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ABSTRACT. In this note we present a boundedness theorem to the equation

x"+ c(t,x,x’)+ a(t)b(x)= e(t)where e(t) is a continuous absolutely integrable function over the

nonnegative real line. We then extend the result to the equation x" + c(t, x, :r’) + a(t, x) e(t). The

first theorem provides the motivation for the second theorem. Also, an example illustrating the theory is

then given.
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1. INTRODUCTION.
In this article we shall discuss using standard methods the boundedness properties of a second

order nonlinear differential equation with integrable forcing term, i.e. the equation,

" + (,, ’) + ()b() () (.l)

Our purpose here is to simplify some of the previous proofs to this well-known equation as well as

extending some of the previous results. For example, we are replacing the condition c(t, x, y)y > 0 for

y :/: 0 with c(t, x, y)y _> 0 and letting a(t) be non-increasing (see and [2] for details, especially [2] for

its excellent bibliography of previous work). Also, as in [2] we shall not need to make use of any

Liapunov function. Finally, the result will be of such a nature that it covers the ease when no damping

factor appears, i.e. it covers the equation,

x" + a()b(x) e() (1.2)

Later we shall briefly mention how this result carries over to the more general nonlinear equation,

" + (,, ’) + (,) () (.3)

However, this ease requires a more delicate discussion. We now state and prove the boundedness

theorem. Without loss ofgenerality, we shall assume t _> 0.

2. MAIN RESULTS.
THEOREM L Given the differential equation in (1.1). Suppose c(g,z,t/) is continuous on

[0,03) R R, c(,x,t/)t/_> 0 and e(o) is continuous on [0, c) with f le<)ld < oo. Furthermore,

if a(o)>_ > 0 for some and continuous on [0, oo), a’(o)_< 0, b(o) continuous on R, and

B(x) fb()du approaches c as Iz[ c then all solutions as well as their derivatives are bounded

as --- oo.

PROOF. By standard existence theory, there is a solution to (1) which exists on [0, T) for some

T > O for any initial conditions x(0) and x’ (0). Multiply equation (1) by z and perform an integration

by parts on the last term from 0 to < T in order to obtain,
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x’ (t)/2 + c(, z(s), x’ (s))z’(s)d + a(t)B(x(t)) a’(s)B(x(s))ds

’(o/ + (/:’(/a _< z’(o// + I(l’(lld (.l

Now if x(t) becomes unbounded then we must have that all terms on the LHS of (2.1) become positive

from our hypotheses. By the mean value theorem, equation (2. l) may be rewritten as,

x’(t)2/2 + c(a,x(s),x’(s))ds + a(t)B(x(t)) a’(a)B(x(s))ds

(/o )< x’(0)2/2 + Ix’()lg g le(t)ldt, 0 < < t (2.2)

Now from (2.2) we see that if’ Ixl approaches oo then so must Ix’(t)l. Otherwise, the LHS of’ (2.2)
becomes unbounded while the RHS stays bounded which is impossible. Also, as la (t)l approaches oo so

must Iz()l. Now on any compact subinterval choose t where z(t) is a maximum. Integrate equation

(1.1) as before from 0 to t and divide by :d (t) (assume x(t) > 0, a similar argument works for z (t) < 0

only the inequality is reversed) in order to obtain,

x’ (t)/2 + 1/x’ (t) (fot C(S, x(s), x’())d + a(t)B (x(t) fot a’(s)B(x())d)
< (x’(0)2/2 + Ix’()lK)/x’(t) (2.3)

Now if x’(t) approaches oo then the LHS of (2.3) becomes unbounded while the RHS of (2.3) stays

bounded which is a contradiction. Thus, Izl and I’1 must stay bounded on [0, T). A standard argument

([3, pp. 17-18]) now permits the solution to be emended on all of [0, oo).
As for equation (1.3) we may multiply it by x’ and integrate as before obtaining the following,

’(t)/ + (,(),e())’()a + .’ (t,)d _’ dd
Oa(s,

Jz(o) J(o)

x’ (0)2/2 + e(s)x’(s)ds. (2.4)

f0We see here that as long as a(t, u)du oo uniformly in t and x - a(t, x) <_ 0 then we may use the

same argument as in our first theorem. We now state this final result.

TIIEOREM IL Given equation (1.3). Suppose c(t,x,y) is continuous on [0,oo) x R x R,
c(t, x, y)y > O, a(t, x) continuous on [0, oo) x R with x a(t, x) < O. Furthermore, if

fo:att u)du oo uniformly in t and e(.) is continuous on [0, oo) with fo le(t)ldt < oo, then all

solutions to equation (1.3) as well as their derivatives are bounded as oo.

EXAMPLE. Consider the nonlinear differential equation,

x" + cx2’-lx + bx2n- exp( t) (2.5)

where t > 0, c, b are positive and m, n are positive integers. By Theorem we see that all solution to

equation (2.5) are bounded.
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