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ABSTRACT. The notion of weakly quasi continuous functions introduced by Popa and Stan [1].
In this paper, the authors obtain the further properties of such functions and introduce weak* quasi
continuity which is weaker than semi continuity [2] but independent of weak quasi continuity.
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1. INTRODUCTION

As weak forms of continuity in topological spaces, semi continuity, weak continuity [3], quasi
continuity [4] and almost continuity in the sense of Husain [5] are well known. Neubrunnova [6] showed
that semi continuity is equivalent to quasi continuity. Also, Noiri [7] showed that semi continuity, weak
continuity and almost continuity are respectively independent. In 1973, Popa and Stan [1] introduced
weak quasi continuity which is implied by both weak a-continuity [8] and semi continuity. It is shown in
[7] that weak quasi continuity is equivalent to weak semi continuity due to Arya and Bhamini [9].
Recently, Noiri in [7,8] investigated fundamental properties of weakly quasi continuous functions and
compared the interrelation among weak quasi continuity, weak a-continuity, semi continuity and almost
continuity.

The purpose of this paper is to obtain some characterizations of weakly quasi continuous functions
and investigate the relationships between such functions and some separation axioms. We also introduce
weak* quasi continuity which is weaker than semi continuity but independent of weak quasi continuity.

2. PRELIMINARIES

Throughout the present paper, spaces always mean topological spaces and f : X — Y denotes a
single valued function of a space X into a space Y. Let X be a space and A a subset of X. We denote
the closure of A and the interior of A by CI(A) and Int(A), respectively. A subset A is said to be
semiopen [2] (resp. preopen [10], a-open [11]) if A C Ci(Int(A)) (resp. A C Int(CI(A)),
A C Int(Cl(Int(A)))). We denote the family of semiopen (resp. preopen, a-open) sets of X by SO(X)
(resp. PO(X), a(X)). It is shown that a(X) = SO(X)NPO(X) [12]. The complement of a
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semiopen set is said to be semiclosed The intersection of all semiclosed sets containing A is called the
semi-closure [13] of A and is denoted by s-Cl(A). The semi-interior [13] of A, denoted by s-Int(A), is
defined by the union of all semiopen sets contained in A. A subset A of X is said to be regular open
(resp regular closed) [14] if A = Int(CI(A)) (resp A = Cl(Int(A))). A point z € X is in the f-closure
of A [15], denoted by Cly(A), if A NCI(U) # 0 for each open set U containing z. A subset A is called
O-closed if Clp(A) = A

DEFINITION A. A function f : X — Y is said to be

(a) semi continuous [2] (briefly, s ¢ ) if (V') € SO(X) for each open set V of Y’;

(b) almost continuous [5] if for each z € X and each open set V' containing f(z), CI(f (V) is
a neighborhood of z;

(c) weakly continuous [3] (resp. f-continuous [16]) if for each z € X and each open set
V' containing f(z), there exists an open set U containing z such that f(U) C CI(V) (resp
F(CKT)) C C(V));

(d) weakly a-continuous [8] (briefly, w.a.c.) if for each £ € X and each open set V' containing
f(z), there exists a U € a(X) containing z such that f(U) C CI(V).

3.  WEAKLY QUASI CONTINUOUS FUNCTIONS

DEFINITION 3.1. A function f : X — Y is said to be

(a) weakly quasi continuous [1] (briefly, w.q.c.) if for each z € X, each open set G containing z
and each open set V containing f(z), there exists an open set U of X such that @ # U C G and
fU) cCav),

(b) weakly semi-continuous [9] (briefly, w.s.c.) if for each r € X and each open set V
containing f(x), there exists a U € SO(X) containing z such that f(U) C CI(V).

Noiri showed in [7, Theorem 4.1] that a function f : X — Y is w.q.c. if and only if for each z € X
and each open set V' containing f(z), there exists a U € SO(X) containing x such that f(U) C CI(V).
Hence we know that w.q.c. and w.s.c. are equivalent concepts.

The following is shown in [7, Theorem 4.2, 4.3] and [8, Lemma 5.3].

THEOREM 3.2. For a function f : X — Y, the following are equivalent:

(@ fiswgq.c.

(b)  For each subset B of Y, s-CI(f ' (Int(C1(B)))) C f~}(CI(B)).

(c) For each regular closed set F of Y, s-CI(f "} (Int(F))) c f~(F).

(d)  For each open set B of Y, s-CI(f}(B)) c f~}(CI(B)).

(e) For each open set B of Y, f"\(B) C s-Int(f "} (CI(B))).

()  For each regular closed set B of Y, f~}(B) € SO(X).

(8 Foreachopenset BofY, f~1(B) c Cl(Int(f ' (CI(B)))).

THEOREM 3.3. For afunction f : X — Y, the following are equivalent:

(@ fiswg.c

(b)  For each subset B of Y, s-CI(f~}(B)) C f~1(Cly(B)).

(c) For each subset A of X, f(s-CI(A)) C Cls(f(A)).

(d) For each subset A of X, f(Int(CI(A))) C Cly(f(A)).

(e)  For each subset B of Y, Int(CI(f }(B))) C f~'(Clg(B)).

()  For each open set B of Y, Int(CI(f}(B))) C f~1(CI(B)).

PROOF. It follows immediately from Theorem 3.2 and [17, Theorem 1.5].

THEOREM 3.4. A4 function f: X =Y is a w.q.c. if and only if for each subset B of Y,
s-CI(f ' (Int(Cly(B)))) C ™ (Cly(B)).

PROOF. Necessity. Let B be a subset of Y. Assume that x ¢ f~!(Cly(B)). Then
f(z) ¢ Clg(B) and hence there exists an open set W containing f(z) such that BN CI(W) = @. This
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implies that Cly(B)NW =0 and so W C Y — Cly(B), ie CI(W)C CI(Y — Clg(B)) Since f is
wqc, there exists a U € SO(X) containing z such that f(U) C CI(W) c CI(Y — Clp(B)) This
implies that U Nf '(Int(Cly(B))) =0 and hence z ¢ s-CI(f '(Int(Cly(B)))) Therefore,
s-CI(f '(Int(Cly(B)))) C f '(Cly(B))

Sufficiency Let B be an open set of Y Then clearly CI(B) = Cly(B) By hypothesis, we have
s-Cl(f YInt(CI(B)))) = s-CI(f '(Int(Cly(B)))) C f Y(Cly(B)) = f "(CI(B)) Hence, by Theorem
32, fiswqc

The composition of two w qc functions may fail to be wqc [7] But Noiri showed in [7,
Theorem 6 1 6] that under certain conditions the composition of two functions is w q ¢

THEOREM 3S. let f: X - Y andg:Y — Z be functions.

(@) If fisw.q.c. and gis@-continuous, then go f i1sw.q.c.

(b) If f 1s s.c. and g 1s weakly continuous, then g o f isw.q.c.

PROOF. (a) Let z € X and W be an open set of Z containing g(f(z)) Since g is f-continuous,
there exists an open set V' of Y containing f(z) such that g(Cl(V')) C CI(W) Since f is w qc, there
exists a U € SO(X) containing z such that f(U') C CI(V) Hence g(f(U)) c g(Cl(V)) C C(W)

(b) The proof'is easy and hence omitted

COROLLARY 3.6 (Noiri [7]) Iff: X - Y iswq.c.and g:Y — Z 1s continuous, then go f
IS W.q.c.

LEMMA 3.7 (Noiri and Ahmad [18]) Let A and B be subsets of X. If A€ PO(X) and
B € SO(X), then AN B € SO(X).

THEOREM 38. If f: X - Y 1sw.q.c. and A € PO(X), then the restriction flpa: A— Y 1s
w.q.c.

PROOF. Let r € A and V be an open set of Y containing f(z) Since f is wqc, there
exists a U € SO(X) containing z such that f(U) C CI(V) Since A € PO(X), by Lemma 37
z€ ANU € SO(X) and (f|a)(ANU) = f(ANU) C f(U)C CI(V) Hence flaiswqc

COROLLARY 3.9 (Noiri [7]) If f: X - Y is w.q.c. and A 1s open in X, then the restriction
fla:A>Yiswgqec

COROLLARY 3.10 (Arya and Bhamini [9])) If f: X — Y isw.q.c. and A € a(X), then the
restriction flp: A — Y isw.q.c.

Sufficient condition for a function to be w q ¢, when it is given to be so in some subspace, is given
in the following

THEOREM 3.11. Let f: X —Y be a function and {A,|i € I} be a cover of X such that
A, € SO(X) foreachi € I. If fla, : A, > Y isw.q.c foreachi € I, then f 1sw.q.c.

PROOF. Let V be a regular closed set of Y. Then (f|4,) (V) € SO(A,) Since 4, € SO(X),
by Theorem 2 4 of [19], (f]a,) (V) € SO(X) for each i € I But f 1 (V) = U.,es((fla,) ' (V)
Then f~1(V) € SO(X) because the union of semiopen sets is semiopen [2] Hence, by Theorem 3 2 f
iswqc

COROLLARY 3.12. Let f: X —» Y be a function and {A,|i € I} be a cover of X such that
A, € a(X) foreachi € I. If f|a, : A, — Y isw.q.c. foreachi € I, then f isw.q.c.

COROLLARY 3.13. Let f: X — Y be a function and {A,|i € I} be a cover of X such that A,
isopenin X foreachi € I. If fla, : A, > Y isw.q.c. foreachi € I, then f 1s w.q.c.

DEFINITION 3.14. Let A be a subset of X A function f : X — Ais called a w q ¢ retraction if
fiswqc and f|4 is the identity function on A

THEOREM 3.15. Let A be a subset of X and f - X — A be aw.q.c. retraction. If X 1s Ty, then

A 1s semiclosed in X.
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PROOF. Suppose that A is not semiclosed Then there exists a x € X such that z € s-
CI(A) — A Since fisawqc retraction, f(z) # z By the T, property of X, there exist disjoint open
sets U and V such that z€ U and f(z) € V which implies UNCIV)=0. Let W € SO(X)
containing z. Then UNW € SO(X) and hence (UNW)NA #0 because = € s-ClI(A). Let
ye(UNW)NA. Sincey € A, wehave f(y) =ye UNWNACU and hence f(y) ¢ CI(V) This
implies that f(W) ¢ CI(V) because y € W. This is contrary to the fact that f is wqc Hence 4 is
semiclosed in X.

In [8], Noiri showed that if Y is T, f; : X > Y issc, f: X > Y iswa.c and f; = fyona
dense subset of X, then f; = f, on X Similarly, we have

THEOREM 3.16. LetY be T, and f, : X — Y be almost continuous. If fo : X =Y isw.q.c
and if f| = f, on a dense subset D of X, then f| = f, on X.

PROOF. Similar to the proof of [8, Theorem 4 10] by using Lemma 3.7.

THEOREM 3.17. LetY be Urysohnand f; : X - Y bew.q.c. If fy: X - Y isw.a.c. and if
f1 = f, on adense subset D of X, then f| = f, on X.

PROOF. Similar to the proof of [8, Theorem 4.10].

4. GRAPHS OF FUNCTIONS

The graph of a function f: X — Y, denoted by G(f), is the subset {(z, f(z))|z € X} of the
product space X x Y. Noiri [20] showed that if f : X — Y is weakly continuous and Y is T3, then the
graph G(f) is closed. Using "w.q.c." and "semiclosed" instead of "weakly continuous" and "closed"
respectively, we obtain the following.

THEOREM 4.1. If f: X > Y iswq.c. and Y is Ty, then for each (x,y) ¢ G(f), there exist
U € SO(X) and open set V in X suchthatz € U, y € V and f(U) NInt(CI(V')) = 0.

PROOF. Let (z,y) ¢ G(f). Theny # f(x). SinceY is T3, there exist disjoint open sets V' and
W such that y € V and f(z) € W. This implies that Int(CI(V')) N CI((W) = 0. Since f is w.q.c., there
exists U € SO(X) containing z such that f(U) C CI(W). Hence f(U) NInt(CI(V)) = 0.

COROLLARY 4.2. If f : X - Y isw.q.c. andY is Ty, then the graph G(f) is semiclosed.

PROOF. It follows from Theorem 4.1.

THEOREM 4.3. If f : X —» Y isaw.q.c. and S is 6-closed subset in X x Y, then p;(S N G(f))
is semiclosed in X, where p, is the projection of X x Y onto X.

PROOF. Let z € 3-Cl(p,;(S N G(f))), where S is a f-closed subset of X x Y.

Let U and V be any open sets of X and Y containing z and f(z), respectively. Since f is w.q.c,,
by Theorem 3.2 z € f~1(V) C s-Int(f " (CI(V))). Since U N s-Int(f ' (CI(V))) € SO(X) containing
z, (UNs-Int(f71(CI(V))) Npy (SNG(F)) # 0. Let 7o € (U Ns-Int(f~(CI(V)))) Np1 (SN G(f)).
This implies that (zo, f(zo)) €S and f(xo) € CI(V).  Therefore, ¢ # (U x CI(V))NS C
CI(U x V)NS and consequently, (z, f(z)) € Clg(S). Since S is O-closed, (z, f(x)) € SNG(f).
Hence z € p,(S NG(f)). This shows that p,(S NG(f)) is semiclosed in X

COROLLARY 4.4. If f: X > Y has a 6-closed graph G(f) and g: X — Y is w.q.c., then
{z € X|f(z) = g(z)} is semiclosed.

PROOF. Since {z € X|f(z) = g(z)} = p,(G(f) NG(g)) and G(f) is a O-closed subset of
X x Y, it follows from Theorem 4.3 that {z € X|f(z) = g(z)} is semiclosed.

COROLLARY 4.5. If f : X - Y is 6-continuous, g : X — Y is w.q.c. and Y is Urysohn, then
{z € X|f(z) = g(z)} is semiclosed.

PROOF. It follows from Theorem 7 of [21] and Corollary 4.4.

DEFINITION 4.6. Let f: X —»Y be a function. The graph G(f) is said to be strongly
semiclosed if for each (z,y) € X x Y — G(f), there exist U € SO(X) and V € SO(Y) such that
zeU,yeVand (U x s-CI(V))NG(f) =0.
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LEMMA 4.7. If f: X Y has a strongly semiclosed graph G(f) if and only if for cach
(z,y) € X XY —G(f) there exist U € SO(X) and V € SO(Y) such that z€U,yeV and
FU)Ns-CV) =10

PROOF. It follows from Definition 4 6

THEOREM 4.8. If f: X - Y isw.q.c. and Y 1s Urysohn, then G(f) s strongly semiclosed in
X xY.

PROOF. Since s-Cl(U) C CI(U) for each subset U of X, it follows immediately from Lemma
47
5.  WEAK®* QUASI CONTINUITY

DEFINITION 5.1. A function f* X — Y is weakly* quasi continuous (briefly, w* q ¢ ) if for
each open set V of Y, f~!(Fr(V)) is semiclosed in X, where Fr(V) denotes the frontier of V

Every sc function is w* q ¢ but the converse is not true as the following Example 5 2 shows
Moreover, Example S 2 and 5 3 show that w q ¢ and w* q ¢ are independent of each other

EXAMPLE 52. Let X ={a,b,c},7={¢,X {a}} and o= {9, X, {a},{bc}} Let
f (X,7) - (X, o) be the identity function Then f is w* qc However, f is not s ¢ and hence not
wqc

EXAMPLE 53. Let X ={a,b,c},7={¢X,{a}} and o= {¢,X,{b}} Let
f:(X,7) = (Xo) be the identity function Then fis w qc but f is not w* q ¢

The w q ¢ functions are not generally s ¢ [7] The next two theorems give conditions under which
wqc and s ¢ functions are equivalent A space X is said to be extremally disconnected if the closure of
each open set is open in X

THEOREM 5.4. Let f : X — Y be a function and X be extremally disconnected. Then f 1s s.c.
ifand only if f isw.q.c. and w*.q.c.

PROOF. The necessity is clear

Sufficiency Let z € X and V be any open set containing f(z) Since f is w q ¢, there exists a
U € SO(X) containing z such that f(U)cC CI(V) But since f is w*gqc,
FFUFr(V))=fY(CI(V)—V) is semiclosed and hence by Proposition of [22]
U-fY(Fr(V)) € SO(X) Further f(z) ¢ Fr(V) implies z ¢ f~'(Fr(V)) The proof will be
complete if we show that f(z)€ f(U— f Y Fr(V))CV Let yeU— f"Y(Fr(V)) Then
fly) eCV) Buty¢ fH(Fr(V))andso f(y) ¢ Fr(V) = Cl(V) — V which implies that f(y) € V

In Theorem 5.4, we cannot drop the assumption that X is extremally disconnected as Example 5 5
shows

EXAMPLE 55. Let X ={a,b,c,d}, 7= {¢, X, {b},{c},{b,c},{a,b,c},{b,c,d}} and
o={¢,X,{a},{c},{a,c},{a,b,c}} Let f:(X,7) — (X,0) be the identity function Then f is
wqc and w¥qc butnotsc

A space X is said to be rim-compact [14] if each point of X has a base of neighborhoods with
compact frontiers

THEOREM 5.6. If f : X — Y 1s w.q.c. with the closed graph G(f) and'Y is rim-compact, then
fiss.c

PROOF. Let z € X and V' be any open set containing f(z) Since Y is rim-compact, there exists
an open set W of Y'such that f(z) € W C V and Fr(W) is compact Because f is w q ¢, there exists a
U € SO(X) containing z such that F(U) C CI(W) Let y€ Fr(W) Since f(z) € W which 1s
disjoint from F'r(W), (z,y) € G(f) Then since G(f) is closed, there exist open sets U, and V, such
thatz € Uy, y € V, and f(U,) NV, =0 The collection {V,|y € Fr(W)} is an open cover of Fr(W)
Since Fr(W) is compact, there exist a finite number of points yi,ys,...,yn in Fr(W) such that
Fr(W)c u,V, LetUy=Un(U,U,) ThenU; € SO(X) and



772

J H PARK ANDH Y HA

f(Uo) € f(NLU,) € N4 f(U)

which is disjoint from U[_,V, and hence disjoint from Fr(W). Thus f(Uy) N Fr(W) = 0. However
f(Uo) C f(U) Cc CI(W) Therefore, f(Uy) C CI(W) — Fr(W) C W Hence f is s.c.
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