COMPACTIFYING A CONVERGENCE SPACE WITH FUNCTIONS

ROBERT P. ANDRÉ

Luther College
University of Regina Campus
Regina, Saskatchewan
Canada
S4S 0A2

e-mail: andrer@meena.uregina.ca

(Received November 22, 1994 and in revised form March 25,1995)

ABSTRACT. A convergence space is a set together with a convergence structure. In this paper we discuss a method of constructing compactifications on a class of convergence spaces by use of functions.

KEYWORDS AND PHRASES: Compactification, convergence space, pretopological, singular compactification, singular set of a function.

A.M.S. SUBJECT CLASSIFICATION CODE: 54D35, 54A20, 54B20.

1. INTRODUCTION.

The terms whose definitions are given here for the sake of completeness are discussed in many textbooks in topology. A set Δ is a directed set if there exists a relation \leq on Δ such that 1) $\delta \leq \delta$ for all $\delta \in \Delta$, 2) $\delta_1 \leq \delta_2$ and $\delta_2 \leq \delta_3$ implies that $\delta_1 \leq \delta_3$ and 3) if δ_1 and δ_2 belong to Δ then there exists some element δ_3 in Δ such that $\delta_1 \leq \delta_3$ and $\delta_2 \leq \delta_3$. A net in a set X is a function $s:\Delta \to X$ from a directed set Δ into X. If λ is in the domain Δ of the net $s:\Delta \to X$ we will denote $s(\lambda)$ by s_λ and the net s in X by $\{s_\lambda:\lambda\in\Delta\}$. For a directed set Δ we will denote by $\mu\Delta$ the set $\{\delta\in\Delta:\delta\geq\mu\}$. If Σ is a subset of the directed set Δ then Σ is cofinal in Δ (or frequently in Δ) if $\mu\Delta\cap\Sigma\neq\emptyset$ for any $\mu\in\Delta$. If $t:\Sigma\to X$ is a function from Σ into X then t is a subnet of $s:\Delta\to X$ if for any $\mu\in\Delta$ there exists a $\delta\in\Sigma$ such that $t[\delta\Sigma]\subseteq s[\mu\Delta]$. A universal net (or ultranet) is a net with no proper subnet. The following ideas are introduced in So [18]. A convergence structure on a set X is a class C of ordered pairs (s,x) where s is a net in X and $s\in X$ such that for any (s,x) in C the ordered pair (t,x) also belongs to C if t is a subnet of s. A convergence space (X,C) is a set X on which we have defined a convergence structure C. If a convergence structure C is defined on a set C we will usually abbreviate C by C and C if C if a convergence structure C is defined on a set C we will usually abbreviate C by C and C if C if a convergence structure C is defined on a set C we will usually abbreviate C by C and C if every net in C has a convergent subnet in C and, finally, C is C and finally, C is a convergence space C if C is defined in C in C

Throughout this paper X will denote a convergence space. If $E \subseteq X$ then $cl_X E = E \cup \{x \in X : \text{there is some net s in E such that } s \to x\}$. Note that this closure operator is not necessarily idempotent, i.e., $cl_X E$ may be a proper subset of $cl_X cl_X E$. A subset E of X is *dense* in X if $cl_X E = X$. If f is a map from X into a

convergence space Y then we say that f is *continuous* if $s \to x$ in X implies that $f \circ s \to f(x)$. Furthermore, if f is one-to-one, continuous, and onto Y and if $f \leftarrow : Y \rightarrow X$ is continuous then f is called a homeomorphism from X onto Y. As for topological spaces a compactification Y of X is an ordered pair (Y,h) where Y is a compact convergence space and h is a homeomorphism of X into Y such that h[X] is dense in Y. Given a compactification αX of a space X the *outgrowth* (or *remainder*) of X in αX is $\alpha X X$. Two compactifications αX and γX of X are said to be *equivalent* if there exists a homeomorphism between αX and γX that fixes the points of X. We will say that X is pseudotopological at x if X satisfies the following property: if every universal subnet of a net s in X converges to x then s converges to x. We will sat that X is pretopological at x if X satisfies the following property: If for a net of nets $S = \{s_{\delta} : \delta \in \Delta\}$ each net $s_{\delta} = \{s_{\delta}^{\mu} : \mu \in \Delta_{\delta}\}\$ (where Δ_{δ} is the domain of s_{δ}) converges to a point x_{δ} in X and $\{x_{\delta} : \delta \in \Delta\}$ converges to a point x in X, then the net $\{s_{\delta}^{\mu}: \delta \in \Delta, \mu \in \Delta_{\delta}\}\$ ordered lexicographically by Δ , then by Δ_{δ} , has a subnet which converges to x (i.e. S has a "diagonal net" that converges to x). A convergence space X is said to be pseudotopological (pretopological) if X is pseudotopological (respectively pretopological) at every point in X. It is known that if a convergence space X is both pseudotopological and pretopological and satisfies the property: "for a net $s: \Delta \to X$, $s_{\delta} = x$ for each $\delta \in \Delta$ implies $s_{\delta} \to x$ ", then we obtain a topology on X by defining the closure of a set E in X as $cl_X E = \{x \in X : \text{there is some net s in E such that}$ $s \rightarrow x$ (see 1D of Willard [20]).

The following theorem is straightforward.

THEOREM 1. A convergence space \boldsymbol{X} is compact if and only if every universal net in \boldsymbol{X} converges.

We will say that a net $s = \{s_{\delta} : \delta \in \Delta\}$ in X is *eventually* in $E \subseteq X$ if $s[\mu \Delta] \subseteq E$ for some $\mu \in \Delta$. The following lemma is Proposition 3.3 in Aarnes et al. [2].

LEMMA 2. If s is a net in X, then s is universal if and only if for each subset E of X, s is eventually in E or eventually in $X \setminus E$.

In So [18] the author develops a method for constructing the one-point compactification of a non-compact Hausdorff convergence space X and discusses some of the properties of this compactification. In this paper we discuss a general method of constructing compactifications of a convergence space X. In particular we use this method to construct a compactification to which every real-valued bounded function on X extends.

2. PRELIMINARY DEFINITIONS AND RESULTS.

The following technique for constructing compactifications is modeled on a method of constructing Hausdorff compactifications of locally compact Hausdorff spaces by using functions from X into a compact Hausdorff space K (see André [1], Chandler et al. [5], [6], Cain et al. [4], and Faulkner [11]). Let $f: X \to K$ be a continuous function from the non-compact Hausdorff convergence space X into a compact Hausdorff topological space K. Let $Y = cl_K f[X]$, $K_X = \{F \subseteq X : F \text{ is compact}\}$ and $S(f) = \bigcap\{cl_Y f[X Y] : F \in K_X\}$. The subset S(f) in K will be called the *singular set* of f. Clearly S(f) is closed and hence is compact in Y.

LEMMA 3. Let $f: X \to K$ be a function from a non-compact Hausdorff convergence space X into a compact Hausdorff topological space K. If $s: \Delta \to X$ is a net in X that does not contain a convergent subnet then any subnet of the net f in $Y = cl_K f[X]$ converges to a point in S(f).

PROOF. Let $f: X \to K$ be a function from a non-compact Hausdorff convergence space X into a compact Hausdorff topological space K and let $s: \Delta \to X$ be a net in X that does not contain a convergent subnet. Since K is compact the net $f \circ s$ has a convergent subnet t that converges to some point y in Y. We

claim that $y \in S(f)$. Let F be a compact subset of X. Since s has no convergent subnet in X there exists a $\mu \in \Delta$ such that $s[\mu\Delta] \subseteq X \setminus F$. Consequently $f \circ s[\mu\Delta] \subseteq f[X \setminus F]$. It follows that $y \in cl_Y f \circ s[\mu\Delta] \subseteq cl_Y f[X \setminus F]$. Since F was an arbitrary compact subset of X, $y \in \bigcap \{cl_X f[X \setminus F] : F \in K_X\} = S(f)$ as claimed. \square 3. THE MAIN RESULTS.

Given an arbitrary continuous function $f: X \to K$ from a non-compact Hausdorff convergence space X into a compact Hausdorff topological space K let $X^f = X \cup S(f)$. We define a convergence structure on X^f as follows. A net s in X^f converges to a point x in X if and only if s is frequently in X (i.e., s has a cofinal subnet in X) and $s|_X$ converges to x. Let $f^*: X^f \to K$ be the function such that $f^*|_{S(f)}$ is the identity function on S(f) and $f^*|_X = f$ on X. A net s in X^f converges to a point y in S(f) if and only if s has no convergent subnet in X and $f^*\circ s$ converges to y in S(f) (noting that, by lemma 3, y belongs to S(f)).

Let us now verify whether we have defined a convergence structure on X^f . We are required to show that if s converges to x in X^f and t is a subnet of s then t also converges to x. It will suffice to show this for a net s in X^f that converges to a point x in S(f). If s is a net in X^f that converges to a point x in S(f) then s has no convergent subnet in X and $f^*\circ s$ converges to x in S(f). Let t be a subnet of s. Then $f^*\circ t$ is a subnet of $f^*\circ s$ in K and so $f^*\circ t$ converges to x in K; hence t converges to x. It follows that X^f is a convergence space.

The following is a generalization of theorem 1.1 of Cain [4].

LEMMA 4. Let f be a continuous function from a Hausdorff convergence space X to a compact Hausdorff **topological** space Z. Let $Y = cl_Z f[X]$ and $K_X = \{F \subseteq X : F \text{ is compact}\}$. Then the set $\{x \in K : cl_X f \leftarrow [U] \text{ is not compact for any open neighbourhood } U \text{ of } x \text{ in } K\} = S(f) (= \bigcap \{cl_Y f[X \setminus F] : F \in K_X\})$.

PROOF. Let $T = \{x \in K : cl_X f \leftarrow [U] \text{ is not compact for any open neighbourhood } U \text{ of } x \text{ in } K\}$. We will first show that $T \subseteq S(f)$. Let $F \in K_X$. Suppose p belongs to $Y \sim cl_Y f[X \land F]$. Then there exists an open neighbourhood U of p in Y such that $f \leftarrow [U] \subseteq F$ (since Y is a compact Hausdorff topological space). Hence $p \notin T$ (since $cl_X f \leftarrow [U]$ is compact). We have thus shown that $T \subseteq cl_Y f[X \land F]$. Since F was arbitrarily chosen in K_X , it follows that $T \subseteq cl_Y f[X \land F] : F \in K_X \} = S(f)$. Suppose now that x belongs to S(f). If x belongs to $Y \land T$ then there exists an open neighbourhood U of x in Y such that $cl_X f \leftarrow [U]$ is compact. But

```
x \in \bigcap \{cl_Y f[X \setminus F] : F \in K_X\}
\subseteq cl_Y f[X \setminus cl_X f^{\leftarrow}[U]] \quad (since \ cl_X f^{\leftarrow}[U] \in K_X)
\subseteq cl_Y f[X \setminus f^{\leftarrow}[U]]
\subseteq cl_Y f \circ f^{\leftarrow}[Y \setminus U]
= Y \setminus U.
```

This contradicts that x belongs to U. Consequently $\cap \{cl_Y f[X \setminus F] : F \in K_X\} \subseteq T$. The lemma follows. \square DEFINITION 5. We will say that a convergence space X is a *LC space* if it satisfies the following property:

LC: Let $S = \{s_{\delta} : \delta \in \Delta\}$ be any net of nets in X such that each net $s_{\delta} = \{s_{\delta}^{\mu} : \mu \in \Delta_{\delta}\}$ (where Δ_{δ} is the domain of s_{δ}) in S has no convergent subnet in X. Let $D = \{s_{\delta}^{\mu} : \delta \in \Delta, \mu \in \Delta_{\delta}\}$ ordered lexicographically by Δ_{δ} , then by Δ_{δ} . Then no subnet of D is compact.

PROPOSITION 6. A Tychonoff topological space X is locally compact if and only if X is an LC space.

PROOF. Suppose X is a locally compact Tychonoff space. We can then construct the Stone-Čech compactification βX in which X is open (see 18.4 of Willard [20]). Let $S = \{s_{\delta} : \delta \in \Delta\}$ be a net of nets in X such that each net $s_{\delta} = \{s_{\delta}^{\mu} : \mu \in \Delta_{\delta}\}$ has no convergent subnet in X. Let $D = \{s_{\delta}^{\mu} : \delta \in \Delta, \mu \in \Delta_{\delta}\}$.

Suppose that, for each $\delta \in \Delta$, $l(t_{\delta})$ is the limit of some convergent subnet $t_{\delta} = \{s_{\delta}^{\mu} : \mu \in \Sigma_{\delta}\}$ of s_{δ} . Since $\beta X \setminus X$ is compact the net $\{l(t_{\delta}) : \delta \in \Delta\}$ has a subnet $\{l(t_{\delta}) : \delta \in \Sigma\}$ which converges to some point x in $\beta X \setminus X$. Let T be any subnet of $\{s_{\delta}^{\mu} : \delta \in \Sigma, \mu \in \Sigma_{\delta}\}$ (itself a subnet of D). Then T is of the form $T = \{s_{\delta}^{\mu} : \delta \in \Lambda, \mu \in \Lambda_{\delta}\}$ (where $\{s_{\delta} : \delta \in \Lambda\}$ is a subnet of $\{s_{\delta} : \delta \in \Sigma\}$ and $\{s_{\delta}^{\mu} : \mu \in \Lambda_{\delta}\}$ is a subnet of $\{s_{\delta}^{\mu} : \mu \in \Sigma_{\delta}\}$ for each $\delta \in \Sigma$). It follows that $\{s_{\delta}^{\mu} : \mu \in \Lambda_{\delta}\}$ converges to $l(t_{\delta})$, for each $\delta \in \Lambda$. Since βX is topological it is pretopological. Hence the net $T = \{s_{\delta}^{\mu} : \delta \in \Lambda, \mu \in \Lambda_{\delta}\}$ has a subnet H that converges to X (since $\{l(t_{\delta}) : \delta \in \Lambda\}$ converges to X). It then follows that every subnet of H converges to X, i.e., no subnet of H converges in X. This means that the subnet T of D has a subnet H with no convergent subnet in X. We have shown that X is a LC space.

We now prove the converse. Suppose X is a Tychonoff LC space that is not locally compact. Then the outgrowth $\beta X \setminus X$ of the Stone-Čech compactification βX of X is not closed in βX (see 18.4 of [20]). Then there exists a net s in $\beta X \setminus X$ that converges to a point x in X. Let $D = \{s^{\mu}_{\delta} : \delta \in \Delta, \mu \in \Delta_{\delta}\}$, where s_{δ} and s^{μ}_{δ} are as described in the previous paragraph. Since βX is pretopological D has a subnet H that converges to x. This means that H is compact, contradicting our hypothesis. Thus X must be locally compact.

'We shall see that the LC property will guarantee that X is dense in Xf.

We will now show that, for any continuous function $f: X \to K$ from a non-compact Hausdorff LC convergence space X into a compact Hausdorff topological space K, X^f is a Hausdorff compactification of X.

THEOREM 7. If $f: X \to K$ is a continuous function from a non-compact Hausdorff LC convergence space X into a compact Hausdorff topological space K and $X^f = X \cup S(f)$ is equipped with the convergence structure described above, then X^f is a compact, Hausdorff convergence space that densely contains X.

PROOF. We will begin by showing that X^f is compact. Let s be a universal net in X^f such that s is eventually in X. Suppose s does not converge to a point in X. Then the universal net f^* s converges to some point x in S(f) (by lemma 3). Hence s converges to x in X^f . Thus every universal net in X converges in X^f . Obviously every universal net in S(f) converges in X^f . It follows that X^f is compact.

To verify that X^f is Hausdorff suppose s is a net in X^f that converges to both x and y in X^f . If $x \in X$ then s is frequently in X and $s|_X$ converges to x. Since s has a convergent subnet in X s cannot converge to a point y in S(f); hence y is in X. Since X is Hausdorff, x = y. Suppose $\{x,y\} \subseteq S(f)$. This means that s has no convergent subnet in X and that $f^*\circ s$ converges to both x and y in S(f); hence x = y (since S(f) is Hausdorff). Thus X^f is Hausdorff.

 neighbourhoods of x). For each $\delta \in \Delta$ let Δ_{δ} denote the domain of s_{δ} and let $s_{\delta} = \{s_{\delta}^{\mu} : \mu \in \Delta_{\delta}\}$. We claim that the net $D = \{s_{\delta}^{\mu} : \delta \in \Delta, \mu \in \Delta_{\delta}\}$ ordered lexicographically by Δ , then by Δ_{δ} , has a subnet that converges to x. Let T be a subnet of D. Since X was declared to be a LC space then T has a subnet H with no convergent subnet. We claim that H converges to x. If U is an arbitrary open neighbourhood of x in S(f), then there exists an $\alpha \in \Delta$ such that $\{l(s_{\delta}) : \delta \in \alpha\Delta\} \subseteq U$. For $\delta \in \alpha\Delta$, $\{s_{\delta}^{\mu} : \mu \in \Delta_{\delta}\}$ converges to $l(s_{\delta})$; hence $f^* \circ s_{\delta}^{\mu}$ converges to $l(s_{\delta})$. Hence for any $\delta \in \alpha\Delta$ there exists $\mu_{\alpha} \in \Delta_{\delta}$ such that $\{f^* \circ s_{\delta}^{\mu} : \mu \in \mu_{\alpha}\Delta_{\delta}\} \subseteq U$. Then, for any $\delta \in \alpha\Delta$, $f^* = [f^* \circ s_{\delta}^{\mu} : \mu \in \mu_{\alpha}\Delta_{\delta}] \subseteq f^* = [U]$ and so $\{s_{\delta}^{\mu} : \delta \in \alpha\Delta, \mu \in \mu_{\alpha}\Delta_{\delta}\}$ $\subseteq f^* = [U]$. Hence $f^* \circ H$ is eventually in $f^* \circ f^* = [U] = U$. Since U was an arbitrary open neighbourhood of x $f^* \circ H$ converges to x. Since H has no convergent subnet and $f^* \circ H$ converges to x then H converges to x (by definition of the convergence structure on X^f). This means that $x \in c_{IX}X$ and so X is dense in X^f .

We have shown that X^f is a Hausdorff compactification of X.

Observe that in the last part of the above proof we have shown that, if X is a non-compact Hausdorff LC convergence space and f is a continuous function from X into a compact Hausdorff topological space then X^f is pretopological at each point x in S(f).

PROPOSITION 8. If $f: X \to K$ is a function from a Hausdorff convergence space X into a compact Hausdorff topological space K then the function f extends continuously to a function $f^*: X^f \to K$ where $f^*|_{S(f)}$ is the identity function on S(f).

PROOF. Clearly both $f^*|_{S(f)}$ and $f^*|_{X}=f$ are continuous on S(f) and X respectively. Let s be a net in X that converges to x in S(f). Then $f^*\circ s$ converges to $x=f^*(x)$ in S(f) (by definition of the convergence structure on X^f). Hence $f^*\circ s$ converges to $f^*(x)$. Thus f^* is continuous on X^f .

EXAMPLE 9. Let X be the real line. Let a net $s:\Delta\to X$ (in X) converge to a point x in X if and only if x is an integer and for any $\alpha\in\Delta$ there exists a $\gamma\geq\alpha$ such that $s[\gamma\Delta]\subseteq(x-1,x]$. Observe that X is a Hausdorff convergence space. To show that X is a LC space let $S=\{s_\delta:\delta\in\Delta\}$ be a net of nets each of which has no convergent subnet in X. For each $\delta\in\Delta$, let $s_\delta=\{s_\delta^\mu:\mu\in\Delta_\delta\}$ and let $D=\{s_\delta^\mu:\delta\in\Delta,\mu\in\Delta_\delta\}$ (ordered lexicographically). Let $T=\{s_\delta^\mu:\delta\in\Sigma,\mu\in\Sigma_\delta\}$ be a subnet of D. We claim that T is not compact (hence X is a LC space). If $\delta\in\Sigma$ and $\mu\in\Sigma_\delta$ then there exists a $\gamma\in\Sigma_\delta$ such that $s_\delta^\gamma>s_\delta^\mu+1$ (since no cofinal subset of $s_\delta[\Sigma_\delta]$ is bounded in the space of real numbers **R**). Consequently for each $\delta\in\Sigma$ the net $s_\delta=\{s_\delta^\mu:\mu\in\Sigma_\delta\}$ has a countably infinite subnet $t_\delta=\{s_\delta^\mu:\mu\in\Lambda_\delta\}$ with no bounded interval in X containing more than finitely many points of t_δ . Let $\alpha\in\Sigma$ and $\beta\in\Lambda_\delta$. Then there exists a $\delta_1>\alpha$ in Σ and μ_1 in Λ_δ such that $s_{\delta_1}^{\mu_1}>s_\alpha^\beta+1$. Consequently we can construct a cofinal subset H of T such that H has no convergent subnet. It follows that T is not compact; hence X is a LC space.

Let $f: X \to [-1,1]$ be the function from X into [-1,1] (equipped with the usual interval topology) defined as $f(x) = \sin(n)$ if $x \in (n-1,n]$ where n is an integer. If t is a net in X that converges to a point $y \in (n-1,n]$ for some integer n then t is eventually in (n-1,n]; hence $f \circ t$ is eventually $\sin(n) = f(n)$. It then follows that f is continuous on X. We claim that if U is an open interval in [-1,1] then there exist an infinite number of integers r such that $\sin(r) \in U$. It would then follow that $\operatorname{cl}_X f^{\leftarrow}[U]$ is not compact in X for any open neighbourhood U in [-1,1]. Let Z denote the set of all integers. If $n \in \mathbb{Z}$ let $[n\pi]$ denote the largest integer less than $n\pi$. We will use the following fact: The set $\{n\pi - [n\pi] : n \in \mathbb{Z}\}$ is dense (equivalently, uniformly distributed) in [0,1]. (This fact is proved in most books on number theory). Let $\varepsilon > 0$ and m be any number. We claim that there exists an integer r such that $\sin(r) \in (\sin(m) - \varepsilon, \sin(m) + \varepsilon)$. There exists a $\delta > 0$ such that $\sin[(m - \delta, m + \delta)] \subseteq (\sin(m) - \varepsilon, \sin(m) + \varepsilon)$. Suppose $m \ge 0$ and let k

be an even integer larger than m+1. Since the set $\{n\pi - [n\pi] : n \in \mathbb{Z}\}$ is dense in [0,1] then the set $\{k(n\pi - [n\pi]) : n \in \mathbb{Z}\}$ is dense in [0,k]. Then there exists an integer $t \in \mathbb{Z}$ such that $k(t\pi - [t\pi]) \in (m, m+\delta)$ $\subseteq [0,k]$ and so $\sin(kt\pi - k[t\pi]) \in (\sin(m) - \varepsilon,\sin(m) + \varepsilon)$. But $\sin(kt\pi - k[t\pi]) = \sin(kt\pi)\cos(-k[t\pi]) + \sin(-k[t\pi])\cos(kt\pi) = 0 + \sin(-k[t\pi])$, the sine of an integer. Thus if $r = -k[t\pi]$, $\sin(r) \in (\sin(m) - \varepsilon,\sin(m) + \varepsilon)$. It easily follows that $\sin^{\leftarrow}[(\sin(m) - \varepsilon,\sin(m) + \varepsilon)] \cap \mathbb{Z}$ is infinite. We arrive at the same conclusion if we choose m < 0. Hence $cl_X f^{\leftarrow}[(\sin(m) - \varepsilon,\sin(m) + \varepsilon)]$ is non-compact in X. Thus $f[X] = \sin[\mathbb{Z}]$ is dense in S(f). Hence X^f is a compactification of X whose outgrowth is S(f) = [-1,1].

The example above illustrates a special type of compactification called a singular compactification. We define this below.

If the function $f: X \to K$ from a Hausdorff convergence space X into a compact Hausdorff topological space K maps X into S(f) then we will say that f is a *singular function* and call X^f a *singular compactification* of X. Singular compactifications of locally compact Hausdorff spaces are discussed extensively in André [1] and Chandler [5]. They are characterized as being those compactifications αX of X whose outgrowth $\alpha X \setminus X$ is a retract of αX .

The following theorem follows easily from Proposition 8.

THEOREM 10. If $f: X \to K$ is a singular function from a Hausdorff convergence space X into a compact Hausdorff topological space K then S(f) is a retract of X^f under the function $f^*: X^f \to S(f)$ where $f^*|_{X=f}$ and $f^*|_{S(f)}$ is the identity function on S(f).

In example 9 above, the closed interval [-1,1] = S(f) is a retract of X^f .

Proposition 11 is a generalization of lemma 1 in Chandler [5].

PROPOSITION 11. Let αX be a Hausdorff compactification of a convergence space X such that $\alpha X \setminus X$ is compact. If $f: X \to K$ is a continuous function from X into a compact Hausdorff topological space K that extends to $f^{\alpha}: \alpha X \to K$ then $f^{\alpha}[\alpha X \setminus X] = S(f)$.

PROOF. Let $Y = \operatorname{cl}_K f[X]$. We are required to show that $f^{\alpha}[\alpha X \setminus X]$ is contained in $\operatorname{cl}_Y f[X \setminus F]$ for all $F \in K_X$. Let $F \in K_X$ (where K_X is as described above). Then $\alpha X \setminus X \subseteq \operatorname{cl}_{\alpha X}(X \setminus F)$ (since every net in F has a convergent subnet in F and $\alpha X \setminus X \subseteq \operatorname{cl}_{\alpha X}(F \cup X \setminus F) = \operatorname{cl}_{\alpha X} F \cup \operatorname{cl}_{\alpha X} X \setminus F = F \cup \operatorname{cl}_{\alpha X}(X \setminus F)$). Hence $f^{\alpha}[\alpha X \setminus X] \subseteq f^{\alpha}[\operatorname{cl}_{\alpha X}(X \setminus F)] \subseteq \operatorname{cl}_Y f[X \setminus F]$. Since this is true for all $F \in K_X$, $f^{\alpha}[\alpha X \setminus X] \subseteq \cap \{\operatorname{cl}_Y f[X \setminus F] : F \in K_X\} = S(f)$.

Let $p \in K \setminus f^{\alpha}[\alpha X \setminus X]$. Let U be an open neighbourhood (in K) of p such that $cl_K U$ misses $f^{\alpha}[\alpha X \setminus X]$. Then $cl_{\alpha X} f^{\alpha \leftarrow}[U] \subseteq f^{\alpha \leftarrow}[cl_Y U] \subseteq X$. Hence $cl_X f^{\leftarrow}[U]$ (= $cl_{\alpha X} f^{\alpha \leftarrow}[U]$) is a compact subset of X. This implies that p cannot belong to S(f) (by lemma 4). Hence $S(f) = f^{\alpha}[\alpha X \setminus X]$.

LEMMA 12. Let $f: X \to K$ be a continuous function from a Hausdorff LC convergence space X into a compact Hausdorff topological space K. If αX is a Hausdorff compactification of X such that $\alpha X \setminus X$ is compact and f extends continuously to $f^{\alpha}: \alpha X \to K$ so that f^{α} separates the points of $\alpha X \setminus X$, then αX is equivalent (as a compactification of X) to $X^f = X \cup S(f)$.

PROOF. By 11, $f^{\alpha}[\alpha X \setminus X] = S(f)$. We define a function $j : \alpha X \to X \cup S(f)$ as follows: $j(x) = f^{\alpha}(x)$ if x belongs to $\alpha X \setminus X$ and j(x) = x if x belongs to X. Clearly j is one-to-one. We now verify that j is continuous. Let $s : \Delta \to X$ be a net in X such that s converges to x in $\alpha X \setminus X$. We wish to show that $j \circ s \to j(x)$ (= $f^{\alpha}(x)$) in X^f . Equivalently we wish to show that $s \to f^{\alpha}(x)$ in X^f . Suppose $s \to y$ in X^f . If $y \ne f^{\alpha}(x)$ then there exists an open neighbourhood U of y in K such that $f^{\alpha}(x) \in K \setminus Cl_K \cup By$ 8 the function $f : X \to K$ extends continuously to a function $f^* : X^f \to K$ such that $f^*|_{S(f)}$ is the identity function on S(f). Then $f^* \circ s \to f^*(y) = y \in U$, and so there exists a $\mu \in \Delta$ such that $f^* \circ s[\mu \Delta] \subseteq U$. It follows that $s[\mu \Delta] \subseteq U$.

 $f^{*\leftarrow}[U]$. Similarly, since f^{α} is continuous on αX , $f^{\alpha}{}_{os} \to f^{\alpha}(x)$; hence there exist a $\delta \in \Delta$ such that $f^{\alpha}{}_{os}[\delta \Delta] \subseteq K \cl_K U$ and $s[\delta \Delta] \subseteq f^{\alpha\leftarrow}[K \cl_K U]$. This implies that $f^{\leftarrow}[K \cl_K U] \cap f^{\leftarrow}[cl_K U]$ cannot be empty, a contradiction. Hence $y = f^{\alpha}(x)$. Since $s \to y$, $s \to f^{\alpha}(x)$ as required. Thus j is a continuous function.

We now proceed similarly to show that j^{\leftarrow} is continuous. Let $s:\Delta\to X$ be a net in X that converges to $x\in S(f)$. We wish to show that $j^{\leftarrow}\circ s\to j^{\leftarrow}(x)=f^{\alpha\leftarrow}(x)$. Equivalently we wish to show that $s\to f^{\alpha\leftarrow}(x)$. Suppose $s\to y$ in $\alpha X\backslash X$. We claim that $y=f^{\alpha\leftarrow}(x)$. If $y\neq f^{\alpha\leftarrow}(x)$ then $f^{\alpha}(y)\neq f^{\alpha}\circ f^{\alpha\leftarrow}(x)=x$ (since f^{α} is one-to-one on $\alpha X\backslash X$). Hence there exists an open neighbourhood U of $f^{\alpha}(y)$ such that $x\in \alpha X\backslash x_{\alpha X}U$. Since $f^{\alpha}:\alpha X\to K$ is continuous $f^{\alpha}\circ s\to f^{\alpha}(y)$. Hence there exists a $\mu\in \Delta$ such that $f^{\alpha}\circ s[\mu\Delta]\subseteq U$; then $s[\mu\Delta]\subseteq f^{\alpha\leftarrow}[U]$. Similarly, since $f^{\alpha}:X^f\to K$ is continuous and $s\to x$ in X^f , $f^{\ast}\circ s\to f^{\ast}(x)=x$; hence there exists a $\delta\in \Delta$ such that $f^{\ast}\circ s[\delta\Delta]\subseteq K\backslash x_{\alpha X}U$. Thus $s[\delta\Delta]\subseteq f^{\ast\leftarrow}[K\backslash x_{\alpha X}U]$. It follows that $f^{\leftarrow}[K\backslash x_{\alpha X}U]$ of $f^{\leftarrow}[cl_KU]$ is non-empty, a contradiction. Hence $g=f^{\alpha\leftarrow}(x)$ as claimed. It then follows that $g=f^{\alpha\leftarrow}(x)$ and so $g=f^{\alpha\leftarrow}(x)$ is continuous. Since $g=f^{\alpha\leftarrow}(x)$ is a homeomorphism that fixes the points of $g=f^{\alpha\leftarrow}(x)$ are equivalent compactifications of $g=f^{\alpha\leftarrow}(x)$.

If G is a collection of real-valued bounded functions on X, the *evaluation map* e_G induced by G is the function $e_G: X \to \Pi\{I_g: g \in G\}$ (where, for each g, I_g is a closed interval containing g[X]) defined by $e_G(x) = \langle g(x) \rangle_{g \in G}$. Note that the closure in $\Pi_{g \in G}I_g$ of $e_G[X]$ is a compact set.

Let X be a Hausdorff LC convergence space and let $C^*(X)$ denote the collection of all real-valued bounded continuous functions on X. We will show that, by using the above method of constructing compactifications of a Hausdorff LC convergence space we may construct a compactification X^* of X in which X is C^* -embedded, i.e., a compactification X^* of X where every function f in $C^*(X)$ extends continuously to a real-valued function f^* on X^* . Consider the evaluation map $e_{C^*(X)}$ induced by $C^*(X)$ from X into $\Pi\{I_g: g \in C^*(X)\}$ (where, for each g, I_g is a closed bounded interval containing g[X]). Then $X^{e_{C^*(X)}} = X \cup S(e_{C^*(X)})$. Since X is a LC space and $e_{C^*(X)}$ maps X into a compact Hausdorff topological space, $X^{e_{C^*(X)}}$ is a Hausdorff compactification of X. Now $e_{C^*(X)}$ extends continuously to $e_{C^*(X)}^*$ on $X^{e_{C^*(X)}}$ where $e_{C^*(X)}^*$ restricted to $S(e_{C^*(X)})$ is the identity function. If $f \in C^*(X)$ and $\pi_f: \Pi\{I_g: g \in C^*(X)\} \to I_f$ where $\pi_{f^{o_{C^*(X)}}}(x) = f(x)$ then the map $f^* = \pi_{f^{o_{C^*(X)}}}(x)$ is a continuous extension of f to $X^{e_{C^*(X)}}$ mapping a point x in $S(e_{C^*(X)})$ to $f^*(x)$ in I_f . We have just constructed a compactification of X in which X is C^* -embedded and whose outgrowth is a compact Hausdorff topological space. We will denote $X^{e_{C^*(X)}}$ by $\bar{\beta}X$. We have purposely used a symbol resembling the one used for the Stone-Čech compactification $\bar{\beta}X$ of a locally compact Hausdorff topological space X since the method used to construct $\bar{\beta}X$ mimics one used to construct $\bar{\beta}X$ (see 2.2 of André [1]).

The family of all Hausdorff compactifications of a Hausdorff convergence space can be partially ordered as follows: $\alpha X \le \gamma X$ if there exists a continuous function $h: \gamma X \to \alpha X$ from γX onto αX such $h|_X$ fixes the points of X.

THEOREM 13. Let X be a Hausdorff LC convergence space. Then $\overline{\beta}X \ge \alpha X$ for all Hausdorff compactifications αX of X whose outgrowth $\alpha X \setminus X$ is a compact Hausdorff topological space that is C*-embedded in αX . Also $\overline{\beta}X \ge \gamma X$ for any compactification γX where γX is of the form $X^f = X \cup S(f)$ where $f: X \to K$ is a continuous function from X into a compact Hausdorff topological space K.

PROOF. Let X be a non-compact Hausdorff LC convergence space. Let αX be a Hausdorff compactification of X such that $\alpha X \setminus X$ is a compact topological space that is C*-embedded in αX . We are required to show that $\alpha X \leq \overline{\beta} X$. Let $M = \{ f \in C^*(\alpha X) : f \text{ is a continuous extension to } \alpha X \text{ of a function in } A X \in \overline{\beta} X$.

 $C^*(\alpha X \setminus X)$. Since $C^*(\alpha X \setminus X)$ separates the points of $\alpha X \setminus X$, M separates the points of $\alpha X \setminus X$. Hence, e_M is one-to-one on $\alpha X \setminus X$. Let $T = C^*(\alpha X)|_X$. Since each function in T extends continuously to $\overline{\beta} X$, e_T extends continuously to a function e_T^{β} on $\overline{\beta} X$. Let $\pi_{\beta\alpha}: \beta X \to \alpha X$ be a function from βX to αX which maps $e_T^{\beta \leftarrow}(x) \cap \beta X \setminus X$ to $e_T^{\alpha \leftarrow}(x) \cap \alpha X \setminus X$ for each $x \in e_T^{\alpha}[\alpha X \setminus X]$ and which fixes the points of X (noting that $e_T^{\beta}[\beta X] = e_T^{\alpha}[\alpha X]$). It is easily verified that $\pi_{\beta\alpha}$ is continuous. Hence $\alpha X \leq \overline{\beta} X$.

Suppose that γX is a compactification of the form $X^f = X \cup S(f)$ where $f: X \to K$ is a continuous function from X into a compact Hausdorff topological space K. Let $Y = \operatorname{cl}_K f[X]$. If $g \in C^*(Y)$ then $g \circ f^* \in C^*(X^f)$. Since $C^*(Y)$ separates the points of Y and $S(f) \subseteq Y$ then the family $\{g \circ f^* : g \in C^*(Y)\}$ separates the points of S(f). Consequently if $T = C^*(X^f)$, e_T is one-to-one on S(f). Let $M = T|_X$. Then e_M extends continuously to the function $(e_M)^\beta$ on $\overline{\beta} X$. Let $\pi_{\beta X^f}: \beta X \to X^f$ be a function from βX onto X^f which maps $(e_M)^{\beta \leftarrow}(x) \cap \overline{\beta} X \setminus X$ to $e_T^{\leftarrow}(x) \cap S(f)$ for each $x \in (e_M)^\beta[\gamma X \setminus X]$ and which fixes the points of X. Again it is easily verified that $\pi_{\beta X^f}$ is continuous. Hence $\gamma X \leq \overline{\beta} X$.

EXAMPLE 14. Let ω_1 denote the first uncountable ordinal. Let $X = \bigcup \{I_i : i \in [0,\omega_1)\}$ where, for each $i \in [0,\omega_1)$, I_i is the unit interval [0,1]. We will say that a net s in X converges to a rational number x in I_i if and only if s is eventually in every open interval in I_i that contains x. A net s converges to an irrational number x in I_i if and only if i has an immediate predecessor i-1 and s is eventually in every open interval containing x in I_{i-1} . Thus a net s in I_i will always converge in $I_i \cup I_{i+1}$. It is easily seen that X is a noncompact Hausdorff convergence space. We will describe some other properties of X.

We claim that X is not pretopological. Let $S = \{s_\delta : \delta \in \Delta\}$ be a net of nets in I_i ($i \in [0,\omega_1)$) where each net s_δ converges to some irrational number $l(s_\delta)$ in I_{i+1} . Suppose the nets are chosen so that the net $\{l(s_\delta) : \delta \in \Delta\}$ converges to an irrational number y in I_{i+2} . For each $\delta \in \Delta$, let $s_\delta = \{s_\delta^\mu : \mu \in \Delta_\delta\}$ and let $D = \{s_\delta^\mu : \delta \in \Delta, \mu \in \Delta_\delta\}$ (ordered lexicographically). Since $D \subseteq I_i$ no subnet of D can converge to a point in I_{i+2} (since all nets in I_i converge in $I_i \cup I_{i+1}$). Hence no subnet of D can converge to y. Thus X is not pretopological.

Also observe that for the irrational number $\pi/4$ in some I_i the net $s = \{s_{\delta} : \delta \in \Delta\}$ where $s_{\delta} = \pi/4$ for all $\delta \in \Delta$ converges to the irrational number $\pi/4$ in I_{i+1} . Hence a constant net s in X where each member is the same number r in X need not necessarily converge to r.

We now claim that X is a LC space. Let $S=\{s_\delta:\delta\in\Delta\}$ be a net of nets each of which has no convergent subnet in X. For each $\delta\in\Delta$, let $s_\delta=\{s_\delta^\mu:\mu\in\Delta_\delta\}$. If $\delta\in\Delta$, s_δ has no convergent subnet in X hence no cofinal subset of s_δ is contained in any I_i . Thus s_δ has a subnet $t_\delta=\{s_\delta^\mu:\mu\in\Sigma_\delta\}$ such that $t_\delta\cap I_i$ is finite for each $i\in[0,\omega_1)$. Let $D=\{s_\delta^\mu:\delta\in\Delta,\mu\in\Sigma_\delta\}$ (ordered lexicographically). Let $T=\{s_\delta^\mu:\delta\in\Lambda,\mu\in\Lambda_\delta\}$ (where Λ and Λ_δ are cofinal in Δ and Σ_δ respectively). Let $\alpha\in\Lambda$ and $\beta\in\Lambda_\delta$. If $s_\alpha^\rho\in I_i$ then there exists a $\delta_1>\alpha$ in Λ and μ_1 in Λ_δ such that $s_{\delta_1}^{\mu_1}\in I_{i+1}$. Consequently we can construct a subnet H of T such that H has no convergent subnet. It follows that T is non-compact; hence X is a LC space.

Let f be any continuous function from X into a compact Hausdorff topological space K and let u be an irrational number in [1,0]. Let $U = \{u_i : i \in [0,\omega_1)\}$ where $u_i = u$ for all $i \in [0,\omega_1)$ and let $s = \{s_\delta : \delta \in \Delta\}$ be the constant net in some I_i such that $s_\delta = u_i$ for all $\delta \in \Delta$. Then the net s converges to the number $u_i = 1$. (Note that U is non-compact). Since f(s) is a constant net in K and f is continuous $f(u_{i+1}) = f[s]$. It follows easily that f[U] must be a singleton set in K $\{f(u_0)\}$. Let x be an arbitrary point in f[X] and let V be an open neighbourhood of x in $cl_K f[X]$. If x is an irrational number than $cl_X f^{\leftarrow}[V]$ is non-compact (since $cl_X f^{\leftarrow}[V]$ contains a set such as U above). Suppose x is a rational number in some I_i . Let $s = \{s_\delta : \delta \in V\}$

 $\in \Delta$ } be a net of irrational numbers in I_1 such that s converges to x. Since f is continuous the net f[s] converges to f(x) in $cl_K f[X]$. Hence there exists an $\alpha \in \Delta$ such that $f[s[\alpha \Delta]] \subseteq V$. This means that V contains the image of an irrational number in I_i . Again it follows that $cl_X f^{\leftarrow}[V]$ is not compact. Then, by lemma 4, $cl_K f[X]$ is the singular set S(f) of f, i.e., f is a singular function. Since f is an arbitrary function every function from X into a compact Hausdorff topological space is singular. Hence the compactification $\bar{\beta}X = X^{e_{C^{\bullet}(X)}}$ is a singular compactification (since $e_{C^{\bullet}(X)}$ is singular).

REFERENCES

- 1. ANDRÉ, Robert P. On the supremum of singular compactifications, Submitted.
- 2. AARNES, J. F. and ANDENAES, P. R. On nets and filters, Math. Scand. 31 (1972), 285-292
- 3. CHANDLER, Richard E. Hausdorff Compactifications, Marcel Dekker, Inc., New York and Basel, 1976
- 4. CAIN Jr., George L., CHANDLER, Richard E. and FAULKNER, Gary D. Singular sets and remainders, <u>Trans. Amer. Math Soc.</u> 268 (1981), 161-171.
- 5. CHANDLER, Richard E., FAULKNER, Gary D. Singular Compactifications: the order structure. <u>Proceedings of the American Mathematical Society</u> 100, number 2 (1987), 377-382.
- CHANDLER, Richard E., FAULKNER, Gary D., GUGLIELMI, Josephine P., and Margaret MEMORY, Generalizing the Alexandroff-Urysohn double circumference construction, <u>Proceedings of the American Mathematical Society</u> 83 (1981), 606-609.
- CATERINO, A., FAULKNER, G. D., VIPERA, M. C. Two Applications of Singular Sets to the Theory of Compactifications, To appear in <u>Rendiconti Dell'Insitute di Mat. dell'Univ. di Thieste</u>.
- COMFORT, W. W. Retractions and other continuous maps from βX onto βX\X. <u>Trans. Amer. Math. Soc.</u> 114 (1965) 843-847.
- 9. ENGELKING, Ryszard General Topology, Polish Scientific publishers, Warszawa, Poland, 1977.
- FAULKNER, Gary D. Minimal Compactifications and their associated function spaces, <u>Proceedings</u> of the American Mathematical Society 108, Number 2, February 1990, 541-546.
- 11. ______, Compactifications from mappings, To appear in <u>Atti del IV Convigno di Topologia</u>, Rendic. Circ. Mat. Univ. Palermo
- FROLIK, Z. Concerning topological convergence of sets, <u>Czechoslovak Math.</u> Vol. 10(85) (1960), 168-180.
- 13. GUGLIELMI, Josephine P. Compactifications with singular remainders, Ph.D thesis, North Carolina State University, 1986.
- 14. KELLEY, John L. General Topology, D. Van Nostrand Company inc., New York, 1955.
- 15. KENT, D. C.and RICHARDSON G. D. Compactifications on convergence spaces, <u>International Journal of Mathematics and Mathematical Sciences</u>, Vol.2(3) (1979) 345-368.
- RICHARDSON, G. D. and KENT, D. C. The Star Compactifications, <u>International Journal of Mathematics and Mathematical Sciences</u>, Vol4(3) (1981), 451-472.

- 17. PEARSON, B. J. Spaces defined by convergence classes on nets, <u>Glasnik Matematicki</u>, Vol.23(43) (1988), 135-142.
- **18.** SO, Shing S. One-point compactification of convergence spaces, <u>International Journal of Mathematics and Mathematical Sciences</u>, Vol. 17 No.2 (1994) 277-282.
- 19. WALKER, R. The Stone-Čech Compactification, Springer-Verlag, New York, 1974.
- 20. WILLARD, S. General Topology, Addison-Wesley Publishing Company, 1970.