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1. INTRODUCTION.

In [1] Bloom and DeSouza introduced the weighted special atom spaces B(,) {f E D’(T)

f ,__ cb,, ’,,__ c, [< o}, where T is the unit circle in the plane and D’(T) are distributions

on T. The weight function is a member of a class defined by Bloom and DeSouza in [1]. Each

is a special atom, that is either bn(t) =- (2r)-1 or b,(t) ([ I I) -1 I 1-1 {XR(t) XL(t)}, T,

where is an interval in T, with the left and right halves L and R. (Our notation is slightly different

from that of [1].) As usual I denotes the length of and XE the indicator function of E. With the

usual atomic norm, B() becomes a Banach space and yields an atomic characterisation of some

well-known spaces on the unit disc. For example, given a . (-1, 1) and (t) , B() consists of

the real parts of the boundary values (in the sense of distribution) of all those analitic functions F,
for which f0 f0’ F’(re’)I (1- r)dOd < o ;se Bloom and DeSouza [1], DeSouza and Sampson

[21, DeSouza [31.
The purpose of this paper is to investigate analogous spaces on the real line and, more generally,

on the Euclidean spaces of arbitrary dimension. We develop a technique based on the Calder6n

reproducing formula to prove decomposition theorems in these cases. Also, we obtain a sufficient

and necessary condition for the weight function w to admit the atomic decomposition of the space

S defined below. The method of decomposition is different from that of Bloom and DeSouza [1],
and we neither have to investigate the dual space nor the boundary values of elements of S.
The decomposition of S in terms of the special atoms falls into three steps. The first consists in

the decomposition of S into so called Poisson atoms, which are relevant to properties of S. Then
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we inquire into a class of the Fourier multipliers on S’. These are finally used in the proof of the

decomposition theorem for the special atoms. In the last part of the paper we sketch out some

possible generalisations of the method.

2. PRELIMINARIES.

All the vector spaces considered in this paper are over the field of the real numbers. We denote

by N the set of all the non-negative integers and by N+ the set of all the positive integers.

DEFINITION 2.1. Let (X, ]1" ]1) be a Banach space and let K - q} be a bounded subset of X.

The set of all b E X, which are of the form

b= Zc’b’’ Z ]c, I< oo, b, K, n N+, (2.1)
n=l n=l

is the atomic space B B(K) spanned by K.

We endow the space with the atomic norm b lIB inf -],a c, I, where the infimum is taken

over all the possible representations (2.1) of b B. The space 13 B(K) is Banach with respect

to the atomic norm. It is often of interest to know whether the spaces X and B are equal, that is

whether all the elements of X are of the form (2.1).

LEMMA 2.1. Define M sup{ll b I[: b K}. Let N be a positive constant. Suppose that for
every a X and > 0 there is some b B such that a b [[_< e and N b [[B_<II a ]1. Then X=B

and also U I1" ]IB<II" < M II" liB.
The proof of Lemma 2.1 is elementary and we omit it here. Note that it can also be obtained as an

easy consequence of Theorem in Bonsall [4].

DEFINITION 2.2. A measurable function w defined on R+ (0, cx)) is called a weight if for any

interval I (a, b), 0 < a < b < , it satisfies

inf{w(s):s C I} > O. (2.2)

From now on, let n N+ be the dimension of some fixed Euclidean space R’. For a vector

x=col(zl,...,x,,) R’, we write Ilzll to denote its Euclidean norm. Let R_+ {(z,t) x

R’, > 0}. Given a weight function w, consider the family h of all the real valued functions U

harmonic in R+1, which satisfy the condition:

u I1= [ IIVU(z,t)lla,(t)dzdt < O.

Clearly I1" I1 is a seminorm. (We write VU for the vector col(0U,..., 0,U).)
DEFINITION 2.3. Let S denote the quotient space h/ll.ll.

Elements of $ are classes of functions in h, which differ by a linear function of t. Indeed, if

U1,U2 ( h and U1- U2 I1- 0, then clearly VU VU: and OtUa OU. Therefore

U1 U a + bt with constants a, b.

From the mean value property and (2.2), it follows easily that S" is a Banach space.

For > 0 and a function f defined on R’, we write, as usual, ft to denote its dilation, that is
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ft(z) t-"f(z/t), x E R’*. The dilations have a few simple but important properties:

ft IIL(Rn) f

(f,),

ft * 9, (f * 9),,

(f,)() f(t), a", ,t > 0, f.9 6 LI(R").

As usual, f() fR, f(x)exp(-iCx)dx, R’, is the Fourier transform of f. Also, we write f
for the translation of f if(x) f(x y), z, t R’, and f’ for the weighted dilation defined by

ff w(t)-ft, > 0. Finally, let ft (ft) and f,u (f,)u, t R’, > 0.

3. PROPERTIES OF S.
DEFINITION 3.1. A weight w is called admissible if

supo(s)-s ( + s)-%()d < . (3.1)

Let w be a weight function. The boundedness of the expression o(s)-s f( + s)-o()dt is

equivalent to that of I o(s)-sf min(s-,-)o()dt. Let us write I I + I, where I,

%" o(/e/((/and I f, (/-e/(-(//. To how that is bounded, it is enough to

verify that Ix and I have finite limits as s tends to 0+ and c. In some cases this can be easily

done using L’ttospital Rule.

EXAMPLE 3.1. The weights

if0<t< 1,
wl(t)=

ifl <t<,

tlln(t)[ if0<t<l/2,

w=(t)- if 1/2 < < 2,

tlln(t) if2<t<c,

are admissible for every -1 < c,/3 < 1, and 7, d R. To check this we apply the above remark.

The notion of admissibility arises naturally from the investigation of atomic subspaces of S’. We

define it separately in order to establish firstly some preliminary properties of S it induces.

LEMMA 3.1. If t,, is admissible, then

-()- 0, -, , (.2)

sw(s)- O, as s 0+. (3.3)

Proof. From (3.1) we get I sup>0v(s)-s- f(t/s + 1)-(t)dt < . Since f(t/s +
1)-v(t)dt - fcv(t)dt > 0 as s c, it follows that limsup_..cv(s)-’s-’ < , hence

there are positive constants g and c such that v(s) > cs- for s > $. We have > I >

sup,>oW(S)-s-c f(t/s + 1)-t-dt. The integral f(t/s + 1)-t-dt tends to , so v(s)-’s-’
tends to 0, as s - c. Similar reasoning proves (3.3). []

Rn+l denote by H the function given by H,(z)For s > 0 and a function H defined on +



628 K. BOGDAN

H(x,.), x E R". We should riot confuse tliis with the notion of dilation, which is applied to

a differe.t class of functions. The functions H and Hs may take their values in R as well as in

R‘, k E N+, depending on the context. In the latter case we call H=col(H,..., H) harmonic, if

H, is harmonic for each k.

As usual, we write Pt, to denote the Poisson kernel, that is

P,(.) c.(llxll + t)-"+1/, x n-, > 0 c. r( ’ +
2

Note that definition of P, agrees with the notation of the dilation (P) if we put P P. Let us

recall that elements of S are classes of functions, which differ by a linear function of t.

DEFINITION 3.2. An element F in S is called regular if for every s > 0 and > 0, the vector

valued function H VF satisfies the condition

H L’(R") and H,+ H P,. (3.4)

THEOREM 3.1. Assume that w is admissible. Then every F S is regular. Moreover, for
every s > 0, the hnear map S 9 F -- VFs L(R’) is continuous. In each class F S there is

a unique member U such that

Vn I[L(R-) 0 as s . (3.5)

The Poisson integrals of L(R") functzons are dense in S.
Proof. For Y G RTM, r > 0, let B(Y, r) denote the ball in R"+a, which has the radius r and is

centered at Y. Fix F G S. Let y 6 R", s > 0, I =< s/2,3s/2 >, ci inf,tw(t), and let

B stand for B((y,s),s/2). By the mean value property of H VF, we get ]H(y,s)][

f, n(x,t)dxdtll c7’ I-’ f, IIn(x,t)ll(t)dxdt c; B 1-111F I1= v-’(71-’) F I1,
V being the volume of the unit ball in R+. By (3.2), the harmonic function H is bounded on

{(x,t)" s, x a} hence H, L(R) and Ht+, n,,Pt, > 0. Now, let 0

The Young inequality yields H, I1,)11 n IIL, conseqently F I1=
w(t)dt f n IIL’)w(t)dt =11 H, IIL’{) fw(t)dt. Therefore H, IILR) , F I1, with

c, (f w(t)dt)- < , nd so the first part of the theorem is proved. Furthermore, since c, 0,

H, IILn’ 0 nd H, IILa 0, . (3.6)

Fix some function T F and s > 0. It is not difficult to show that

sup T(x)- inf T(x)< {ll H IIL’(R") -4-II H IIL(R-)} (3.7)

where V depends only on n. This y}e]ds that T is bounded. The Posson integral T, P,_,(z), >

s, x R", is equal to T in h as a function of z and (it can be easily defined for 0 < _< s).
Therefore sume that T itself satisfies Tt T Pt-,, > s, and T, L(R"). By the sumption

and by (3.6) and (3.7), it follows that there is a constant C such that Tt(x) C uniformly in

z R", as . The function U T- C satisfies (3.5). Clearly, this condition determines U
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uniquely. Finally, given > 0, define %F(x,t) F(x,t + r/), x E R’, > 0. It is easy to check

that %F F in S as r/ -- 0+. Note that r,F may be represented as the Poisson integral of

U, E L(R’), with U F defined above, o

COROLLARY 3.1. If w is admissible, s > 0 and R" then the hnear map S F

W:F,({) $ R" is bounded. Such maps separate elements of 8’ that is if E, F S attd VE()

V,F.() for every and s then E F

COROLLARY 3.2. If w is admissible, then S may be identified with the Banach space of all

the functions U h which satisfy(3.5).

We shall regard Corollary 3.2 as an alternative definition of S’.

4. THE ATOMIC DECOMPOSITION OF S IN TERMS OF THE POISSON ATOMS

We adopt the following notation"

G,(z) O,P,(z)= -C,(n + 1)x,(llzll + 1)-(’+3)/, x c R’, < _< n,

G coI(G,...,G,,),

K,(x) VG,(x) C,(n + 1)(n + 3)(llxll + 1)-("+sI/2col(zx,,... ,z,,x,

-C,(rt + 1)(1111 + 1)-("+z)/2e,, x R", < < n,

where {e," < < n} is the standard basis in

DEFINITION 4.1. We call Poisson w-atoms the Poisson integrals d?’_’ of the weighted dilations,,,
of the functions G,, that is

.’(x t)= G; P,(x) (G,)’ P,(x), x,y e R",,, s,t > O, 1, ,n.

Accordingly, let ’ G’ Pt.

LEMMA 4.1. There is a constant C > 0 such that

@, I1-- c (t + s)-2w(t)dt, s > 0. (4.1)

The set of the Poisson w-atoms is bounded in S if and only ifw is admissible.

Proof. It suffices to prove (4.1), the rest being immediate. Let G G,K; K. Note that

the function t-Gt(x) OPt(x) is harmonic in R+. It follows easily, that for every s > 0,

the function ,(x,t) s(t + s)-Gt+,(x), x q R", > 0, is equal to the Poisson integral of

G,. Direct differentiation gives V,,(z,t) s(t + s)-lCt+,(x), x R", s,t > 0. Therefore, I1 f( / s)-2w(t)dt fR, Et+,(z)dz, so (4.1) holds with 0 < C -II
DEFINITION 4.2. Let w be admissible. Denote by G the atomic space spanned in S by the

Poisson w-atoms.

To state our next result we need some preliminaries.

Assume that w is admissible. Let F S’. Fix i, < < n, and consider the function R+ S
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given by (V,.s) ;,,sO, F(y, s). We claim that it is continuous. Indeed, it is enough to check that

the map (V,.) ;, is continuous. Fix a > 0, 0 R". Let s and y . We have

,# ’8 +

7+’
..,+.(x)- ,(t +,

(t +)- (t + )- (t)dt o

by the bounded convergence theorem and by the admissibility of w. Also, note that

JR+’ Jn+’
where C < is an upper bound for the S norms of the Poisson w-atoms. Therefore the Riemann

i.tgr./R;+’ LO,F(v,’)aua" i we]-ae.ea, ,,a so is the following s,,,

For., a", .=o(.,,...,..), =o(,,..., .), w h.e . E%, ",,, " i,,g the

pose of a. Therefore we can formally write (4.3) as

g’rVuF(y,s)dyds, F e (.’)
+

to abbreviate the notation. (We write VuU for col(0U,..., O,U).)
Let A (a," 5 k, 5 j 5 l), B (b, 5 l, 5 j 5 m) be matrices, whose elements

are L(R") functions. Let A,B (c, k, j m), where c, ,=aa,*
L(R"),I 5 k, 5 j m. From the well-known property of the convolution" 9(f)
/()(f), f R", it follows easily that

a ,(f)= A(f)(f), f R", (4.4)

with the natural definition of the Fourier transform of matrices.

THEOREM 4.1. Let be admissible. For every F E S the following equality holds

F -4] u,rVyF(y,s)dyds formula). (.5)
JR+

The spaces S and G are equal and their norms are equivalent.

Proof. The integral in (4.5) is understood like (4.3) and (,4.3’). By Corollary 3.1, it suffices to prove

that for every > 0 and R", the map F Ft() takes the same values on both sides of

(4.5). Clearly, it is enough to consider the case 0. Fix F S, R"{0}, > 0. Let
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The Riemann integral conimutes with continuous linear operators, hence the sane result is obtained

when the map acts on the integrand. Since Vlr(x,t)= t-Gt, Gr(x), x,y R", s,t > 0, we

h&ve

+
Suppose that F f, P for some bounded f. Note that Vvf(U,s) s-f, G,(U), > 0, U 6 ".

Therefore, using (4.4), we get

R =-4L (t-lG’,*Gr)()-f*G(y)dyds+
-4[ t-()GT() exp(-iy)s-lf G,(y)dyds

JR+

-4 - (G. G f. G))s-ds

V,,(,)(-4I T(s)(s)s-lds).
To compute I f ’T(s)(s)s-ds, we make the change of variable u ]]]]s, and use the

equalities 0a(() ia]((), f,Of L(R") and (() exp(-][(]]), ( R". We get I

f T(u/[]]])(u/]]]])u-’du --f exp(-2u)udu -1/4, which proves (4.5), if F f, P,

for some f L(R"). By (4.2), the linear map S 9 F -4 fR+ VF(y,,)(,)dyd, s
is continuous with norm not greater than 4Cn, C being as in (4.2). Poisson integrals of L(R")

functions are dense in S, hence the map is the identity on the whole of S and so (4.5) follows.

Next, assume that w is continuous. For F S and 1,..., n, we clearly have

The second expression is to be understood as a Riemann integral with respect to the finite meure

given by the density O,F(9, s)w(s). The integrand G,, is bounded and continuous a function with

values in S. Therefore the integral is well-defined and may be approximated in S norm by the

Riemann sums S, -4, G’ f, O,F(9, s)(s)dgds, where each G’ is a Poisson -atom, B, are

disjoint subsets of N+, and k e N+. Since clearly

Lemma 2.1 are fulfilled with N 1/(4) and M sup{ a,, 1: 9 e s > O, n}
In consequence we obtain S G and I1 I111" I1 M I" I1. or discontinuous

w, each term in the expression -4= f;.
Bochner integral. The integrals are then well-defined because the functions N+ S given by

(9, s) G,, are bounded and strongly measurable and the corresponding measures are finite (see
Yosida [5] for details on the Bochner integral). The integrals nay be approximated in norm by

integrals of simple functions all of whose non-zero values are Poisson w-atoms. Again by Lenma

2.1, this yields that S G and I1" I111"
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REMARK 4.1. For an admissible and discontinuous weight w, define v’(s) s f(t+s)-(t)dt,
s > O. It may be easily verified that the weight w* is admissible ad continuous and moreover we

have S S"
Leg us make a digression here to show how he atomic decoml)OSition of he space S may be

expressed in erns of he boundary values of is elemen[s.

For p satisfying n(l l/p) < 1, define (g) t--/), > O. Noe

JR

hence by the decomposition of S into Poisson -atoms G,,’, the boundary value functions of its

elements are all in

following equality holds zn L(R")

[ GTvuF(u,s)duds, F S, where Fo(z)= F(z,O+) i.e. (4.6)Fo
JR

REMARK 4.2. Let w be an admissible weight function. Consider the class h of all the real

valued functions U harmonic in "+ which satisfy the condition

w(t)dzdt < . Define S’ h’/ll.ll2. It is easy to check that the Poisson w-atoms form a bounded

set in S’. This yields S S’. Define the function M by M(z) OtPt(z) ]t=, z R". The

method described above may be applied to decompose S’ into the Poisson integrals of the weighted

dilations of M. The same functions form a bounded set in S, hence the spaces S and S’ are

equal and their norms are equivalent. We omit the details.

REMARK 4.3. The basic references for the Calder6n reproducing formula in context of atomic

decomposition are Frazier and Yawerth [6] and Frazier et al. [7]. For example an atomic decom-

position of the homogeneous Besov spaces B’ is stated in [7] (see Frazier and Yawerth [8] for the

proof). Taking advantage of the result and of Theorem 4.1, it may be verified that the Poisson

integrals of the distributions in ", form the space S for (t) -, o (-1, 1). We note here

that the atomic decomposition is understood more generally in Frazier and Yawerth [6] and Frazier

et al. [7] than in tiffs paper (see also Feichtinger and Gr6chenig [9] for a group theoretical point

of view). Our approach is rather in spirit of the decomposition of the space ’ which is treated

separately in [7], however there are changes due to the fact that special aoms defined below are

not smooth nor radial and that we consider a wide class of weight functions. Also, recall that we

did not assume that the boundary values of elements in S are distributions. Now this fact may be

verified using the atomic decomposition of S into Poisson w-atoms (regard (3.2), (3.3) as estimates

for the size of atoms). We omit the details since the result will not be exploited in this paper.

5. FOURIER MULTIPLIERS ON S

Assume that is admissible. We focus our attention on the Hilbert transform type Fourier
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multipliers .M S S satisfying

vr() ,,()VF(), R", > 0, F s, (5.)

where m is a real or con,plex function homogeneous of degree 0.

There are (only) formal reasons for introducing the gradient V in (5.1) since we did not give a

meaning to Ft() a,,d we cannot generally use a more preferable Ft() m(()Ft(). Similarly

we did not established what the boundary value, say F0, of F S is, and we cannot write

Fo() m()Fo() which is in fact the idea behind (5.1). The following theorem states some

conditions on the function m sucient for existence of the operator S S satisfying (5.1).

Note that by Corollary 3.1 such an operator is unique.

THEOREM 5.1. Let m be homogeneous of degree O,n tzmes continuously differentiable on

R"{0}. lf m
an operator satisfn9 (5.1) which maps S continuousl into S.

In particular Riesz operators R, given by the functions m,() -i,[[-, R", 5 5 n,

are bounded on S, which means that it is invariant under generalized conjugation.

First, we prove an auxiliary fact. Let > 0 and d N be fixed. As usual Ca[-e, e] denotes the

class of all the functions defined on I-e, el, which have continuous derivatives up to the d-th order.

Put f Ila: sup{I f()(x)I: x

LEMMA 5.1. Given

and lu I 1, the following inequality holds

f(s)(1 -iu)-a+=)d I C f Ilal u -(a+l)

Proof. Let us write Ca rather than C to distinguish between different numbers C depending on d.

Assume that u I 1. The proof is by induction on d N. For d 0 we have:

I(( --, l I o ( + (-’ I 1o -,
hence Co . Next, integration by parts yields

+ i(e +--
where

Proof of Theorem 5.1. By Theorem 4.1 it is sufficient to show that there is an operator with

values in S satisfying (5.1) and bounded on the set of all the Poisson w-atoms; a typical application

of atomic decomposition. Such an operator extends uniquely to a continuous map from S into
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itself. From the Plancherel theorem there is a function 9 E L:(R’) satisfying (() m()
a.e. In fact, 9 may be uniquely chosen to be smooth. Given z,j < i,j < n, consider f 0,0jg.

We claim that f is real and integrable. Let w(f) -f,jm(), f col(f,,...,fn) E R". Fix

z R". By the Fourier inversion formula we have

f(z) c, [ w(f)exp(-llf]l)exp(ifx)df, c (2) -’.
JR

To compute f(x), we introduce polar coordinates r (0, cz), r S’’-1, S’-1 being the unit sphere

in R", and we integrate (n + 1) times by parts with respect to r. Ve obtain:

c,(n + 1)! w(r)(1 -irx)-("+) exp(-r(1 -zrx))dr&r.

Finally, we get:

f(x) c,,(n + 1)! is.-, w(a)(1 iax)-("+2)da. (5.2)

Everything is now easy for n f(x) r-{w(-1)(1 + ix) -3 + w(1)(a -ix)-3}. Therefore

assume that n _> 2. Let Ilxl[ >_ 1. We make the following change of variable:

a r/sin+rcos,

dcr sin’- dd, e S- {y e S-’’ (y,x)= 0}, r /llxll, e [0, ).

(We can identify $2- with the unit sphere in R"-, and dl with the (n- 2)-dimensional spherical

measure. As usual (., .) denotes the inner product in R.) We get"

f(x) c(n + 1) w( sin + r cos )(1 illzll cos )-"+) sin- ddo.

Another change of variables: s cos, s [-1, 1], gives

f(x) c=(n + 1) w(O(1 s) a/e + ,s)( illxlls)-(=+)(1
2-

Fix (0, 1) and use Lemma 5.1 to obtain the estimate

w{(a )a/ + }(1 -illll)-(+=)(1 =)(-a)/=d I cll[I -a),

where C < depends only on n, e, and the supremum over S"- of all the partial derivatives of

the n-th order of n. We see immediately that there is a constant C’ < , such that f(z) [

c’llll-+a), IIll 2 1. Since f is continuous, this yields f e L(R").
Let S;-1 { (,..., )" > 0}. From (5.2), for every z e R", we have

f() .( + 1) [ {()(1 i)-("+) + w(-)(1 + (2)-",
Js

the integrand being real by the assumption on m. Therefore f is real valued. Note that either in the

ce n 1, or in the case n 2 2, 9 is necessarily real valued as well. Let E, 0,9, n. Fix 9

"’(,t) ()-(t + )-’aR, s > 0 and i, n. Let us recall that G,, ,,t+(z), x R", > O.

A simple verification shows that (G,, )(x t) (s)-s(t + s)-E,,t+tz), z R", > 0 satisfies
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(5.1) for every Poisson w-atom F By means of the Fourier transform it is easy to check that jt4’y

"+ Clearly, it is also real valued and vanishes at infinity. Note thatis a harmonic function on ..+

’ R+

Since VE, is integrable and w is admissible, the set {G,, y s > 0, n} is

bounded in S. This proves the theorem.

6. DECOMPOSITION OF S IN TERMS OF SPECIAL ATOMS

Let us introduce the following functions:

b,() =-2-sgn(z,) _,(), z a, ,.

We are now in a position to prove that S is equal to the atomic space generated by the functions

b,. Note that these functions give a natural extension of the notion of the special atom on T.

DEFINITION 6.1. We call special w-atoms the Poisson integrals b,,, of the weighted dilations

of the functions b,, that is

b,,, (x,t) b,,, , Pt(x) (b,)’’ * Pt(x), x, y E R’, s,t > O, i= 1,...,n.

Accordingly, let bv P
LEMMA 6.1. There are positive constants C, Ca such that

The se of he speciM -oms is bounded in S if nd onl9 if is dmissiMe.

Proof. It suNces to prove (6.1), the rest being immediate. Let ,, s > 0. We have

& I1 [ IIV=&(=,t)w(t)dxdt [ lit-’& * a,(x)llw(t)dxdt

t-’ & * a, IIL’(R-)w(t)dt t- ,/, * a IIL’(R-)w(tldt.

Assume that there are constants c] > O, c > O, such that for every r > O,

0 min(r, r-1) _<11 . * c IIv(.)< c2min(r,r-’).

By (6.2) we obtain

ti, I1 t-I ill,, C IIL,(R,,)< c2
-I min(s/t,t/s)w(t)dt

_< (t + )-o().

Likewise & I1,> cf( + )-o()d, so (6.) holds with C1 cl and C 4c, if only (6.2) is

valid. To prove (6.2), we show first that

tL,G Ilia(P.-)< c= min(r, r-’ ), r > O.
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Note that fit,,/3(.r)dx 0 and that the .al) R" S y G E L(R’’) s Ll)scltz continuous, that

s c G I[,tR,,) C y 1, y G R", for a constant C. By Fubini-Tonelli theorem, this yields

Note also tl,at B G IIc,R.)=ll B G/ ]lc,(R-), r > 0. Changing the roles of B and G above,

we get * a I1,=11 * a/ I1(,, ",-, , > 0, witl, a constant c". Take c max(c’, c")

to obtain (6.3). Next, we prove

(6.4)

Clearly, it is enough to verify that

(6.5)

(x), x E R. We have /5(’)Define p(z) i[X(-,,o)(X)- X(o,,)(x)], x R, and q(x)-

1/2[f_, exp(-zffx)dx fd exp(-i)&] ,(1 coC)/C, C RX{0}, p(0) 0, ad, similarly,

() sin /, ff R{0}, (0) 1. Since B is a tensor product, the same is true for . Explicitly,

() (,) (,), col(,,..., ,,) G R". (6.6)

Recall that ’() i& exp(-llll), G R’’. Fix G R" such that a # 0, and consider the

expression

l r-lrC’() ,’-l(r)dl() i(r)/(r) H 0(r’) exp(-IIll), r > 0.

We see immediately that I exp(-IIll) > 0, ," 0+ Next, for r > 0, , & .... ,
--1

irv consider the expression

I=rBGa()={i(ra)(r)nO(r’)}exp(-’’’’)’,=
We check at once that I (1-/2)(2/r)"-’ > 0, as r . Since, for f L(R"), we have

] ]]L(R-)II f IIL’(R-), it follows that liminf0+ r

B G ]]L,(R-)> 0. Since B G ]IL’(R") is a positive continuous function of r > 0, (6.5) holds

with a constant ca > 0.

DEFINITION 6.2. Assume that w is admissible. Let B denote the atomic space spanned by

the special w-atoms.

% state the next result we need some preliminary steps.

DEFINITION 6.3. Let w be admissible. Fixs>0andi: <i<n. For FSlet

+*
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Each term in tim s,vm is understood as the Rienann integral of the function l"+t
..+ L (R")given

by (, r) G, b,.Oj F(, r). The symbol of convoluLion in F0 * 6,, my be fully justified because

limt_o+ Ft exists as a distribution. However, we do .or develope this poin here, and the notation

Fo* b,, is purely formal. In pargicular le symbol Fo alone has no generMly prescribed meaning. To

prove that l’b*b,, is well-defined, fix s > 0, and j _< i, j _< n. Clearly, the map R’’++ 9(y, r)

G:,b,,, e L’(R")is continuous. From (6.2) we have 1G’,,b,, IIL,R,)=II G’: ,b,,/ tIL’{R), "> O.

By Lemma 3.1, the expression min(s/r,r/s)w(r)- is boaa, th

[ ,,b, I1 OF(y,,’)ldyd; < c[ min(slr, rls)w(r)-’lOF(y r)Iw(r)dydr
+ ’ (R")

JR+JR
c F I1 for co.stnt C.

This justifies the definition. Note that we have actually proved that the linear tnap S

Fo*b,, L(R’’) is continuous. Suppose that F is a finite sum of Poisson w-atoms, and let f F0 i.e.

f(x) F(z,0). By Corollary 4.1 with p 1, we have f -4

for every s > 0 and 5 n. It follows easily that f b,, -4 fR;+, G b,,VuF(y, r)dydr in

L(R") for every s > 0 and 5 n, so, as one could expect, Fo * b,,, f b.... Let us denote by

Fo * b, the vector col(F0 * b,,,..., Fo * b,,,).

LEMMA 6.2. Let w be admissible. The map S S given by F F, whereOF is the

Riemann integral

:rFo*b(y)s-’dyds=f
R

,:Fo*b,,(y)s-’dyds, (6.7)
t=l +1

is a well-defined Fourier multiplier with symbol being a negative, even function homogeneous of
degree 0, which is 2n times continuously differentiable on R"{0}.

Proof. First we check that (6.7) is well-defined. Fix i, n. An easy verification shows that

-,y Rthe function n"+*-+ 9 (y, s) ,, S is continuous. Let c sup{[[ b, I1 y s > O, <

j n}. For FS wehave

w(s)dyds
+l
....

__+1

[ Fo, b,,(y) I-w(s)dyd, c <
JR+

We claim that there is a constant C < , such that for every

bounded by C F ]1. Indeed, by Theorem 4.1, we only need to prove that, regarded a function

of F, it is bounded on the set of all the Poisson w-atoms. We use (6.2) to estimate the last integral

,z, RinceF=G, z r>0, lj<n:

;+’
G’:; b,,(y)1-1 w(s)dyds w(r)-’ G b,,4 IIL,(R-)-lw(s)ds

(,.)-’ mn(-,-)()a ’,

where c’ < is a constant. This gives the result. We see that (6.7) is well-defined and, moreover,

that f nC F , so the operator is continuous. Our next task is to show that
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is a Fourier multiplier with a symbol . Clearly, it suffices to check this for the Poisson ca-atoms.

Assume that F is such an atom and let f be its boundary value function. Let > 0 and E R{0}
be fixed. Proceeding s in the proof of Theorem 4.1, we get I F() F()(), where

() T(s)(s)s-’ ds. (6.8)

The change of variable u []]ls yields () f b(,/llll)b(/llll)-d he,c i homog,,o

of degree 0. By analogy to (6.6), we have b,(() i(1 cos(,)/(, =,g, sin(/, n, thus

the integrand in (6.8) is equal to

((- _-- 2 o(1 sn(,

Differentiate this with respect to ,, n, at ( 0. The result is of the form s-W((),
where W is certain trigonometric polymomial with smooth coeNcients depending only on (. In

consequence, is continuously differentiable on N{0}. Similar arguments apply to all the deriva-

tives up to the (2n- 1)-th order. Finally, note that the integrand in (6.8) is non-positive for every

> 0, and is negative if ( 0 and s is suNciently small. Therefore is negative for every ( 0.

Since the integrand is an even function of , the same is true for .
Let w be admissible. For as above put m() -’(), R". (Recall that # 0.)
DEFINITION 6.4. Denote by M the Fourier multiplier S S given by the function m.

By the above lemma and Theorem 5.1, M is well-defined and continuous.

Now, we are in a position to state and prove our main result.

THEOREM 6.1. Assume that w is admissible. For eve F S the followin9 equality holds

F [ *MFo, .(v),-’dvd, C,ld,6n yomul. ). (6.9)
dR+

The spaces S and B are equal and their norms are equivalent.

Proof. By Lemma 6.2 the integral in (6.9) is well-defined. Since, by definition M -, it is

evident that right hand side of (6.9) is the identity of S and so (6.9) holds. We clearly have

fR ’rF * b’(y)dyds fR ,Fo , b, ,(y)s-’dyds

The terms in the lt expression are understood Bochner integrals with respect to the meures

of the densities Fo,b,,(9)s-w(s), 1,... ,n. Each term may be approximated in the S norm

by integrals of simple functions all of whose non-ero values are special -atoms. Such integrals

are in B and their atomic norm is not greater than f;, F0 * b,,,() s-()dgd C

I1 c I1 I1 ,...,, with C the same as in the proof of Lemma 6.2 and the

operator norm being finite. We see that the conditions in Corollary 2.1 are fulfilled with

(c )- nd M sup{ll i,, I" e , > 0, ,..., hi. The conclusion reads

s= and N I1" I111" I1 M I1" I1.
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REMARK 6.1. Assu,ne that ,., is admissible. Let .Y" be a fi,ite family of real funct,ons on R

such tlat for ew’ry f

JR JR"

tle ap R 9 y J’U L(R’) is Lipschitz continuous, (6.11)

,,,(() f(()-d satisfies the conditions of Theoren 5.1. (6.12)

Then S may be decomposed into the Poisson integrals of the weiglted dilations of the functions

in . The proof is the same as in the case of the family {b, n} considered above. If for

example f 0 is a real valwd, radial, continuously differentiable a,d co,pactly supported function

such that fro, f(.r)dz 0, then {f} .tis th bov conditions.

The co,dition (6.12) may be somewhat relaxed since we can "convolve" (see Definition 6.a) F0

with both f., and (f), f e , several times (we write ](z) f(-x)). It follows that we can replace

the symbol f(()in (6.12) by f()I o even by f(()It with k e N+.
7. FURTHER ESULTS

Let k N. Fix a weight function and the corresponding space S. Consider the function

family of all the derivatives of the k-th order of the function P. If satisfies the condition

sup(s)-s ( + s)-l+’l()d < , (7.1)

then the atomic space spanned by the Poisson integrals of the weighted dilations of those functions

is identical with S. The condition (7.1) enlarges the set of admissible weights if k > 1. It should be

noticed that if (7.1) holds, the space S may be decomposed into different classes of atoms related

to the Poisson kernel. For example, if () , > 0, (-1,0), then S admits decomposition

into Poisson integrals of the weighted dilations of the function P as well as into those given by

derivatives of any fixed order of P.
The result may be generalised. Let a finite function family satisfy the conditions (6.11),

(.2) in Remark .. Aso, et f If(z) l( + IIll)d < , and f f(z)zd 0, for eery

multiindex such that ]< k. Then S is equal to the atomic space spanned by the Poisson

integrals of the weighted dilations of functions f .
Spaces analogous to S may be defined in terms of derivatives of any fixed order d N. Rather

than consider the general case, we shall discuss an exanple. Let a weight function fulfill (7.1)
with k 0. Define as the space of all the functions U harmonic in N+, which satisfy

" w(s)-(So d 0 here.) Since -’,,; lIT= fo (t + s)-(t)dt IIR), a, >

0, n, the set of the functions s-G,, is a, bounded subset of T. Denote by GT,
the atomic space spanned by these functions. For n, and U T, define I,(U)

fR+ s-G,,,’,uU(y,s)(s)dyds. It is not dicult to check that for every n, the map I,
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is linear and co,,tin,,o,,s, with values in S’, and that (I,(U)),({) ’’
Therefore -,1 ’= I is the integral representation of the identity of T, and the arguments used

before in this paper show that T GT. The atomic decomposition of T is also a consequence

of the isomorphism between S and T. We shall sketch a proof of this isomorphism. Consider the

Poisson integrals ’ of the functions P’, R", s > 0. They form a bounded set in S. We

claim that the following linear operators are continuous:

T U J(V)= [ #’U(y,s)w(s)dyds e S
+

s K,()= -a,, 0,(, )()@a e , ,.

For U , let V -4= K,J(U). A method similar to that of the proof of Theorem 4.1,

gives (() U(() for every ( e N and > 0, hence V U in , and -4,, K,J is the

identity of . We check also that -4J= K, is the identity of S, and so the spaces S and

are isomorphic. In fact, the spaces are isometric if we endow S with the norm . ; (see
Remark 4.2). The corresponding isometry is the operator 2= K, which proves to be the map

S F 0F . We omit the details.
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