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1. INTRODUCTION.

In [1] Bloom and DeSouza introduced the weighted special atom spaces B(w) = {f € D'(T) :
f =30 eabn, Yone, | en |[< 00}, where T is the unit circle in the plane and D'(T) are distributions
on T. The weight function w is a member of a class defined by Bloom and DeSouza in [1]. Each b,
is a special atom, that is either b,(t) = (27)7! or b.(¢) = w(| I )71 | I |7 {xr(t) — xL(t)}, t € T,
where I is an interval in T, with the left and right halves L and R. (Our notation is slightly different
from that of [1].) As usual | I | denotes the length of I and xg the indicator function of E. With the
usual atomic norm, B(w) becomes a Banach space and yields an atomic characterisation of some
well-known spaces on the unit disc. For example, given a € (—1,1) and w(t) = t*, B(w) consists of
the real parts of the boundary values (in the sense of distribution) of all those analitic functions F,
for which ];)1 02 " | F'(re**) | w(1 —r)dfdr < oo ; see Bloom and DeSouza [1], DeSouza and Sampson
[2], DeSouza [3].

The purpose of this paper is to investigate analogous spaces on the real line and, more generally,
on the Euclidean spaces of arbitrary dimension. We develop a technique based on the Calderén
reproducing formula to prove decomposition theorems in these cases. Also, we obtain a sufficient
and necessary condition for the weight function w to admit the atomic decomposition of the space
S defined below. The method of decomposition is different from that of Bloom and DeSouza [1],
and we neither have to investigate the dual space nor the boundary values of elements of S.

The decomposition of 8 in terms of the special atoms falls into three steps. The first consists in

the decomposition of S into so called Poisson atoms, which are relevant to properties of S*. Then
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we inquire into a class of the Fourier multipliers on S“. These are finally used in the proof of the
decomposition theorem for the special atoms. In the last part of the paper we sketch out some

possible generalisations of the method.

2. PRELIMINARIES.

All the vector spaces considered in this paper are over the field of the real numbers. We denote

by N the set of all the non-negative integers and by N , the set of all the positive integers.

DEFINITION 2.1. Let (X, || - ||) be a Banach space and let K # @ be a bounded subset of X.
The set of all b € X, which are of the form

b= cabn, Y leal<oo, b€ K, neN,, (2.1)

n=1 n=1
is the atomic space B = B(K) spanned by K.
We endow the space with the atomic norm || b ||p= inf} oo, | ca |, where the infimum is taken
over all the possible representations (2.1) of b €B. The space B = B(K) is Banach with respect
to the atomic norm. It is often of interest to know whether the spaces X and B are equal, that is

whether all the elements of X are of the form (2.1).

LEMMA 2.1. Define M = sup{|| b ||: b € K}. Let N be a positive constant. Suppose that for
every a € X and € > 0 there is some b € B such that |[a—b||[<ecand N || b|B<| a|. Then X=B
and also N || - B - IS M || - ||s-

The proof of Lemma 2.1 is elementary and we omit it here. Note that it can also be obtained as an

easy consequence of Theorem 1 in Bonsall [4].

DEFINITION 2.2. A measurable function w defined on R} = (0, 00) is called a weight if for any

interval I = (a,b), 0 < a < b < oo, it satisfies
inf{w(s):s € I} > 0. (2:2)

From now on, let n € Ny be the dimension of some fixed Euclidean space R". For a vector
z=col(zy,...,2,) € R", we write |z| to denote its Euclidean norm. Let R}™' = {(z,t) : z €
R", t > 0}. Given a weight function w, consider the family h* of all the real valued functions U

harmonic in R}*!, which satisfy the condition:
U |lw= / |VU(z,t)|w(t)dzdt < oco.
R:+l

Clearly || - || is a seminorm. (We write V.U for the vector col(&1U,...,8,U).)

DEFINITION 2.3. Let S denote the quotient space h*/|. -
Elements of §“ are classes of functions in h*, which differ by a linear function of t. Indeed, if
U,,U; € h* and || Uy — U; |lu= 0, then clearly V,U; = V,U; and §2U; = 0?U;. Therefore
Uy — U; = a + bt with constants a, b.
From the mean value property and (2.2), it follows easily that S* is a Banach space.

For ¢ > 0 and a function f defined on R", we write, as usual, f; to denote its dilation, that is
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filz) =t f(x/t). x € R™. The dilations have a few simple but important properties:

I fellwwny = IS llewe),
(f)e = Jau,
Jexge = (f*9)
() = f(te), € R™, 5,t>0, f.g€ L'(R).

As usual, f(£) = Jrn f(z)exp(—i€z)dz, £ € R”, is the Fourier transform of f. Also, we write f¥
for the translation of f : f¥(z) = f(z — y), z,y € R, and f for the weighted dilation defined by
fe =w(t)""fi, t > 0. Finally, let f} = (f)? and ;¥ = (f¢)*, ye R*, t > 0.

3. PROPERTIES OF Sv.

DEFINITION 3.1. A weight w is called admissible if
supw(s)'ls/w(t + 5)"2w(t)dt < oo. (3.1)
>0 0
Let w be a weight function. The boundedness of the expression w(s)~'s [°(t + s)~2w(t)dt is
equivalent to that of I = w(s)™'s [;° min(s™%,¢t?)w(t)dt. Let us write I = I, + I, where I =
Jo w(t)dt/(sw(s)) and I, = ["w(t)t=2dt/(s7'w(s)). To show that I is bounded, it is enough to
verify that I; and I; have finite limits as s tends to 0* and oo. In some cases this can be easily
done using L’Hospital Rule.
EXAMPLE 3.1. The weights

wh (t) =

t* if0<t<]l,
P if1 <t< oo,

t*|In(t) | f0<t<1/2,
wa(t)=1¢ 1 if1/2 <t <2,
t|In(t) |° if2<t< oo,
are admissible for every —1 < a, 8 < 1, and 4,8 € R. To check this we apply the above remark.
The notion of admissibility arises naturally from the investigation of atomic subspaces of S¥. We
define it separately in order to establish firstly some preliminary properties of S* it induces.

LEMMA 3.1. Ifw is admissible, then

s7lw(s)™! = 0, as s — oo, (3.2)

sw(s)™* = 0, as s — 0% (3.3)

Proof. From (3.1) we get I = sup,,ow(s)'s™" [(7(t/s + 1) %w(t)dt < oo. Since [°(t/s +
1)2w(t)dt — [Pw(t)dt > 0 as s — oo, it follows that limsup,_ . w(s)™'s™' < oo, hence
there are positive constants § and ¢ such that w(s) > cs7! for s > §. We have co > [ >
sup,5ow(s)~'s7 e [{°(t/s + 1)"2t~'dt. The integral [°(t/s + 1)~t~1dt tends to oo, so w(s)~'s~!
tends to 0, as s — oo. Similar reasoning proves (3.3). O

For s > 0 and a function H defined on Ri‘“, denote by H, the function given by H,(z) =
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H(z,s), + € R*. We should not confuse this with the notion of dilation, which is applied to
a different class of functions. The functions H and H, may take their values in R as well as in
R*, k € Ny, depending on the context. In the latter case we call H=col(Hy, ..., H) harmonic, if
H, is harmonic for each : = 1,..., k.

As usual, we write P, to denote the Poisson kernel, that is

P(z) = Cnt(||1"2 + t2)—(n+1)/2’ zeR", t>0,C, = r(n ;’ l),,.—(n+1)/2.

Note that definition of P, agrees with the notation of the dilation (P), , if we put P = P;. Let us
recall that elements of S“ are classes of functions, which differ by a linear function of t.
DEFINITION 3.2. An element F in S“ is called regular if for every s > 0 and ¢ > 0, the vector

valued function H = V_F satisfies the condition

H, € L'(R") and Hy, = H, * P.. (3.4)

THEOREM 3.1. Assume that w is admissible. Then every F € S¥ is regular. Moreover, for
every s > 0, the hinear map S¥ 3 F — V_F, € L}*(R") is continuous. In each class F € S¥ there is
a unique member U such that

| Us ||eo(rny— 0 as s — oo. (3.5)

The Poisson integrals of L°(R™) functions are dense in S¥.

Proof. For Y € R, r > 0, let B(Y,r) denote the ball in R"*!| which has the radius  and is
centered at Y. Fix F' € §“. Let y € R*, s > 0, [ =< 5/2,35/2 >, ¢/ = inf;c;w(?), and let
B stand for B((y,s),s/2). By the mean value property of H = V,F, we get |H(y,s)| =| B |~
I fy H(z, Odzdt] < 7' | B |7 [, H(z, Dlo(t)dzdt < i | B 1 F lu= V-1er's™)s || F [,
V being the volume of the unit ball in R**!. By (3.2), the harmonic function H is bounded on
{(z,¢): ¢t > s, £ € R"} hence H, € L*(R") and Hyps = Hy* P, t > 0. Now, let 0 < t < s.
The Young inequality yields || H |[yrn)>|| H, ||L:(Rn), consegently || F |lo= [~ || H: ||i@mn)
w(t)it 2 f7 1| H, llor oy o(t)dt =I| H, lismoy f3 (t)ds. Therefore || H, [lzs@n< e, || F [lo, with
cy = (fo’ u..v(t)dt)-l < 00, and so the first part of the theorem is proved. Furthermore, since ¢, — 0,

as s — oo, we have
Il Hs ||z1yr»)— 0 and || H, ||Leo®n)— 0, as s — oco. (3.6)

Fix some function T € F and s > 0. It is not difficult to show that

sup Ts(z) — inf Ty(z) < v{ll Hs ||lLrrn) + || Hs Iz @}, (3.7
zeR" zeR"

where v depends only on n. This yields that T, is bounded. The Poisson integral T * P,_,(z), t >
s, z € R", is equal to T in h* as a function of z and ¢ (it can be easily defined for 0 < ¢ < s).
Therefore assume that T itself satisfies T, = Ty * Pi—,, t > s, and Ts € L=(R"). By the assumption
and by (3.6) and (3.7), it follows that there is a constant C such that Ti(z) — C uniformly in
z € R", as t — oo. The function U = T — C satisfies (3.5). Clearly, this condition determines U
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uniquely. Finally, given 7 > 0, define 7,F(z,t) = F(z,t+1n), £ € R*, t > 0. It is easy to check
that 7,FF — F in S* as n — 0*. Note that 7,F may be represented as the Poisson integral of
U, € L*(R"), with U € F defined above. O

COROLLARY 3.1. If w is admissible, s > 0 and £ € R" , then the hnear map S¥ 5 F —
V:?‘,(f) € R" is bounded. Such maps separate elements of S* that is if E, F € S* and V:E_,(E) =
V:;",({) for every € and s then E = F .

COROLLARY 3.2. If w is admissible, then S may be identified with the Banach space of all
the functions U € h* , which satisfy (3.5).

We shall regard Corollary 3.2 as an alternative definition of S*.

4. THE ATOMIC DECOMPOSITION OF S“ IN TERMS OF THE POISSON ATOMS
We adopt the following notation:

G(z) = 8Pi(z)==Cn(n+ z,(Jz|? +1)"™*I? z R 1<i<n,
G = col(Gy,...,Gn),
K(z) = VG,(z)=Cu(n+1)(n+3)(Je|? +1)" "+ 2ol (2,2, . ..,Tqz,)

—Ca(n+ 1)(Jz* + 1)+ 2, z € R", 1 <i < m,

where {e, : 1 <7 < n} is the standard basis in R".
DEFINITION 4.1. We call Poisson w-atoms the Poisson integrals C.;'“‘:;” of the weighted dilations
of the functions G,, that is

G(x,t) = G2 * Pi(z) = (Gi)s¥ * Pi(z), 7,y €R", s, >0, i=1,...,n.

Accordingly, let G~'.“'s =G, xP.

LEMMA 4.1. There is a constant C > 0 such that
Il G3. llu=Cs / (t+ s)2w(t)dt, s > 0. (4.1)
o

The set of the Poisson w-atoms is bounded in S¥ if and only if w is admissible.

Proof. 1t suffices to prove (4.1), the rest being immediate. Let ¢ = G;,K = K,. Note that

the function t~'Gy(z) = & P(z) is harmonic in R’+'+1. It follows easily, that for every s > 0,
the function G,(z,t) = s(t + s)"'Guss(z), ¢ € R®, t > 0, is equal to the Poisson integral of
G,. Direct differentiation gives V,é,(:c,t) = 5(t + 3)"2Ki4s(z), € R", s,¢t > 0. Therefore
Il G llo=s f5°(t + s)2w(t)dt [gn IKets(2)ldz, so (4.1) holds with 0 < C =|| K ||p1rm)< 00 . O

DEFINITION 4.2. Let w be admissible. Denote by G the atomic space spanned in S“ by the
Poisson w-atoms.

To state our next result we need some preliminaries.

Assume that w is admissible. Let F' € S¥. Fix ¢, 1 <1 < n, and consider the function RT" — Sv
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given by (y,s) — (r" 0,F(y,s). We claim that it is continuous. Indeed, it is enough to check that

the map (y, s) — '”s is continuous. Fix ¢ > 0, ¥ € R". Let s - o and y — ¥J. We have

NG, — e |l = /R VLG (1) = V.G (o, Oho(t)

S 1t @)K () = st 6) K (il Ot

/‘; | o(t+0)” 2R ite — s(t+ s)'21\'ly_¢+, Il (ry w(t)dt — 0
by the bounded convergence theorem and by the admissibility of w. Also, note that

] I G20 F(y, )llwdyds—/ 1G22 1) OF (yos) [ dyds S C || F s (42)
R‘:+l R:'H

where C < oo is an upper bound for the S* norms of the Poisson w-atoms. Therefore the Riemann

integral [po+1 éfSB,F(y,s)dyds is well-defined, and so is the following sum
» :
G ,0.F(y,s)dyds, F € S“. (4.3)
-—l R""’

For a,b € R, a=col(ay,...,a,), b=col(by,...,b,), we have aTb = S, a.b, a7 being the trans-
pose of a. Therefore we can formally write (4.3) as

GY'V,F(y,s)dyds, F € S, (4.3)

R:+l

to abbreviate the notation. (We write VU for col(01U, ..., d,U).)
Let A=(a,:1<i<k1<j<I), B=(b;:1<i<1!1<j<m)be matrices, whose elements
are L'(R") functions. Let A+ B = (¢, : 1 < i < k,1 < j < m), where ¢,, = Zi=1 a, *x b, €
L'(R"),1 < i < k,1 < j <m. From the well-known property of the convolution: ng(g) =
£(6)§(€), € € R™, it follows easily that

A+ B() = A(€)B(¢), € e R, (4.4)

with the natural definition of the Fourier transform of matrices.

THEOREM 4.1. Let w be admissible. For every F € S¥ the following equality holds

F= -—-4/ éi’TVyF(y,s)dyds (Calderén formula). (4.5)
n41
+

The spaces S¥ and G* are equal and their norms are equivalent.

Proof. The integral in (4.5) is understood like (4.3) and (4.3’). By Corollary 3.1, it suffices to prove
that for every t > 0 and ¢ € R", the map F — V’,\Ft(ﬁ) takes the same values on both sides of
(4.5). Clearly, it is enough to consider the case £ # 0. Fix F € S¥, £ € R*\{0}, t > 0. Let

R=V,_ (—4 GiTVyF(y,s)dyds) ), EF#0.
Ry ,
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The Riemann integral commutes with continuous linear operators, hence the same result is obtained
when the map acts on the integrand. Since V,G!,’T(:c,t) =t7'Gy GgT(a:), z,y € R", s,t >0, we

have

R=—4 / (t-‘G, . Gg’")“(g)va(y,s)dyds.
Ry

Suppose that F' = [ * P, for some bounded f. Note that V,F(y,s) = s7'f * G4(y), s > 0, y € R™.
Therefore, using (4.4), we get

R = _4/1{:“ (£71Ge+ ) (0)s™' £+ Gily)dyds
= 4 o TGO, € exp(-ine)s™ 1 + Gul)duds
- - / TIGOG (€5 TGl
= —4 /omt“’ (G +GT + fG,)(€)s™"ds
= —4/0°°t-’ (f * G x GT + G,)\&)s ™ ds
R CICY EAGEZGR
= Voo (~4 [ eTGec(s s )

To compute I = fooo C'T(sf)é(sf)s’lds, we make the change of variable u = ||¢|s, and use the
equalities 9,/(¢) = i(,f(¢), f,0,/ € L'(R") and Py(¢) = exp(—[C]), ¢ € R™. We get | =
I GT(ut/|E])G (ut/|E))u" du = — J;° exp(—2u)udu = —1/4, which proves (4.5), if F = f x P,
for some f € L(R"). By (4.2), the linear map S* 3> F — —4 fR:“ G{TVyF(y, s)w(s)dyds € S
is continuous with norm not greater than 4Cn, C being as in (4.2). Poisson integrals of L*(R")
functions are dense in S¢, hence the map is the identity on the whole of S“ and so (4.5) follows.

Next, assume that w is continuous. For F € S¥ and ¢ = 1,...,n, we clearly have
—4/ GY,0,F(y,s)dyds = —4/ G¥¥0,F (y, s)w(s)dyds.
R R}

The second expression is to be understood as a Riemann integral with respect to the finite measure
given by the density 9, F (y, s)w(s). The integrand G”:;” is bounded and continuous as a function with
values in S“. Therefore the integral is well-defined and may be approximated in S“ norm by the
Riemann sums S, = —4 ZL] G’ fB, 0,F (y, s)w(s)dyds, where each G? is a Poisson w-atom, B, are
disjoint subsets of R}*!, and k € N,. Since clearly %, || S, llge< 4v/7 || F ||, the conditions of
Lemma 2.1 are fulfilled with N =1/(4/n) and M = sup{|| é:‘:;y lo: y€R™, s>0,i=1,...,n}.
In consequence we obtain ¥ = G“ and ﬁ; I lge<|l - lu< M || - ||ge- For a discontinuous
w, each term in the expression —4 Y " fRi“ G¥¥,F (y, s)w(s)dyds, may only be understood as a
Bochner integral. The integrals are then well-defined because the functions R}*' — S“ given by
(y,8) — G’:" "Y are bounded and strongly measurable and the corresponding measures are finite (see
Yosida [5] for details on the Bochner integral). The integrals may be approximated in norm by
integrals of simple functions all of whose non-zero values are Poisson w-atoms. Again by Lemma

2.1, this yields that §* = G¥ and ;= || - lgo<|| - lb< M | - [lgv- O
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REMARK 4.1. For an admissible and discontinuous weight w, define w*(s) = s [°(t+s)2w(t)dt,
s > 0. It may be casily verified that the weight w* is admissible and continuous and moreover we
have S¥ = S*".

Let us make a digression here to show how the atomic decomposition of the space S¥ may be
expressed in terms of the boundary values of its elements.

For p > 1 satisfying n(1 — 1/p) < 1, define w(t) = t~"(1=1/?) ¢t > 0. Note that

/ | sn(l-llp)s—"(_',',((z —y)/s) |P de

/R s Gu(z) P s™dz =|| Gy [y < 00

G WLy

Il

hence by the decomposition of §¥ into Poisson w-atoms G**Y, the boundary value functions of its
Yy I

elements are all in LP(R").
COROLLARY 4.1. Let p > 1 satisfy p < n/(n —1). If w(t) = t™0-1») ¢t > 0, then the

following equality holds in LP(R™) :
Fo= —4/ G'ZTVyF(y,s)dyds, F € 8%, where Fy(z) = F(z,0%) a.e. (4.6)
R:‘H

REMARK 4.2. Let w be an admissible weight function. Consider the class h’ of all the real
valued functions U harmonic in R}*', which satisfy the condition | U ||/,= ij;*‘ | O.U(z,t) |
w(t)dzdt < co. Define S = h™/,.. It is easy to check that the Poisson w-atoms form a bounded
set in 8. This yields 8* C S. Define the function M by M(z) = 8,P,(z) |1=1, = € R". The
method described above may be applied to decompose S into the Poisson integrals of the weighted
dilations of M. The same functions form a bounded set in S, hence the spaces S* and S are
equal and their norms are equivalent. We omit the details.

REMARK 4.3. The basic references for the Calderén reproducing formula in context of atomic
decomposition are Frazier and Yawerth [6] and Frazier et al. [7]. For example an atomic decom-
position of the homogeneous Besov spaces B;”"’ is stated in [7] (see Frazier and Yawerth [8] for the
proof). Taking advantage of the result and of Theorem 4.1, it may be verified that the Poisson
integrals of the distributions in B{"', form the space S* for w(t) =t7*, a € (=1,1). We note here
that the atomic decomposition is understood more generally in Frazier and Yawerth [6] and Frazier
et al. [7] than in this paper (see also Feichtinger and Gréchenig [9] for a group theoretical point
of view). Our approach is rather in spirit of the decomposition of the space Bf " which is treated
separately in [7], however there are changes due to the fact that special atoms defined below are
not smooth nor radial and that we consider a wide class of weight functions. Also, recall that we
did not assume that the boundary values of elements in S* are distributions. Now this fact may be
verified using the atomic decomposition of S* into Poisson w-atoms (regard (3.2), (3.3) as estimates

for the size of atoms). We omit the details since the result will not be exploited in this paper.

5. FOURIER MULTIPLIERS ON sv

Assume that w is admissible. We focus our attention on the Hilbert transform type Fourier
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multipliers M : S* — S satisfying
Vo MFE(E) = m(E)V,F(€), EERM, t>0, F e S, (5.1)

where m is a real or complex function homogeneous of degree 0.
There are (only) formal reasons for introducing the gradient V; in (5.1) since we did not give a
meaning to f‘t(f) and we cannot generally use a more preferable A’/f\F',(f) = m({)[?‘,(f). Similarly
we did not established what the boundary value, say Fy, of F € S“ is, and we cannot write
M?’o(s) = m(f);’;({) which is in fact the idea behind (5.1). The following theorem states some
conditions on the function m sufficient for existence of the operator M : S¥ — S* satisfying (5.1).
Note that by Corollary 3.1 such an operator is unique.

THEOREM 5.1. Let m be homogeneous of degree 0,n times continuously differentiable on
R"\{0}. If m = m; + im,, where m;,my are respectively even and odd real functions, then there is

an operator M satisfying (5.1) which maps S¥ continuously into S*.

In particular Riesz operators R, given by the functions m,(¢) = —i&,|¢[7!, £ € R*, 1 <i<n,
are bounded on S¥, which means that it is invariant under generalized conjugation.

First, we prove an auxiliary fact. Let € > 0 and d € N be fixed. As usual C?¢[—¢, €] denotes the
class of all the functions defined on [—¢, €], which have continuous derivatives up to the d-th order.
Put || f |la= sup{| f*®)(z) |: £ € [~¢,€],k = 0,...,d}, f € C¥[—¢, €]

LEMMA 5.1. Given ¢ > 0 and d € N, there is a constant C such that for every f € C¥—¢, €]
and | u |> 1, the following inequality holds

+e
[T = i) s < O S fal w [T

—€

Proof. Let us write Cy rather than C to distinguish between different numbers C' depending on d.
Assume that | u [> 1. The proof is by induction on d € N. For d = 0 we have:

00

+e
L) S0 - ius)"ds |<|| f ||0/: (1+ (us)) s =7 || f llof w |,

oo

hence Cy = w. Next, integration by parts yields

[ f)(1 = i) @s |

—€

| —i(d+2)" w7 f(s)(1 — dus) ™) |*e

IN

+e€
+i(d+2) ! F(8)(1 = dus) ™+ s |

(AN

2d+2)7" || f o] u |7+ 4D
Hd+2)7 T Call f g w7

Cagr || f llasa] w |7449,

IN

where Cyy1 = (d + 2)~ {2+ + C,}.0
Proof of Theorem 5.1. By Theorem 4.1 it is sufficient to show that there is an operator M with
values in S“ satisfying (5.1) and bounded on the set of all the Poisson w-atoms; a typical application

of atomic decomposition. Such an operator extends uniquely to a continuous map from S*“ into
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itself. From the Plancherel theorem there is a function g € L*(R") satisfying §(£) = m(&) exp(—|¢])
a.e. In fact, g may be uniquely chosen to be smooth. Given ¢,j : 1 <4,j < n, consider f = 9,0,g.
We claim that f is real and integrable. Let w(§) = —&&m(€), £ = col(éy,...,&) € R™. Fix

z € R*. By the Fourier inversion formula we have

f@) = [ wle)exp(—leD explice)de, e, = (2:)

To compute f(z), we introduce polar coordinates r € (0,00), o € S™~!, S™~! being the unit sphere

in R*, and we integrate (n + 1) times by parts with respect to r. We obtain:

f(=)

cn/ w(a)/ exp(—r(1 — ioz))r"tdrdo
sn-1 ()

c,,(n+1)!/ w(o)(1 —iaz)‘("“)/wexp(—r(l —107))drdo.
Sn-1 0

Il

Finally, we get:
fz)=ci(n+ 1)!/ w(o)(l — iaa:)-("“)dcr. (5.2)

Sn—1
Everything is now easy for n = 1 : f(z) = 77 {w(-1)(1 + iz)™3 + w(1)(1 — iz)~3}. Therefore

assume that n > 2. Let |z > 1. We make the following change of variable:

o
do

(We can identify S?~2 with the unit sphere in R*"!, and dn with the (n — 2)-dimensional spherical

nsing + T cos @,
sin""? pdndp, n € Sp72 = {y € S*7': (y,2) =0}, 7 =z/|z|, p € [0, 7).

Il

measure. As usual (-,-) denotes the inner product in R*.) We get:
f(z) =ca(n+1)! /s;'-’ /: w(nsin g + 7 cos @)(1 — ||z cos )~ "+ sin""2 pdpdn.
Another change of variables: s = cos¢, s € [—1,1], gives
f(z) =ca(n +1)! /s;‘*’ /:l w(n(l = )2 4 75)(1 = iz|s) "D — s?)"=3/2gsdy.
Fix € € (0,1) and use Lemma 5.1 to obtain the estimate
| /“ w{n(l = s")2 4+ 75}(1 = ifz]s)" "+ (1 — )" 2ds |< Clz| Y,

where C < oo depends only on n, ¢, and the supremum over S™~? of all the partial derivatives of
the n-th order of m. We see immediately that there is a constant C' < oo, such that | f(z) |<
C'|z|~+Y, |z| > 1. Since f is continuous, this yields f € L'(R").

Let S}7' = {0 = (01,...,04) : o1 > 0}. From (5.2), for every z € R", we have
flz) =ci(n+ 1)!/ {w(o)(1 —ioz)~ D) 4 w(—0)(1 + ioz)""*D}do, ¢, = (27)",
sy

the integrand being real by the assumption on m. Therefore f is real valued. Note that either in the
casen = 1, or in the case n > 2, g is necessarily real valued as well. Let E, = 0,9, 1 <7 <n. Fixy €
R", s> 0and:, 1 <i<n. Let us recall that G‘,‘:;y(z,t) =w(s) 's(t+s)7'GY,, (), z€ R, > 0.
A simple verification shows that M(G*?)(z,t) = w(s) 's(t + 8)T'E} 4 ,(z), z € R™, t > 0 satisfies

1,8
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(5.1) for every Poisson w-atom F. By means of the Fourier transform it is easy to check that MG",‘:;y

is a harmonic function on R}*'. Clearly, it is also real valued and vanishes at infinity. Note that

I MG = [l s+ 0 9L (o)l ot
+

- A () s(t + 8)72 || (VoBa)yy Nl (e w(t)dt

| V2E. @) w(s)_’s/ (t + s) 2w(t)dt.
1]

Since V. E, is integrable and w is admissible, the set {MG‘:‘:;" :yeR™ s>0,1<i<n}is
bounded in S¥. This proves the theorem. O

6. DECOMPOSITION OF S¢ IN TERMS OF SPECIAL ATOMS

Let us introduce the following functions:

b,(r) = —27"sgn(z,) Hx(_m)(z,), zeR", 1<i<n.

1=1
We are now in a position to prove that S* is equal to the atomic space generated by the functions

b,. Note that these functions give a natural extension of the notion of the special atom on T.

DEFINITION 6.1. We call special w-atoms the Poisson integrals i):':;” of the weighted dilations

of the functions b,, that is
bo¥(z,t) = b2Y x P(z) = (b)2Y * P(z), z,y €R™, 5, >0, i = 1,...,n.

S

Accordingly, let 5{’ =b *P.
LEMMA 6.1. There are positive constants C,, Cy such that

C,s/ (t+s)w(t)dt <|| B3, Jl< Cgs/ (t + ) 2w(t)dt, s > 0. (6.1)
o o

The set of the special w-atoms is bounded in S¥ if and only if w is admissible.

Proof. 1t suffices to prove (6.1), the rest being immediate. Let B = b,, B, = i;‘,”_,, s > 0. We have

1B, ]l = / IV.B, (2, O|w(t)dzdt = / 1718, * Gi(z) Jo(t)dedt
R:'I'l R:‘l‘l

LB Gl w0t = [T Bx G s (0
Assume that there are constants ¢; > 0, c; > 0, such that for every r > 0,

cymin(r,77) <|| B, * G ||py&m < ez min(r,r77). (6.2)
By (6.2) we obtain

| B, le = / | By * G |lyrm < cz/ t~! min(s/t,t/s)w(t)dt
) o

IN

4egs /w(t + 5) 2w(t)dt.

Likewise || B, ||> c1s I3t + s)"2w(t)dt, so (6.1) holds with Cy = ¢; and C; = 4c,, if only (6.2) is
valid. To prove (6.2), we show first that

| B, * G || 1@< e min(r,r™1), 1> 0. (6.3)
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Note that fR" B(r)dr = 0 and that the map R 3 y — GY € L'(R") is Lipschitz continuous, that

is || GY =G ||lnrn < C |y |, y € R, for a constant C. By Fubini-Tonelli theorem, this yields

| B * G ||Lr(rn)

[ ot -yt = [ 1] 8066 - - Gioliyls

n JRn R JR»

/ / | B,(y) | G« — y) - Glz)ldzdy = / | Boly) Il G* = G vy dy
RrRr JRP R»

Cr/ | B, (y) || y/r | dy = ¢'r, » > 0, where ¢’ = C/ | B(y)y | dy.
R» R»

IN

IN

Note also that || B, * G ||[pywm)=]| B * Gyr ||Lyrn), T > 0. Changing the roles of B and G above,
we get || B, xG ||y mny=|| B*Giyr |lLmn< ¢"v7Y, 7> 0, with a constant ¢”. Take ¢; = max(c, ")

to obtain (6.3). Next, we prove

amin(r,r™!) <|| B, * G || mn), v > 0. (6.4)
Clearly, it is enough to verify that

cymin(r,77") <|| B, * Gy ||Lirn), T > 0. (6.5)

Define p(z) = %[/\(_.‘0)(1') - xon(z)], © € R, and g(z) = %\(_1,1)(1‘), z € R. We have p({) =
1/2[f_0l exp(—(z)dz — fol exp(—i{z)dz] = (1 — cos({)/¢, ¢ € R\{0}, p(0) = 0, and, similarly,
§(¢) =sin /¢, ¢ € R\{0}, ¢(0) = 1. Since B is a tensor product, the same is true for B. Explicitly,

n

B() = p(&) [[ &), € =col(éy,..., &) € R™. (6.6)

1=2
Recall that Gy(€) = i€ exp(—[€]), € € R*. Fix £ € R™ such that & # 0, and consider the

expression

n

Li=77Bx Gy() = v B(ré)Ga (€) = {iﬁ(rfn)/(rfx) 4(7‘&)} & exp(=[¢l), r > 0.

1=2
We see immediately that [ — 3¢} exp(—|é]) >0, as r — 0*. Next,forr >0, &4 =& =... =6 =
%m*", consider the expression

I =B+ Gy(€) = {iﬁ(r&)(r&) H«i(rc.)} exp(—[€])-

1=2
We check at once that I; — (1—+v/2/2)(2v/2/7)*! >0, as r — co. Since, for f € L'(R"), we have
Wi Lo @<l f ll1(mn), it follows that liminf, o+ v~ || By * Gy [|yrn)> 0 and liminf, oo 7 ||
B, x Gy ||y (rn)> 0. Since || B, * Gy ||pi(rn) is a positive continuous function of » > 0, (6.5) holds
with a constant ¢; > 0. O
DEFINITION 6.2. Assume that w is admissible. Let B“ denote the atomic space spanned by
the special w-atoms.

To state the next result we need some preliminary steps.

DEFINITION 6.3. Let w be admissible. Fix s >0andz: 1 <: < n. For F € S¥ let

r n
Foxb,,=—4 A " GY" % b,V F(y,r)dydr = —4) /R - GY, * b,,0,F (y,r)dydr.

=1
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Each term in the sumn is understood as the Riemann integral of the function R}*' — L'(R™) given
by (y,r) — vi, * b, 50, F(y,r). The symbol of convolution in Fy * b, ; may be fully justified because
limy_o+ F; exists as a distribution. However, we do not develope this point here, and the notation
Fo*b, 5 is purely formal. In particular the symbol Fy alone has no generally prescribed meaning. To
prove that Fyxb, , is well-defined, fix s > 0, 1and j : 1 <4, < n. Clearly, the map R}*' 3 (y,7) =
GY, xb,, € L'(R") is continuous. From (6.2) we have || GY_*b.s ||y =l G, * by o ll21(R)s 7> 0.

By Lemma 3.1, the expression min(s/r,r/s)w(r)~" is bounded, thus

IN

oo 168 b s P ) e <o [ min(afr ] s)o(r)™ 10,y | o)y
+ +

C || F . for a constant C.

IN

This justifies the definition. Note that we have actually proved that the linear map S* 3 F —
Foxb, , € L'(R") is continuous. Suppose that F is a finite sum of Poisson w-atoms, and let f = Fyi.e.
f(z) = F(z,0). By Corollary 4.1 with p = 1, we have f = —4 fRTl GY"V,F(y,r)dydr in L'(R"),
for every s > 0 and 1 <7 < n. It follows easily that f * b, = —4 fR:“ GgT * b, V,F(y,r)dydr in
L'(R™) for every s > 0 and 1 <2 < n, so, as one could expect, Fo*b,, = f * b, ,. Let us denote by

Fo * b, the vector col(Fo * by, ..., Fo*byys).

LEMMA 6.2. Let w be admissible. The map & : S¥ — S¥ given by F — ®F, where ®F is the

Riemann integral
] BY" Fo % by(y)s™'dyds = § ) / B Fox b o(y)s~ dyds, (6.7)
R’:“ =1 R:“ '

is a well-defined Fourier multiplier with symbol ¢ being a negative, even function homogeneous of
degree 0 , which is 2n — 1 times continuously differentiable on R™\{0}.

Proof. First we check that (6.7) is well-defined. Fix ¢,1 < ¢ < n. An easy verification shows that
the function R} 3 (y,s) — 133', € S“ is continuous. Let ¢ = sup{|| i)‘_:’:’ lo: y €R™, >0, 1<
j <n}. For F € S¥ we have

/ 8%, llol Foxbs(y) | s™'dyds < / | B2 ol Fo * bus(y) | s w(s)dyds
R RH

IN

c/ | Foxb,s(y) | s7'w(s)dyds, ¢ < oo.
R

We claim that there is a constant C' < oo, such that for every 7 : 1 < i < n, the last expression is
bounded by C || F ||, . Indeed, by Theorem 4.1, we only need to prove that, regarded as a function
of F, it is bounded on the set of all the Poisson w-atoms. We use (6.2) to estimate the last integral

. AW,z
in case F' = G},

zeRY, r>0,1<j<n:

Il

Joon 165200 17 s = o)™ [T 16, by i 57 ()i
» 0

IN

00
czw(r)”r/ min(s™2, 7 %)w(s)ds < ¢,
0

where ¢’ < 0o is a constant. This gives the result. We see that (6.7) is well-defined and, moreover,

that || ®F ||.< nC || F ||., so the operator @ is continuous. Our next task is to show that ¢
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is a Fourier multiplier with a symbol ¢. Clearly, it suffices to check this for the Poisson w-atoms.
Assume that F is such an atom and let f be its boundary value function. Let t > 0 and ¢ € R™\{0}
be fixed. Proceeding as in the proof of Theorem 4.1, we get [ = V:QTF}({) = V,Fi(€)$(€), where

8(6) = / " BT(sE)b(s€)s ™ ds. (6.8)

The change of variable u = |¢|s yields ¢(¢) = [;° BT (w€/)€N)B(u/|€])u" du hence ¢ is homogeneous
of degree 0. By analogy to (6.6), we have I;:(f) =1(1 —cos&)/& T sing, /€, 1 <i < n, thus

1=1,7%#1

the integrand in (6.8) is equal to

b (s€)b(s€)s™! = —s™2n7! Hfl'z {Z ([1 — cos(s¢))? H sinz(s§])> } .

=1 =1 1=1,%#

Differentiate this with respect to &, 1 < i < n, at £ # 0. The result is of the form s=2"W(s¢),
where W is certain trigonometric polymomial with smooth coefficients depending only on £. In
consequence, ¢ is continuously differentiable on R"\{0}. Similar arguments apply to all the deriva-
tives up to the (2n — 1)-th order. Finally, note that the integrand in (6.8) is non-positive for every
s > 0, and is negative if £ # 0 and s is sufficiently small. Therefore ¢ is negative for every £ # 0.
Since the integrand is an even function of £, the same is true for ¢.0

Let w be admissible. For ¢ as above put m(¢) = ¢71(¢), £ € R™. (Recall that ¢ # 0.)

DEFINITION 6.4. Denote by M the Fourier multiplier S¥ — S given by the function m.
By the above lemma and Theorem 5.1, M is well-defined and continuous.

Now, we are in a position to state and prove our main result.

THEOREM 6.1. Assume that w is admissible. For every F' € S¥ the following equality holds
F =/ i)i’TMFo* by(y)s~'dyds ( Calderén formula). (6.9)
R:"’l

The spaces S¥ and B“ are equal and their norms are equivalent.
Proof. By Lemma 6.2 the integral in (6.9) is well-defined. Since, by definition M = &~ it is
evident that right hand side of (6.9) is the identity of S* and so (6.9) holds. We clearly have

/ iii’TMFo * b,(y)dyds Z/ B, MFp x b, ,(y)s~ dyds
R} R}

1=1

E/ E:;"MFO * b, ,(y)s ™ w(s)dyds.
= JRYH

The terms in the last expression are understood as Bochner integrals with respect to the measures
of the densities M Fo*b, ,(y)s~'w(s), ¢ = 1,...,n. Each term may be approximated in the S norm
by integrals of simple functions all of whose non-zero values are special w-atoms. Such integrals
are in B“ and their atomic norm is not greater than fR:“ | MFy*b,4(y) | s w(s)dyds < C ||
MF < C|| Ml Fllo t=1,...,n, with C the same as in the proof of Lemma 6.2 and the
operator norm || M || being finite. We see that the conditions in Corollary 2.1 are fulfilled with
N=(C|| M| +/n) " and M = sup{|| i)f:;y lo: y € R*, s >0, i =1,...,n}. The conclusion reads
S“=B“and N || - [lp-<|| - l< M| - ||+ O



ATOMIC DECOMPOSITION OF HARMONIC FUNCTIONS 639

REMARK 6.1. Assume that w is admissible. Let F be a finite family of real functions on R*

such that for every f € F

/ | 7(2) [ (1 + Jel)dr < oo, / fle)dr =0, (6.10)
R R

the map R" 3 y — f¥ € L'(R") is Lipschitz continuous, (6.11)

-1
m(€) = (Z/ fz(gt)t"dt> satisfies the conditions of Theorem 5.1. (6.12)
sex 0

Then S* may be decomposed into the Poisson integrals of the weighted dilations of the functions
in F. The proof is the same as in the case of the family {b, : 1 < ¢ < n} considered above. If for
example f # 0 is a real valued, radial, continuously differentiable and compactly supported function
such that [p, f(r)dr =0, then F = {f} satisfies all the above conditions.

The condition (6.12) may be somewhat relaxed since we can “convolve” (see Definition 6.3) Fo
with both f, and (f),, f € F, several times (we write f(r) = f(—x)). It follows that we can replace
the symbol f2(€t) in (6.12) by | f(€t) |2 or even by | f(€t) |** with k € Ny.

7. FURTHER RESULTS
Let £ € N. Fix a weight function w and the corresponding space S“. Consider the function
family of all the derivatives of the k-th order of the function P,. If w satisfies the condition
supw(s)”'s® /m(t + )"y (1)dt < oo, (7.1)
>0 0
then the atomic space spanned by the Poisson integrals of the weighted dilations of those functions
is identical with S“. The condition (7.1) enlarges the set of admissible weights if & > 1. It should be
noticed that if (7.1) holds, the space S may be decomposed into different classes of atoms related
to the Poisson kernel. For example, if w(t) =%, t > 0, a € (—1,0), then S* admits decomposition
into Poisson integrals of the weighted dilations of the function P; as well as into those given by
derivatives of any fixed order of Py.

The result may be generalised. Let a finite function family F satisfy the conditions (6.11),
(6.12) in Remark 6.1. Also, let [ | f(z) | (1 + |z|*)dz < o0, and [g. f(z)z*dz = 0, for every
multiindex « such that | @ |[< k. Then S“ is equal to the atomic space spanned by the Poisson
integrals of the weighted dilations of functions f € F.

Spaces analogous to S* may be defined in terms of derivatives of any fixed order d € N. Rather
than consider the general case, we shall discuss an example. Let a weight function w fulfill (7.1)

with k = 0. Define T“ as the space of all the functions U harmonic in R}, which satisfy
10 = [, 100 | wlo)dedt < oo
R7H

(So d = 0 here.) Since || s"@"“:;y lTe= w(s)™ [7°(t + s)"'w(t)dt || Gy ||yrr), ¥ € R, s >
0, 1 < i < n, the set of the functions s"é‘:;y is a bounded subset of T“. Denote by GT*,
the atomic space spanned by these functions. Fori: 1 < ¢ < n, and U € T¥, define [,(U) =
fR;“ s”‘G",‘f;yU(y,s)w(s)dyds. It is not difficult to check that for every 7 : 1 < < n, the map I,
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is linear and continuous, with values in S§¥, and that (1.?(7)),({) = %i{.uﬂl“ﬁt({), EeR t>0.
Therefore —4 Y1, I? is the integral representation of the identity of T, and the arguments used
before in this paper show that T = GT*. The atomic decomposition of T is also a consequence
of the isomorphism between S“ and T*. We shall sketch a proof of this isomorphism. Consider the
Poisson integrals P¥ of the functions P*¥, y € R", s > 0. They form a bounded set in S¥. We

claim that the following linear operators are continuous:

T 5 U o J(U) = / P30 (y, s)w(s)dyds € S
R:‘*l

S$“5 F s K,(F) = /R"“ sT'GUYO,F(y, s)w(s)dyds € T, 1 <o < .
¥

For U € T, let V = —4 %", K,J(U). A method similar to that of the proof of Theorem 4.1,
gives V,(£) = U,(€) for every £ € R” and ¢t > 0, hence V = U in T, and —4 Yoy K J is the
identity of T“. We check also that —4J ) T, K, is the identity of S*, and so the spaces S* and
T* are isomorphic. In fact, the spaces are isometric if we endow S with the norm || - ||/, (see
Remark 4.2). The corresponding isometry is the operator 23" | K, , which proves to be the map
S“ 3 F+— 0,F € T“. We omit the details.
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