũ ′κ(l) ∀l∈ (N\{l(k) : k∈N}), (3.23)

where

κ :
(
N\{l(k) : k∈N}) �→ (N\{j(k) : k∈N}) (3.24)

is a bijective mapping for which

|π| ≤ al(k)
r ′j(k)

≤ |π|−1, |π| ≤ al
r ′κ(l)

≤ |π|−1. (3.25)

This induces the continuous injective homomorphism

χ∗ : Cθ,ξ0

((
M∨M,s0×s0

)
,
(
N,y0

))
�→ Cθ,ξ0

((
M,s0

)
,
(
N,y0

))
(3.26)

such that

χ∗(g∨f)(x)= (g∨f)(χ−1(x)) ∀x ∈M, (3.27)

where (g ∨ f)(y) = f(y) for y ∈ M2 and (g ∨ f)(y) = g(y) for y ∈ M1,

M1∨M2 =M∨M , Mi =M for i= 1,2. Therefore,

g◦f := χ∗(g∨f) (3.28)
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may be considered as defined onM also, that is, to g◦f there corresponds the

unique element in Cθ,ξ0 ((M,s0),(N,y0)).

3.6. The composition in Ωξ(M,N) is defined due to the following inclusion

g ◦f ∈ Cθ,ξ0 ((M,s0),(N,y0)) (see formulas (3.23), (3.24), (3.25), (3.26), (3.27),

and (3.28)) and then using the equivalence relations Kξ (see condition (3.19)).

It is shown below that Ωξ(M,N) is the monoid, which we call the loop

monoid.

3.7. Note and definition. For a commutative monoid Ωξ(M,N) with the

unity and the cancellation property there exists a commutative group Lξ(M,N)
equal to the Grothendieck group. This group is the quotient group F/�, where

F is a free abelian group generated by Ωξ(M,N) and � is a closed subgroup of

F generated by elements [f +g]−[f ]−[g], f and g ∈Ωξ(M,N), [f ] denotes

an element of F corresponding to f . The natural mapping

γ :Ωξ(M,N) �→ Lξ(M,N) (3.29)

is injective. We supply F with a topology inherited from the Tychonoff product

topology of Ωξ(M,N)Z, where each element z of F is

z =
∑

f

nf ,z[f ], (3.30)

nf,z ∈ Z for each f ∈Ωξ(M,N),
∑

f

∣∣nf,z
∣∣<∞. (3.31)

In particular [nf]−n[f] ∈ �, where 1f = f , nf = f ◦ (n−1)f for each 1 <
n∈N, f +g := f ◦g. We call Lξ(M,N) the loop group.

3.8. Let, as in Sections 2.1 and 3.3, M̄ and N be two compact manifolds.

Theorem 3.1. LetΩξ(M,N) be the commutative loop monoids, then the quo-

tient mappings π̃k induce the corresponding inverse sequence {Ω(Mk,Nk) : k∈
N} such that Ωw(M,N) := pr-limkΩ(Mk,Nk) is a commutative compact topo-

logical monoid, where π̃k : Ωξ(M,N)→ Ω(Mk,Nk), π̃ lk : Ω(Ml,Nl)→ Ω(Mk,Nk)
are surjective mappings for each l ≥ k, Ω(Mk,Nk) = {fk : fk ∈ NMkk ,fk(s0,k) =
y0,k}/Kξ,k, Kξ,k is an equivalence relation induced by an equivalence relation

Kξ . Moreover, Ωw(M,N) is a compactification of Ωξ(M,N).

Proof. In view of Corollary 2.2, π̃k(C
ξ
0 (M,N)) is isomorphic with {fk :

fk ∈ NMkk ,fk(s0,k) = y0,k}, where the quotient mapping is denoted by π̃k for

both M and N, since it is induced by the same ring homomorphism π̃k :

B(K,0,1) → B(K,0,1)/B(K,0,|π|k), s0,k := π̃k(s0) and y0,k := π̃k(y0). Then
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π̃k(G0(t,M)) is isomorphic with Hom0(Mk) := {ψk :ψk ∈Hom(Mk),ψk(s0,k)=
s0,k} (see Section 3.4). All of this is also applicable with the corresponding

changes to classes of smoothness Cξ (or C(ξ) in the notation of [13], where

ξ = (t,s)). If f and g are two Kξ-equivalent elements in Cξ0 (M,N), that is,

there are sequences fn and gn in Cξ0 (M,N) converging to f and g, respec-

tively, and also a sequence ψn ∈ Diffξ0(M) such that fn(x) = gn(ψn(x)) for

each x ∈ M , then π̃k(fn) =: fn,k and gn,k := π̃k(gn) converge to π̃k(f ) and

π̃k(g), respectively, and also ψn,k := π̃k(ψn) ∈ Hom0(Mk). From the equality

fn,k(x(k))= gn,k(ψn,k(x(k))) for eachn∈N andx(k)∈Mk, it follows that the

equivalence relation Kξ induces the corresponding equivalence relation Kξ,k in

π̃k(Ct0(M,N)) such that the classes 〈π̃k(f )〉K,ξ,k of Kξ,k-equivalent elements

are closed. Each element fk ∈ π̃k(Cξ0 (M,N)) is characterized by the equality

fk(s0,k)=y0,k. EachΩ(Mk,Nk) is the finite discrete set, since eachNMkk is the fi-

nite discrete set. This induces the quotient mapping π̃k :Ωt(M,N)→Ω(Mk,Nk)
and surjective mappings π̃ lk :Ω(Ml,Nl)→Ω(Mk,Nk) for each l≥ k. It produces

the inverse sequence of finite discrete spaces, hence the limit of the inverse se-

quence is compact and totally disconnected. It remains to verify thatΩw(M,N)
is a commutative topological monoid with unit element and the cancellation

property.

From the equalityM = M̄ \{s0}, it follows thatMk = M̄k, since for each k∈N
there exists x ∈ M such that x + B(Kψ,0,|π|k) � s0. Moreover, Mk and Nk
are finite discrete spaces. Then π̃k(M ∨M) = Mk ∨Mk (see Section 3.5). The

composition operation is defined on threads {〈fk〉K,ξ,k : k ∈ N} of the inverse

sequence in the following way. There is a fixed C∞-diffeomorphism χ :M∨M →
M . Let x ∈ M , then π̃k(x) ∈ Mk and χ−1(U) ∈ M ∨M , where U := π̃−1

k (x +
B(K,0,|π|k)∩M . On the other hand, χ−1(U) is a disjoint union of balls of

radius |π|2k in B(K2m,0,1), hence there is defined a surjective mapping χk :

M2k∨M2k → Mk induced by χ, π̃k, and π̃2k such that χk(χ−1(U)) = π̃k(x). If

f and g ∈ Cξ(M,N), then f ∨g ∈ Cξ((M∨M),N) and χ(f ∨g)∈ Cξ(M,N) as

in [13, Section 2.6]. Hence χk(f2k∨g2k)∈ Cξ(Mk,Nk) and inevitably χk(〈f2k∨
g2k〉K,ξ,2k)= χk(〈f2k〉K,ξ,2k∨〈g2k〉K,ξ,2k)∈Ω(Mk,Nk).

There exists one-to-one correspondence between the elements f ∈ Cw(M̄,N)
and {fk : k} ∈ {NMkk : k}. Therefore, pr-limkΩ(Mk,Nk) algebraically is the com-

mutative monoid with the cancellation property. Let U be a neighbourhood

of e in Ωw(M,N), then there exists Uk = π̃−1
k (Vk) such that Vk is open in

Ω(Mk,Nk), e∈Uk, and Uk ⊂U . On the other hand, there exists U2k = π̃−1
2k (V2k)

such that V2k is open in Ω(M2k,N2k), e ∈ U2k, and U2k+U2k ⊂ Uk. Therefore,

(f +U2k)+(g+U2k)⊂ f +g+Uk ⊂ f +g+U for each f ,g ∈Ωw(M,N), conse-

quently, the composition in Ωw(M,N) is continuous. Since Cξ0 (M,N) is dense

in C0,w(M̄,N), then Ωξ(M,N) is dense in Ωw(M,N).

3.9. Note. The compactification of Ωξ(M,N) given above is not unique. An-

other compactification is given below. The second is larger than the first one.
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Using the Grothendieck construction, we get a compactification Lw(M,N) =
F̄/B̄ of a loop group Lξ(M,N), where F̄ is a closure in (Ωw(M,N))Z of a free

commutative group F generated by Ωw(M,N) and B̄ is a closure of a subgroup

B generated by all elements [a+b]−[a]−[b], since the product of compact

spaces is compact by the Tychonoff theorem [5].

3.10. Let now s0 = 0 and y0 = 0 be two marked points in the compact man-

ifolds M̄ and N embedded into Kψ and Kξ , respectively. Define the follow-

ing C∞-diffeomorphism inv : (Kψ)′ → (Kψ)′ for (Kψ)′ := Kψ \{x : there exists

j with xj = 0} such that inv(x1, . . . ,xψ) := (x−1
1 , . . . ,x−1

ψ ), where xj ∈ K, j =
1, . . . ,ψ. LetM′ =M∩(Kψ)′, whereM = M̄ \{s0} as in Section 3.3. Then inv(M′)
is locally compact, noncompact, and unbounded in Kψ, sinceM′ is locally com-

pact and noncompact. Let K∗ =K\{0} then evidently (Kψ)′ is equal to (K∗)ψ.

Let the disjoint union of x̄j + Sψ|π|−k be chosen equal to π̃k((Kψ)′) := (Kψ)′k
for each k ∈ N, where {B(Kψ,xj,1) : j} is the disjoint covering of (Kψ)′ and

x̄j = xj+B(K,0,|π|−k)= π̃k(xj). Therefore, π̃k(inv(M′))= (inv(M′))k is a dis-

crete infinite subset in π̃k((Kψ)′) for each k ∈ N. Analogously, π̃k(inv(M′ ∨
M′)) = (inv(M′ ∨M′))k ⊂ [π̃k((Kψ)′)]2. There exists a C∞-diffeomorphism

χ :M∨M →M such that inv◦χ◦ inv is the C∞-diffeomorphism of inv(M′ ∨M′)
with inv(M′) and it induces bijective mappings χk of inv((inv(M′ ∨M′))k)
with inv((inv(M′))k) for each k ∈ N such that π̂ lk ◦ χl = χk for each l ≥ k,

where π̂ lk := inv◦π̃ lk ◦ inv. This produces inverse sequences of discrete spaces

inv((inv(M′))k) =: M̂k, inv((inv(M′ ∨M′))k) = M̂k∨M̂k and their bijections χk
such that pr-limk M̂k is homeomorphic with M′ and pr-limk χk is equal to χ up

to the homomorphism, since pr-limk Sψ|π|−k = B(Kψ,0,1) (see also about admis-

sible modifications and polyhedral expansions in [12]). If ψ ∈ G0(ξ,M̄), then

ψ̂ ∈ Diffξ(M̂). Let Jf ,k := {hk : hk = fk ◦ψk, ψk ∈ Hom(M̂k), ψk(s0,k) = s0,k}
for fk ∈ NM̂kk with limx→0fk(x) = 0, then Jf ,k is closed and π̂k(〈f 〉K,ξ) ⊂
Jf ,k. Therefore, gk and fk are K̂ξ,k-equivalent if and only if there exists ψk ∈
Hom(M̂k) such that ψk(s0,k) = s0,k and gk(x) = fk(ψk(x)) for each x ∈ M̂k.
Let Ω(M̂k,Nk) := π̂k(Ωξ(M,N)).

Theorem 3.2. The set ofΩ(M̂k,Nk) forms an inverse sequence S={Ω(M̂k,Nk);
π̂ lk;k ∈ N} such that pr-limS =: Ωi,w(M,N) is an associative topological loop

monoid with the cancellation property and unit element e. There exists an em-

bedding ofΩξ(M,N) intoΩi,w(M,N) such thatΩξ(M,N) is dense inΩi,w(M,N).

Proof. Let U ′i be an analytic disjoint atlas of inv(M′), f ∈ Cξ(inv(M′),K),
ψ ∈ Diffξ(inv(M′)), then each restriction f |U′i has the form f |U′i (x) =∑
mfi,mQ̄i,m(x) for each x ∈ U ′i, where Q̄i,m are basic Amice polynomials

for U ′i, fi,m ∈ K. Therefore f is a combination f = ∇if |U′i of its restrictions

f |U′i , hence

π̂k
(
f ◦ψ(x))=

∑
m

[
π̂k
(
fi,m

)∇(i,ψk(x(k))∈π̂k(U′k))Q̄i,m,k
(
ψk
(
x(k)

))]
(3.32)
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and inevitably

π̂k
(
(f ◦ψ)(x))= fk ◦ψk

(
x(k)

)
, (3.33)

where Q̄i,m,k := π̂k(Q̄i,m), x ∈ inv(M′) and x(k)= π̂k(x).
As in [13, Section 2.6.2] and Section 3.5 we choose an infinite atlas At′(M) :=

{(U ′j ,φ′j) : j ∈ N} such that φ′j : U ′j → B(X,y ′j,r ′j) are homeomorphisms,

limk→∞ r ′j(k) = 0, limk→∞y ′j(k) = 0 for an infinite sequence {j(k) ∈ N : k ∈ N}
such that clM̄ [

⋃∞
k=1U ′j(k)] is a clopen neighbourhood of zero in M̄ . We take

|y ′j(k)|> r ′j(k) for each k, hence inv(B(X,y ′j ,r ′j)∩X′)= B(X,y ′−1
j ,r ′

−1
j )∩X′

and
⋃
k inv(U ′j(k)∩X′) is open inX′. For an atlas At′(M∨M) := {(Wl,ξl) : l∈N}

with homeomorphisms ξl :Wl → B(X,zl,al), limk→∞al(k) = 0, limk→∞zl(k) = 0

for an infinite sequence {l(k) ∈ N : k ∈ N} such that clM̄∨M̄ [
⋃∞
k=1Wl(k)] is a

clopen neighbourhood of 0×0 in M̄ ∨ M̄ we also choose |zl| > al for each l.
We can choose the locally affine mapping χ such that Φ̄nχ ≡ 0 for each n ≥ 2

(see the notation of Section 3.5) and B(X′,y ′−1
l ,r ′

−1
l ) are diffeomorphic with

inv(U ′l∩X′) and B(X′∨X′,z−1
l ,a

−1
l ) are diffeomorphic with inv(Wl∩(X′∨X′)).

This induces the diffeomorphisms χ̂ := inv◦χ ◦ inv : M̂ ∨ M̂ → M̂ and χ̂∗ :

Cξ0 ((M̂∨M̂,∞×∞),(N,y0))→ Cξ0 ((M̂,∞),(N,y0)), since each Φn(f ∨g)(χ̂−1)
has an expression through Φl(f ∨g) and Φj(χ̂−1) with l,j ≤ n and n subor-

dinated to ξ, where M̂ := inv(M′) and the conditions defining the subspace

Cξ0 ((M̂,∞),(N,y0)) differ from that of Cξ0 ((M,s0),(N,y0)) by substitution of

limx→s0 on lim|x|→∞. Then lim|x|→∞ |χ̂(x)| =∞, consequently, there exists k0 ∈
N such that χ̂k : M̂k∨M̂k→ M̂k are bijections for each k≥ k0, where χ̂k := π̂k◦χ̂.

If ψ ∈ Diffξ(M̄) and ψ(0) = 0, then lim|x|→∞ ψ̂(x) =∞ and lim|x|→∞ ψ̂−1(x) =
∞. Then considering ψ̂k we get an equivalence relation Kξ,k in {fk : fk ∈
NM̂kk , lim|x|→∞fk(x) = 0} induced by Kξ , where M̂k is supplied with the quo-

tient norm induced from the space X, since X′ ⊂X, x ∈ M̂k. Let Jk denote the

quotient mapping corresponding to Kξ,k. Therefore, analogously to [13, Sec-

tion 2.6] we get thatΩ(M̂k,Nk) are commutative monoids with the cancellation

property and the unit elements ek, since Ω(M̂k,Nk) = {fk : fk ∈ C0(M̂k,Nk),
lim|x|→∞fk(x) = 0}/K̂ξ,k and the mappings π̂ lk : (Kψ)′l → (Kψ)′k and map-

pings π̃ lk : S
ξ
|π|−l → S

ξ
|π|−k induce mappings π̂ lk :Ω(M̂l,Nl)→Ω(M̂k,Nk) for each

l≥ k. Let the topology in {fk : fk ∈ C0(M̂k,Nk), lim|x|→∞fk(x)= 0} be induced

from the Tychonoff product topology in NM̂kk , and let Ω(M̂k,Nk) be in the quo-

tient topology. The space NM̂kk is metrizable by the Baire metric ρ(x,y) := p−j ,
where j =min{i : xi ≠ yi, x1 = y1, . . . ,xi−1 = yi−1}, x = (xl : xl ∈ Nk, l ∈ N),
M̂k as enumerated as N. Therefore, Ω(M̂k,Nk) is metrizable and the map-

ping (fk,gk) → fk ∨gk is continuous, hence the mapping (Jk(fk),Jk(gk)) →
Jk(fk) ◦ Jk(gk) is also continuous. Then Jk(w0,k) is the unit element, where

w0,k(M̂k) = 0. Hence Ωi,w(M,N) is a commutative monoid with the cancella-

tion property and with unit element. Certainly,
∏
kΩ(M̂k,Nk) is a topological

monoid and pr-limS is a closed subset in this topological totally disconnected



2686 S. V. LUDKOVSKY AND B. DIARRA

monoid. For each f ∈ Cξ0 (M,N) there exists an inverse sequence {fk : fk =
π̂k(f ), k ∈ N} such that f(x) = pr-limk fk(x(k)) for each x ∈ M′, but M′

is dense in M . Therefore, there exists an embedding Ωξ(M,N)↩ Ωi,w(M,N).
Since Cξ(M,N) is dense in C0

0 (M,N), then Ωξ(M,N) is dense in Ωi,w(M,N).

Corollary 3.3. The inverse sequence of loop monoids induces the inverse

sequence of loop groups SL :={L(M̂k,Nk);π̂ lk;N}. Its projective limit Li,w(M,N) :=
pr-limSL is a commutative topological totally disconnected group and Lξ(M,N)
has an embedding in it as a dense subgroup.

Proof. Due to the Grothendieck construction, the inversion operation fk�
f−1
k is continuous in L(M̂k,Nk), and homomorphisms π̂ lk and π̂k have con-

tinuous extensions from loop submonoids onto loop groups L(M̂k,Nk). Each

monoid Ω(M̂k,Nk) is totally disconnected, since NM̂kk is totally disconnected

andΩ(M̂k,Nk) is supplied with the quotient ultrametric, hence the free abelian

group Fk generated by Ω(M̂k,Nk) is also totally disconnected and ultrametriz-

able, consequently, L(M̂k,Nk) is ultrametrizable. Evidently, their inverse limit

is also ultrametrizable and the equivalent ultrametric can be chosen with val-

ues in Γ̃K := {|z| : z ∈ K}, where Γ̃K∩(0,∞) is discrete in (0,∞) := {x : 0 < x <
∞, x ∈ R}. Then the projective limit (i.e., weak) topology of Li,w(M,N) is in-

duced by the weak topology of C0(M,K). When M and N are nontrivial, then

certainly this weak topology is strictly weaker than that of L0(M,N).

Theorem 3.4. For each prime number p, the loop group Lξ(M,N) in its

weak topology inherited from Li,w(M,N) has a p-adic completion isomorphic

with Zℵ0
p .

Proof. If K is a finite algebraic extension of the field Qp , then the projective

ring homomorphism π̃k : B(K,0,1) → S|π|−k induces the following mapping

π̂k(f (x)) = fk(x(k)) for each f ∈ B(Cξ(M,Kξ),0,1). Using pavings of K and

Cξ(M,Kξ) by disjoint unions of balls, we get π̃k on K and π̂k on Cξ(M,N),
respectively, where π̃k(x) := x̄ := x + B(K,0,|π|k) for each x ∈ K (see also

Sections 3.3 and 3.10). Then the condition

lim
|x|→∞

f(x)= 0 (3.34)

implies the condition

lim
|x(k)|→∞

fk
(
x(k)

)= 0. (3.35)

Therefore, supp(fk) := M̂fk := {x(k) : fk(x(k)) ≠ 0} is a finite subset of the

discrete space M̂k for each k∈N. Then evidently, π̂k(〈g〉K,ξ) is a closed subset

in NM̂kk for each g∈Cξ0 ((M̂,∞),(N,0)), since the support of each limit point fk
of π̂k(〈g〉K,ξ) is the finite subset in M̂k. Let k0 be such that Nk0 ≠ {0}, then
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this is also true for each k ≥ k0. If fk ∉ π̂k(〈w0〉K,ξ) and k ≥ k0, then f∨nk ∉
π̂k(〈w0〉K,ξ) for each n ∈ N, where f∨nk := fk ∨···∨ fk denotes the n-times

wedge product, since

∥∥f∨n
∥∥
Cξ ≥ ‖f‖Cξ > 0,

∥∥f∨nk
∥∥
C(Kψk ,K

ξ
k)
≥ ‖f‖

C(Kψk ,K
ξ
k)
> 0, (3.36)

where C(Sψ|π|−k ,S
ξ
|π|−k)= π̃k(B((Cξ(Kψ,Kξ),0,1)) is the quotient module over

the ring S|π|−k . Each π̂k(〈f 〉K,ξ) can be presented as the following composition

v1b1+···+vlbl in the additive group L(M̂k,Nk), where each bi corresponds to

π̂k(〈gi〉K,ξ) and the embedding ofΩ(M̂k,Nk) into L(M̂k,Nk), vi ∈ {−1,0,1}, l=
card(M̂fk ), M̂

gi
k are singletons for each i= 1, . . . , l. Using the group Hom0(Nk)we

get that L(M̂k,Nk) is isomorphic with Znk , where nk = card(Nk) > 1. In view of

Corollary 3.3, Lξ(M,N) has the p-adic completion isomorphic with Zℵ0
p , since

Z is dense in Zp and pr-limkZnk = Zℵ0 .

3.11. Note. Using quotient mappingsηp,s : Z→Z/psZwe get that Lξ(M,N)ℵ0

has the compactification equal to
∏
p∈�Z

ℵ0
p , where � denotes the set of all

prime numbers p > 1, s ∈ N. These compactifications produce characters of

Lξ(M,N), since each compact abelian group has only one-dimensional irre-

ducible unitary representations [6]. On the other hand, there are irreducible

continuous representations of compact groups in non-Archimedean Banach

spaces [19]. Among them there are infinite-dimensional [3, 4, 16]. Moreover,

in their initial topologies diffeomorphism and loop groups also have infinite-

dimensional irreducible unitary representations [13, 11].

Acknowledgment. The problem about p-adic completions of diffeomor-

phism and loop groups of manifolds on non-Archimedean Banach spaces over

local fields was formulated by B. Diarra after reading articles of S. V. Lud-
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all his results and proofs were thoroughly corrected due to the discussions

with B. Diarra.
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