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ABSTRACT. Given 0 s R
1

s R
2

s =, CVG(RI,R2) denotes the class of

normalized convex functions f in the unit disc U, for which af(U)

satisfies a Blaschke Rolling Circles Criterion with radii R
1

and R2.
Necessary and sufficient conditions for R

1 R2, growth and

distortion theorems for CVG(RI,R2) and rotation theorem for the

class of convex functions of bounded type, are found.
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1, INTRODUCTION.
Let S be the class of functions f(z) which are analytic and

univalent in the unit disc U z: z < 1 and have the

normalization f(O) 0 f’ (0)-I. For f S and r (O,l),the

radius of curvature, p(z) of the curve f(Izl r) at the point f(z),

is given by [6],

z’ (z)p(z) zf" (z)Re(l + 7 (z))

i8
where z re Goodman [2] introduced the class CV(RI,R2) of

functions f(z) having p(z) restricted as Izl tends to i. Thus, let

and

,
p,(r) min p(z), p (r) max p(z)

,
(I) R, lim p,(r) R lim p (r)

r 1 r-- 1

DEFINITION I. Let R] and R
2

be fixed in [0,=}. A function f S_,is said to, be in the class CV(R1,R2) if R
1 - R, and R R

2 where
R, and R are as in (i). For 0 < RI R2< , a function f CV(RI,R2
is called a convex _function of bounde_d_type. ,A function, f(z) is said to be in -Q(RI,R2) if, RI= R, and R2=Rwhere R, and R are as in (1).

For functions f(z) in the class CV(RI,R2) Goodman [2] obtained
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(i) the first approximation for the moduli of the Taylor

coefficients, (ii) covering theorem and (iii) bounds for d, where d

is the distance of af(U) from the origin, in terms of R
1

and R2.
Goodman [3], Wirths [8] and Mejia and Minda [4] extended this study

by finding certain other interesting properties of functions in the

class CV(RI,R2).
Styer and Wright [7] introduced the following class of functions

based on Blaschke’s Rolling Circles Criterion:

R and R
2

z i, letDEFINITION 2- Given 0 s R
1 2

CVG(RI,R2) be the class of functions f(z) in with the property that

for each n af(U) there are open discs Dl(n) and D2(n of radius R
1

and R2, respectively, such that, n e aDl(n N aD2(n) and

DI() f(U) - D2(D).

If R
1

0 or R
2

, DI(W) and D2(n are to be interpreted as the

empty set and an open half-plane, respectively.

It follows that [7]

CV(RI,R2)
_
CVG(RI,R2) K CV

where, CV is the subclass of functions f(z) in the class S, for which

f(U) is convex.

Mejia and Minda [4] showed that, in fact, CVG(0,R2) CV(O,R2).
However, for R

1
> 0, whether CVG(RI,R2) CV(RI,R2) still holds,

remains an open problem. The difficulty to settle this problem lies

in the fact that, for f CVG(RI,R2), R1
> 0, the radius of

curvature p(z) of the curve f(Izl r) at the point f(z) may not

be a continuous function on U z Izl - 1 ), (see [7]).

Let g(z) be analytic and univalent in U. A function f(z)

analytic in U, is said to be subordinate to g(z) in U (f(z) g(z))

if f(O) g(O) and f(U) g(U).

For a function f(z) in S, the unit exterior normal to the curve

f(Izl r) at the point f(z) is n(z) zf’(z)/Izf’ (z) where

r (0,i). Styer and Wright [7] found that a normalized univalent

function f CVG(RI,R2), if and only if, f CV, and for every U

for which f() is finite,

(2) f(U) D(f() R2n(),R2)

and, in the case R
1

> 0,

(3) D(f() Rln(< ,RI) f(U).

where D(a,R) is the open disc of radius R cenetred at a.

For a function f(z) in the class CV(RI, R2) Goodman [2]
obtained bounds for d and d* *where d and d are respectively the

distances of the nearmost and the farthermost points on af(U) from

the origin. Thus he proved that
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and

_] 2
d s R

1 RI2_R1R
2

R
2

R
2

2
(5) R1 - 2d 1

-< R2

where the right hand side inequality in (4) and the left hand side

.v,.-’’-’2-,- (5/’ ,2f, f i -+ f" rurther’

(6) d* J 2- R
2

+ R
2 R

2

Styer and Wright [7] observed that inequalities (4) and (6) continue

to hold for the class CVG(RI,R2). The method of proof of inequality

(5) in [2] shows that this inequality also holds for the class

CVG(RI,R2) and is sharp. These inequalities are necessary conditions

on R
1

and R
2

in terms of d d(f) for a function f(z) to be in the

class CVG(RI,R2). However an analogue of these conditions in terms of,
d is not known. Further, lower bound on If( z distortion,
properties involving d or bound on larg f’ (z) for functions f(z) in

the class CVG(RI,R2) have not been investigated so far.

Section 2 is aimed at the determination of necessary and

sufficient conditions for R
1

to be equal to R2, if the function f(z)
is in the class CVG(RI,R2). In this section analogues of conditions

,
(4) and (5) involving d in place of d, for the functions in the

class CVG(RI,R2) are also found. Section 3 consists of theorems on

the growth of If(z) for functions f(z) in the class CVG(RI,R2).
Finally, Section 4 consists of a distortion theorem for the class

CVG(R1,R2) and a rotation theorem for the class CVG(RI,R2).

2. PRELIMINARIES.
For a function f e CVG(R1 ,R2) we first find some relations

between the smallest and the largest distances of the image curve

f(U) from the origin. We first prove the following lemma

[[44A I. Let fe CVG(R1,R2). If RI R
2 R < m, then

(ii) f(U) D((R2-R) eiu, R), for some real

(iii) f(z) eiu FR(Z e-iU), where FR(Z

(iv) d* sup II R + R2-R
eOf(U)

z e U

PROOF.
(i) Follows by (4)
(ii) By the definition of CVG(RI,R2) if R

1
R
2 R "< m, f(U) is a
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disc of radius R If the center of the disc is at r ei
o o

real, then

r R d R2-Ro

Or, equivalently,

f(U) D((R2-R) ei R)

(iii) FR(Z maps U conformally onto the disc D(R2-R, R). Thus,

i -if(z) e FR(Ze ).

,
(iv) Since f(U) is a disc, d+d 2R. Consequently, by (i),

*d R + R2-R

[4AK. The function FR(Z of Lemma 1 with R R
2 (denoted as

FR2(Z in the sequel) was first used by Goodman [2] as an extremal

function for a number of problems concerning CV(RI,R2).

PROPOSITION 1. zf f CVG (R1, R2) then

* 2
(7) 1 - (d) R

22d -i

The inequalities are sharp for the function FR2(Z), R
2

z I, of

Lemma l(iii).

PROOF. Let @(x) x2/(2x-l). It is clear that (x)
is increasing in x if 1 s x < and is decreasing in x if 1/2 s x <i.

Thus inequality (7) follows from inequalities (6) and (5). ,If,
d =-, inequality (7) follows from Definition 2.

The function FR2(Z of Lemma l(iii) is in the class CVG(RI,R2),
with d i/(i 41 I/R2 and gives sharpness for inequality (7).

REMARK. For f CVG(RI,R2), inequality (7) sometimes gives a
better lower bound on R

2 than that of inequality (5). In fact,(d*) 2/ (2d*-l) > d2/(2d-l), if and only if d(2d-l) < d* There does
exist a function in the class CVG(R1 R2) satisfying d/(2d-l) < d*
consider for example, f(z) 21og(l-z/2) -I

CV(I, 2/-3)
PROPOSITION 2. zf f CVG(RI,R2) with R

1 - I, then

* 2(d, z R
12d -i
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and

z R I R -RI

The inequalities are sharp when R
1 R2.

R00 Let d*
i8

d*= i8)< and f(e o) 0f(U) be such that f(e I,
for some real 8o By making a suitable rotation of f(z}, we may

i8
assume that f(e o) -d* Then the unit exterior normal to af(U) at

ie ie
f(e o) is n(e o)= -i. And, by the containment relation (3), we have

,
D(RI-d RI) f(U)

equivalently,
z

f(z)1 Az

where B (2Rl-d*)d* * */R1 and A (Rl-d)d /R1
for R

1
> 0. This

implies B - i, or,

,
2d -i

which is inequality (8). The case R
1 0 is trivial When d*

inequality (8) follows directly.
Inequality (9) follows from inequality (8) and Definition 2. The

sharpness of inequalities (8) and (9) follows by considering the
function FR2(Z) of Lemma l(iii).

COROLLARY. If f CVG (RI, R2), then

(i0) R
1 - (d)2 s R

22d -i

PROOF. Proposition 1 and inequality (8), together, give the
corollary.

RE4ARKS, (i) For f CVG(RI,R2) with R
1

z I, it is easily seen
that inequality (8) sometimes gives better upper bound for R than
that given by inequality (5). In fact, (d* 2/ * 1

(2d -i) < d2/(2d-l), if
and only if, d < d/(2d-l). There does exist a function in the
class CVG(R

1 R2), with R
1

a i, satisfying d* < d/(2d-l)
consider, for example, f(z) eZ-I

(ii) For the function f C(RI,R2) with R
1

< i, inequality

(8) is not sharp because R
1

< 1 (d* 2/ (24 -i). GROWTH OF IF(Z) I.
For f CV(RI,R2), Goodman ([2],[3]) found that

() If(z) - 2R
2 d

and
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rd (2R2-d)
(12) If(z) R

2 (l-r) + rd

in the disc zl r - 1 where d inf II- Both the inequalities
f(u)

are sharp. His proof shows that inequality (ii) continues to hold

for the class CVG(RI,R2) also. However, analogues of inequalities

(II) and (12) involving d sup I<I, are not known. In this
af(u)

section these analogues are derived.

Goodman [3] also showed that, if f CV(RI,R2) then

R
2

2R
2 rR2 R

2

for Izl r [r ,I) where r 2R2(R2-d)/(2R2(R2-d) + d2) and the
inequality is sharp. In this section an analogous inequality for the
functions in the class CVG(RI,R2) is found wherein the number r is
independent of d.

In the following proposition, an analogue of inequality (ii),
involving d in place of d is found. In Theorem i, an improvement of
this proposition will be obtained.

P0POSII0N 4. If f CVG(RI,R2) with R
2

< -, then

(13) f(z - r(R2 + IR2 d*
in the disc z r s i. The inequality is sharp for R

1 R2.
P00F. From the definition of d we have that

,
If(z) - d

in the disc zl r s i. The triangle inequality and Schwarz lemma

together with the above inequality completes the proof of (13).
For the function FR2(Z) of Lamina l(iii), R

1
R2, and

IFR2(1) i/(i 41-1/R2 R2+IR2-d*l. Thus, the sharpness of

inequality (13) follows.
,

C00LLARY. If f CVG(RI,R2) wi.th d - R2, then

,
If(z) - r (2R2-d)

in the disc zl r- i.

PROOF. The inequality in the corollary is straightforward in

view of inequality (13).

RARKS. (i) The corollary improves Goodman’s result [2] given
by inequality (ii).

(ii) The functions f(z) in the class CVG(RI,R2) satisfying,
d < d < R2< do exist as can be seen from the following example. For

integer k a 2 and 0 < a < I/k2, the binomial pk(z)= z+azk CVG(RI, R2)
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with R
2 (l-ka)2/(l-k2a). Further, for pk(z), d l-a < d* l+a,,

so that for k 2, d < R
2

for 1/8 < a < 1/4 and for k z 3,

,
R
2

for 0 < a < I/k2.d <

(iii) An analogue of inequality (13) involving R
1

can also be

found. Thus, if f CVG(R1,R2) with R
2

< , then

f(z) s r(R1
+ Rl-d*l) rd* *s r(R2 + IR2-d I)

in the disc zl r s i. The above inequality is sharp for R
1

R2.
Next, a growth theorem is derived for the class CVG(RI,R2) with

the help of the following lemma:

LEMMA 2 [5]. If F (z) is in CV and f (z) is convex and

univalent in U, then f(z) F(z) in U implies that

Iz:l - IF(z)
in the disc I.I < R, where _R 0.543 is the least positive root of

arc sin x + 2 arc tan x -2THEOREM I. If f CVG(RI,R2) with 0 < R
1

s R
2

< -, then

,
rd 12Rl-d rd 12R2-d(14) ,
R
1 (l-r) +rd R2- R2-dl r

where Izl r, the left hand side inequality holds in the disc

zl < _R, B is as in Lemma 2 and the right hand side inequality holds

in the disc zl s i. Both the inequalities are sharp.

P00[. By making a suitable rotation of f(z) we may obtain that

ie
f(e o) -d* sup II, for some 8 real. We have n(e o)= -i.

af(u) o

Now, the by containment relation (2), we get

,
f(U) = D (R2-d ,R2)

or

I-Az
where B d*(2R2-d* )/R2 and A (R2-d*)/R2.

The inverse of the function g(z) Bz/(l-Az) is h(z) z/(Az +B)
and the function n(z) (hof) (z) satisfies the conditions of
Schwarz lemma. So,

l(z) r(IAf(z) + B)

in the disc zl r s I. This implies that

rlA
By substituting the values of A and B in this, the right hand sideinequality of (14) is obtained.
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Now, to prove the left hand side inequality in (14), we apply

the containment relation (3) and obtain

,

1 A z

.
where B d (2R1 d )/R1 and A (R1

d )/R1.
Further,

,
I A z

*Rl+(d -Rl)r
in the disc zl r < i.

Hence, by Lemma 2, we have that

.
’2Rl-d B Z I=(z). *Rl(l-r)+rd 1 A z

in the disc zl < R where _R is as in Lemma 2. This gives the left

hand side inequality of (14).

The function FR2(Z of Lemma l(iii) is in the class

,
CVG(R2,R2). For this function, d i / (i a) z R2

so that

,
rd (2R2-d)/(R2-1R2-d r) r/(l-ar) and rd 12RI-d I/(Rl(1-r)+rd

r/(l+ar) =IFR2(-r) where a 41-1/R2
and now equality is attained

in inequality (14).

R[MARKS. (i) For f CVG(RI,R2) with R
2

< and r i the

upper bound of l.f(z) in inequality (14) is larger than that given by

inequality (13). For the function FR2(Z of Lemma l(iii), both the

bounds are equal. For r < i, the upper bound given by inequality

(14) is better than that given by inequality (13).

(ii) From the proof of Theorem l,it can be observed that

inequality (14) with d* replaced by d everywhere, continues to remain

true and sharp; i.e., if f CVG(RI,R2) with 0 - R
1 - R

2
< m, then

(16) Rl+iRl_dlr If(z) R2(l_r)+rd
where Izl r, the left-hand side inequality holds in the disc

Izl < R, R is as in Lemma i, and the right hand side inequality holds

in the disc Izl - i. The same function FR2(Z) of Lemma l(iii)

gives the sharpness in this inequality also.

(iii) Let Q(r,R2,x) x(2R2-x)/(R2-1R2-xlr)
It can be seen that for r [r ,i), the function Q(r,R2,x) is

decreasing in x for x - R
2

and hence the upper bound of If(z) in
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,
inequality (14) is better than that in inequality (16) for R

2
z d

where r 2 R2-R2/(2R2-I)
(iv) Let p(r,Rl,X xl2Rl-Xl/(Rl+IRl-Xlr). It can be seen

that for r [0,R), R is as in Lemma 2, the function P(r,Rl,X) is

decreasing in x for x [RI,2RI] and hence the lower bound of If(z)
in inequality (16) is better than that in inequality (14) for,
R
1 - d -* d - 2RI; the last inequality does hold for the function

p3(z) z+az 3 CVG((I+3a)2/(I+9a),R2), where 0 s a s 1/15.

(v) For f C--Q(RI,R2) with R
1

< R2, strict inequality holds

in the right hand side of the inequality (14), because, when

equality holds, inequality (15) gives that f(z) Cz/(l-Dz) where

C ei# d*(2R2-d*)/R2
and D ei# d*(R2-d*)/R2 # real, so that

f(z) has R
1

R2.
For f CVG(RI,R2), the upper bound of If(z) in inequality

(14) (or (16)) is dependent on d* (or d). The following theorem gives
an upper bound of If(z) that is independent of both d and d*.

TH[0[4 2. If f CVG(R,R2) with R <., then

2R
2 JR2-R2

* * 2where Izl r [r ,I] and r 2 IR2-R2/(2R2-1)" The inequality
is sharp.

PROOF. Set Q(r,R2,d d(2R2-d)/(R2 (l-r)+rd) Then, rQ(r,R2,d
is the upper bound of f(z) in inequality (16) Let

,r* 2JR22-R2/(2R2-1 ). For r [r ,i], the function rQ(r,R2,d is

2 _R
2decreasing in d. By inequality (4), we have d z R

2
R

2

Hence, for r [r ,i], we may replace d by R
2

R in rQ(r,R2,d)
and obtain the assertion from inequality (16).

The function FR2 z of Lemma 1 iii gives sharpness in

inequality (17) for z r.

REARKS. (i) For f e CVG (R2,R2) the upper bound of f (z) in

inequality (17) is better than that in inequality (13). Indeed, for

the function Q (r,R2) rR2/(R2 r R2-R2) we have

J 2-R2) for r e [2J 2* 2-R2)= r(R2+ R
2 R2-R2/(2R2-1),I]-Q (r,R2) .- rR2/(R2 R

2

(ii) If f C--q(RI,R2) and equality holds in (17), then as in

Remark (v) following the proof of Theorem I, we obtain that RI= R2.
Hence strict inequality holds in (17) when R

1
< R2.

In the following result an upper bound on If(z) involving both

R
1
and R2 is obtained.
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THEOREM 3. If f CVG(RI,R2) with 1 -< R
1

-< R
2

< m, then

(s) l(z)
r i 2R2-I
R
2 (l-r) +r1

**in the disc zl r -< r 2R2(R2-I)/(2R2(R2-I) + 21) and

2a I R
1 RI-R1

The inequality is sharp for R
1 R2.

PROOF. set Q(r,R2,d d(2R2-d)/(R2(l-r + rd). Then, rQ(r,R2,d)
is the upper bound of f(z) in inequality (16) Let

** I 2-RI Forr 2R2(R2-I)/(2R2(R2-I) + 21) where i R1 R1
**r [O,r ], the function rQ(r,R2,d) is increasing in d. By

2inequality (4), we have that d s R
1 RI-RI. Thus, we may replace d

2
by R

1 RI-R1
in rQ(r,R2,d) and obtain the assertion from

inequality (16).

For RI= R2, the upper bound rQ(r,R2,l) equals rR2/(R2-r R2-R2).
The function FR2(Z of Lemma l(iii) gives sharpness in inequality

(18) for z r.
,

RMARK$. (i) The number r defined in Theorem 2 is larger than
**r defined in Theorem 3. Both are equal, if and only if, R

1 R2.
(ii) For f C-V(RI,R2) with 1 -< R

1
< R

2
< m, strict inequality

holds in (18) for, when equality holds, it can be seen as in Remark

(v) following the proof of Theorem i, that R
1 R2, a contradiction.

4. DISTORTION AND ROTATION THEOREMS.
For f CV(RI,R2), Goodman [3] found that

R
2() I’(z) -"

l-r

in the disc Izl r < i. The function FR2(Z), of Lemma l(iii), for

R
2 I/(l-r2) shows that inequality (19) is sharp for each r e (0,i).

From the proof of inequality (19), we observe that inequality (19)
continues to hold for the class CVG(RI,R2). However, an analogue of,
inequality (19) in terms of d sup II is not known. In this

e 8f (U)
section a result in this direction is found for the class CVG(RI,R2).

Finally, in this section, a rotation theorem is derived for the

class CV(RI,R2). Its validity for the class CVG(RI,R2) remains open
for investigation.

The following lemma is needed in the sequel:

LEMMA 3 [7]. If f S with g(z) < f(z) in U and g’ (0) z O,

then Ig’ (z) <- f’ (z) in the disc Izl -< 3 4-8 m 0.171.
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THEOREM 4. zf f CVG(RI,R2) with 0 < R
1 - R

2
< m, then

(20)

, ,
12 d d ( d

, - If’(z) - *(Rl(l-r) + rd (R2 -IR2-d
in the disc zl r - 3 4-8. The inequalities are sharp for R

1
R2.

P00F. As in the proof of Theorem i, we obtain

Bz(z) < -z
, ,

where B d (2R2-d)/R2
and A (R2-d)/R2. This and Lemma 3

together give
BI’ (z)

in the disc zl r - 3 4-8. By substituting the values of A and B

in this inequality, the right hand side inequality of (20) is

obtained.

To prove the left-hand side of the inequality (20), we have, as

in the proof of Theorem I,
,

B z, f(z)
I-A z

,
where B d (2Rl-d)/R1

,
and A (Rl-d)/RI. Therefore, by Lemma 3,

,

(I-A z)

,
Rld

2
(Rl(l-r) + rd

in the disc zl r - 3 48, which is the left-hand side of the

inequality (20) ,
For the function FR2(Z) of Lemma l(iii), RI R

2
and d I/(l-a)

* * 2

FR2 (r) andso that R2d (2R2 d )/(R2 R2 d Ir) i/(i ar)
2

* * 2

FR2 (-r) whereRld (2R 1
d I/(RI(I r) + rd i/(i + ar)

2

a 41 1/It2 so that equality is attained in inequality (20).

4AKRS. (i) For f CVG(RI,R2), the upper bound of If’ (z) in

inequality (20) is better than that in inequality (19). The sharp

function given in the proof of Theorem 4 is independent of the point

under consideration whereas the sharp function used for inequality

(19) is dependent on the point.

ii From the proof of Theorem 4, it can be seen that,
inequality (20) continues to remain true with d replaced by d

everywhere, i.e., for f CVG(RI,R2) with 0 - R
1 - R

2
< m, we have
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that

(RI+ IRl-dl r (R2 (l-r) +rd)

in the disc zl r - 3 4-8.

(iii) For f E CVG(R R with d* - R s i/(12-2 16) and

R2-R /R s r s 3 4-8, the upper bound of If’ (z) in inequality (20)

is better than that of the inequality (21).
(iv) For f E CVG(RI,R2) with R

2
< m, the lower bounds of

If’ (z) in inequalities (20) and (21) are equal by Proposition 3.

Similarly, the upper bounds of If’ (z) are also equal.,
(v) For f CVG(RI,R2) with R

1
s d s d s 2RI, the lower

bound of If’ (z) in inequality (21) is better than that in inequality

(zo).

Finally, we prove a rotation theorem for the class CV(RI,R2).
Its validity for the class f CVG(RI,R2) remains open for

investigation.

TH[0R[h 5. If f cv (RI,R2) with R
2

< , then

larg f’ (z) - 2 in
R2(l+r) + C(r,R2)

+ __2 (4R2_I-r + - C(r,R2

l+r

in the disc Izl r < 1 where C(r,R) R(l+r) (l-r).

R00[. For each fixed A in U, the function

g(z)

f[z+ll+Xzl- f(A)

z + c2(A)z2+...
is CV(RI/A(A ),Rz/A(A)) where A(A) If’ (I) (1-1112). It is known

[8] that if g CV(R[,R) then Ig"(O)/2! - 41-1/R Therefore,

2f’ (A) R
2

which, by using the distortion property

function f(z) in CV, gives

for the

2f’ (A) R
2 (i+
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Multiplying the above inequality by 21ll/(l-Ill 2, we obtain

x ,f((x) 2112
f () _ll I_IX 2 i-

811

Replacing ll by p in the above inequality, we get

1_p2 R
2 (l+p) "- (X 1_p2

-<
1_p2

1 l-p,
R
2 (l+p)

Thus,

(22) 2

1-p

1-p ca arg f’ (X) _< 2
2

1
R2 (l+p) ap

1-p

l-p
R
2
(l+p)

since, f"(X) 2p
2 aIm (X ...., (X) l_p2

p arg f’ (X)

Now, integrating the terms in inequality (22) along the straight

linepath from X 0 to X re i8, the required inequality follows.
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