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Abstract

Let f [0, I] R R be function satisfying Caratheodory’s conditions and e(t)
L[0, 1]. Let r/( (0,1), ’, (0,1), a, >_ 0, 1,2,- ,m- 2, with ,,2 ai 1, 0 < f < f2 <

< ,-2 < be given. This paper is concerned with the problem of existence of a solution

for the following boundary value problems
x"(t) f(t,z(t),z’(t)) + (t),O < < 1,
x’(O) O, x(1) x(r/),
:"() =/(t, :(), :’())+ (t),o < < ,
x’(0) 0, x() ET a,x(,).
Conditions for the existence of a solution for the above boundary -alue problems are given

using Leray Schauder Continuation theorem.
Keywords and Phrases: three-point boundary value problem, m-point boundary value prob-

lem, Leray Schauder Continuation theorem, Caratheodory’s conditions, Arzela-Ascoli Theo-
rem.
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1 INTRODUCTION.
Let f [0,1] x R R be a function satisfying Caratheodory’s conditions, e [0,1] -- R be a

function in L[0,1], ai >_ 0, i 6- (0,1), 1,2,---,m- 2 with ’__] a 1, 0 < < < -,

< ,_ < and r/6- (0,1) be given. We study the problem of existence of solutions for the following
boundary value problems

x"(t) f(t,x(t),x’(t)) + e(t), 0 < < 1,
x’(0) 0, x(1) x(/), (1)

z"(t) f(t,z(t),x’(t)) + e(t), 0 < < 1,
’(0) o, () E7’=i’ :(,)- (2)

It is well-known, (see, e.g. [1]), that if z 6- Ct[0,1] satisfies the boundary conditions in (2), with the
ai’s as above, then there exists an t/6- [a,f,-a], depending on z 6- C[0,1], such that

() (). (a)
Accordingly, it seems that one can study the problem of existence of a solution for the boundary
value problem (2) using the a priori estimates obtained for the three-point boundary value problem
(1), as it was done in [2], [3], [4]. But here the m-point boundary value problem (2) happens to be
at resonance in the sense that the associated linear homogeneous boundary value problem

z"(t) O, O < < 1,
’(0) 0, (1) E?

has x(t) A, A 6- R, as a non-trivial solution, since2a 1. The result is that e(t) 6. L[0,1]
has to be such that __]2 a,[fo,(l_,)e(s)ds+f,(l_s)e(s)ds] 0, (in view of the nonlinear Fredholm
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alternative), so even though there exists an r/E [, ,,,-] such that f2 -rl)e(s)ds+f s)e(s)ds
.,,,2 a,[fo,(l_,)c(s)ds+f,(1 _s)e(s)dsl 0, since E,"= a, 1, this r/is not necessarily the same
r/as in (3). We are, accordingly, forced to study the m-point boundary value problem (2) directly
and obtain results about the three-point boundary value problem.(1) as a corollary to the results
for the m-point boundary ",’aloe probelm. It is .i nteresti.ng to note that while in the nonrcsonance
case we had to study the m-point boundary valueproblem, using the results for the three-point
boundary value problem, it is just the reverse case in the resonance case.

We obtain conditions for the existence of a solution for the boundary value problem (2). using
Mawhin’s version of the Leray Schauder Contitauation theorem [.5] or [6] or [7]. Recently, Gupta.
Ntouyas and Tsamatos studied the m-point boundary value problem

x"(t) f(t,x(t),x’(t)) + (t), 0 < < 1,
*’(0) 0, ,(*) Z? (4)

with , E (0,1). 0 < a < < < ,,,_2 < 1, a, R, all a, having the same sign, given, and
E,= a, 1, in [3l. The boundary value problem (2) differs from the boundary value problem (4)
in that the associated linear boundary value problem with (2), namely,

x"(t) 0, 0 < < ,
’(0) 0, () -E:,= ,(,), (5)

has x(t) A, for A R, as non-trivial solutions, since ," a, 1, while the corresponding linear
boundary value problen associated with (4), namely,

x"(t) o, o < < ,
’(o) o, () Z, ,(,), ()

with ,9_ a, # 1, has x(t) 0, as its only solution. It is for this reason we call the boundary value
problem (2) to be at resonance. For some recent results on m-point and three-point boundary value
problems wc refer the reader to [21, [31, [4], [8], [9], [101, (and [11]).

We use the classical spaces C[0,1], Ca[O, 1], La[O, 1], and L[O, 1] of continuous, k-times contin-
uously differentiable, measurable real-valued functions whose k-th power of the absolute value is
Lebesgue integrable on [0,1], or measurable functions that are essentially bounded on [0,1]. We also use
the Sobolev space W’a (0,1), k 1, 2 defined by

Wz(0, 1)= {x" [0,11 Rlx, x’ abs. cont. on [0,1] with x"6 Lt[0,11}

with its usual norm. We denote the norm in Lk[0,1] by II. I1, and the norm in L[0,1] by il. II,,.

2 EXISTENCE THEOREMS.
Let X, Y denote Banach spaces X C[0,1] and Y L*[0,1] with their usual norms. Let Y be
the subspace of Y spanned by the function 1, i.e.

} {x(t)q Y Ix(t) A, a.e. on [0,1], A E R} (7)
and let Y be the subspace of Y such that Y Y Y. Let a, > 0, , fi (0,1), 1,2, -,m- 2
with "-i= a,= 1,0< < 2 <---, <,_ < 1, be given. We note that forx(t) . Ywecan
write

z(t)=(x(t)-A)+A, (S)
with a E,=,"- ,0-,} E,= a,[f’(l i)x(s)ds + f,(1 s)x(s)ds], for [0,1]. We define the
canonical projection operators P Y , Q: Y by

P((t)) (t)- E,:?.,,_ ,=, ,)()d + f’,( )()d]]
[E,:] ,[f’( ,)()d + A’,( )()d]], ()Q((t)) E,:; ,,_?

for x(t) Y. % note that if Q(x(t)) O, there exists a (0,1) such that x() O. Clearly,
Q I-P, where I denotes the identity mapping on Y, and the projections P and Q are continuous.
Now let Xa X}. Clearly X is a closed subspace of X. t X be he closed subspace of X such
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that X X, @X2. We note that P(X) C X,, Q(X) C X2 and the projections P IX X Xl
and Q X X X are continuous. In the following, X, Y, P, Q will refer to the Banach spaces

and the projections as defined and we shall not distinguish between P, P IX (resp. Q, Q IX) and

depend on the context for the proper meaning.
Define a linear operator L: D(L) C X Y by setting

m-2

D(L) {x E IV:"(0,1) x’(0) 0, x(1) a,x(,)), (10)

and for x (5 D(L),

Lx=x". (11)

Let, now, for e (5 Y, i.e. e ( L’[O,I with E,’ a,[fo’(1 ,)e(s)ds + h,(1 s)e(s)ds] O, Ke
denote the unique solution of the boundary value problem

x"(t) e(t), 0 < < 1,
x’ (0) 0, x(1) Z,%] a,x(,),

such that Z,=- a,[f’(1 ,)x(s)ds + h,(l s)x(s)ds] 0. Indd, for q [0,1],

(( (- l(e + , (/

where A -’E,.,’-’ =,(’-eD [E,= a,[f’ g(1-,)(t-s)e(sldsdt+fe fg(1-t)(t-s)e(s)dsdtl]. Accord-
ingly the linear mapping K X defined by the equation (12) is a bounded linear mapping
d is such that for

x Y, KPx (5 D(L), and LKP(x)= P(x).

DEFINITION 1 :- A function f [0,1] R --, R satisfies Caratheodory’s conditions if (i) for
each (x,y) (5 R, the function (5 [0,1] f(t,x,y) (5 R is measurable on [0,1], (iO for a.e. (5 [0,1],
the function (x,y) (5 R --, f(t,z,y) (5 R is continuous on R, and (iiO for each r > O, there exists
(,(t) (5 LI[0,1] such that lf(t,x,y 1< cr(t) for a.e. (5 [0,1] and all (x,y) (5 R with v/z2 + < r.

Let f [0,1] x R --, R be a function satisfying Caratheodory’s conditions. Let N:X Y be
the non-linear mapping defined by

(Nx)(t) f(t,x(t),x’(t)), (5 [0,11,
for x(t) (5 X.

For e(t) (5 , i.e. e(t) (5 L’[0,1] with .,-2}i= ai[fo’( ,)e(s)ds + f,(1 s)e(s)ds] 0, the
boundary value problem (2) reduces to the functional equation

Lx Nx + e, (13)
in X, with e(t) (5 Y, given.

THEOREM 2 :- Let f [0,1] x R R be a function satisfying Caratheodory’s conditions.
Assume that there exist functions p(t), q(t), r(t) in LI(O, 1) such that

If(t,x,x)l <_ p(t) Ixl + q(t) Ix2l + r(t) (14)
for a.e. (5 [0,1] and all (x,x2) (5 R. Also let ai > O, , (5 (0,1), 1,2, -,m-2 with
i=i ai 1, 0 < < 2 < -, < ",- < be given, and assume that for every x(t) (5 X,

(Qx)(t).(QNx)(t) > o, for (5 [0,1]. (15)
Then/or e(t) (5 Y, i.e. e(t) (5 LI[0,1] with
the bounda value problem (2) has at least one solution in C[O, 1] provided

Ilpll, + Ilqlla < 1. (16)
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PROOF:- We first note that the bounded linear mapping K Yl X defined by the equation

(12) is such that the mapping KPN :X X maps bounded subsets of X into relatively compact
subsets of X, in view of Arzela-Ascoli Theorem. Hence KPN :X X is a compact mapping.

We, next, note that z Cl[0, 1] is a solution of the boundary value problem (2) if and only if z
is a solution to the operator equation

Lx Nx + e.

Now, to solve the operator equation Lx Nx + e, it suffices to solve the system of equations

Px KPNx +
QNz=O, (17)

x X, el Ke (note that sincee Y, Pe= e, Qe=0). Indeed, ifx X is a solution of (17)
then x D(L) and

LPx Lx LKPNx + Le PNz + e,
QNz =0,

which gives on adding that Lx Nx + e.

Now, (17) is clearly equivalent to the single equation

Px + QNz KPNx el, (18)
which has the form of a compact perturbation of the Fredholm operator P of index zero. We can,
therefore, apply the version given in ([5], Theorem 1, Corollary 1) or ([6], Theorem IV.4) or ([7]) of
the Leray-Schauder Continuation theorem which ensures the existence of a solution for (18) if the
set of all possible solutions of the family of equations

Px + (1 A)Qx + AQNx AKPNz Ae,, (19)
A (0,1), is a priori bounded, independently of A. Notice that (19) is then equivalent to the system
of equations

Px AKPNx +
(1 A)Qx + AQNx 0. (20)

Let, now, x(t) be a solution of (20) for some A (0, 1). We see on multiplying the second equation
in (20) and using (15) that (1 A)((Qx)(t)) <_ 0 for every [0,1]. Hence (Qx)(t)= 0 for every

[0,1] and accordingly there exists a " (0,1) such that x(’) 0. Since, now, z’(0) 0 it follows
that 11 x 11< 11 x’ 11< 11 x" Ill- Also since Qx 0, we have QNx 0. It follows that x D(L),
i.e. x Wa(0,1)with x’(0) O, x(1) m-,=, a,x(,) and x"(t) f(t,x(t),x’(t))+ ,e(t).
Accordingly, we get that

IIx"ll, A IIf(t,x(t),z’(t)) / e(t)lll
_< Ilpll, Ilxll / Ilqll, I1’11 / I111, /

It follows from the assumption (16) that there is a constant c, independent of A (0,1) and z(t),
such that

I1"11, _< .
It is now immediate from II I1_< II ’ I1_< II " I1 that the set of solutions of the family of
equations (20) is, a priori, bounded in C[0,1] by a constant, independent of a (0, 1).

This completes the proof of the theorem.//
REMARK 1:- We remark that the Theorem 2 remains valid if we replace (15) by the condition

(Qx)(t).(QNz)(t) < O, for [0,11.
for every x X.
REMARK 2:- We remark that the condition (15) can be replaced by the condition

(21)

f(t,x,,x2)x > O, (22)
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for almost all (5 (0,1) and all (x,x2) (5 R. Indeed, condition (15) was used to show, in the proof
of Theorem 2, that if x(t) is a solution of (20) for some A (5 (0,1) then there exists a " (5 (0,1) such
that x(() 0. We, now, show that (22), implies that if x(t)is a solution of (20) for some (5 (0,1)
then there exists a (5 (0,1) such that x(() 0. Indeed, suppose that x(t) O, for all (5 (0,1).
We may, infact, assume without any loss of generality that x(t) > 0, for ever)’ (5 (0,1). It then
follows from (22) that f(t.x(t),x’(t)) >_ O. for a.e. (5 (0.1). ttence Qx > 0 and QNx >_ O. Now the
second equation in (20) gives that (1 .)(Qx) + A(QNx)(Qx) o, so that we get (Qx) < O, a

contradiction. Accordingly, there must exist a ( (5 (0,1) such that x(’) 0.

THEOREM 3 :- Let f "[0, 1] R R be a function as tn Theorem 2. Assume that the functions
p(t), q(t), r(t) tn (14) are ,n L(0,1). Let a, >_ O, , (5 (0,1), 1,2, --,m-2 with E,=- a, 1,
0 < < < ---, <_ < begiven.

Then for e(t) (5 L[0,1] w,th E?=- a, f{’, e(s)ds O, 9tt’cn, the boundary value problem (’2) has
at least one solution tn C[O, 1] provtded

9 9
(" Ilpll + Ilqll=) < x. (23)

PROOF:- The proof is similar to the proof of Theorem 2, except now one uses the inequalities
II z I1< l[ z’ II-< I1 z" I1 for an z (5 I,V (0,1) with (’) 0, for some " (5 (0,1) and z’(0) 0
(see, Theorem 256 of [12]) to show that the set of solutions of the family of equations (19) is a priori
bounded in C[0,1] by a constant independent of A (5 (0,1).//

THEOREM 4 :- Let f [O, 1] R R be a function as ,n Theorem 2 (respectively, Theorem ).
Let q (5 (0,1) be given. Then for e(t) (5 L[0,1] (resectively. e(t) (5 L[0,1]) with f0"(1 l)e(s)ds +
f(1 s)e(s)ds O, given, the three-point boundary value problem (1) has at least one solution in
C [0, 1] provided

Ilplla + Ilqll < 1, (24)

(respectively, (-Ilpll + Ilqll)< 1).

PROOF:- The theorem follows immediately from Theorem 2 (respectively, Theorem 3) with

m=3anda 1, =r/.//

THEOREM 5 :- Let f [0, 1] R R be a function as in Theorem 2 (respectively, Theorem 3).
Then for e(t) (5 L[0,1] (,’esectively, e(t) (5 L:[0,1]) with f0(1- s)e(s)ds O, given, the boundary
value problem

z"(t) f(t,x(t),z’(t)) + e(t), 0 < < 1,
’(o) o, (o) (),

has at least one solution in C[0,1] provided

Ilpll, + Ilqll, < 1, (25)
(respectively, -( Ilpll + Ilqll) < 1).

PROOF:- The theorem follows immediately from Theorem 2 (respectively, Theorem 3) with
m=2anda= 1, =0.//
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