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ABSTRACT. In this paper we give mixing properties (ergodic, weak-nixng and strong-mixing)

to a dynamical system on the Cantor set by showtn,, that the one-sided .(! l-shift map is isomorphic
to a measure preserving transformation defined on the Cantor set.
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1. INTRODUCTION

A dynamical system is a quadruple (X,.,q, tn, T), where X is a non-empty space, . is a o-algebra of

subsets of X, m s a measure defined on ..q and T is a measure-preserving transformation on X. Ergodic

theory may be defined to be the study of transformations or groups of transformations, which are defined

on some measure space, which are measurable with respect to the measure structure of that space, and

which leave the measure of all measurable subsets of the space. If arbitrary orbit of transformation of

a gven dynamical system passes through every point of this system, it is said that this dynamical system

satisfies the ergodic hypothesis. The ergodic hypothesis was introduced by L. Boltzman and W. Gibbs

to establish the following principle:

lim 1" fxf(Tx f(x) tbn
II =0

which says that the time mean off is equal to the space (or phase) mean off. Many contrarguments

about this hypothesis came out but in 1912 H. Poincare proved the so-called recurrence theorem and in

1931 G. D. Birkhoff and J. Von Neumann proved the existence of time mean and thus this hypothesis

was accepted. This is the historical beginning of mathematical study of ergodic theory. The study of

ergodic theory can be categorized into one of four types, that is, (i) Measure theoretic, (ii) Topological,
(iii) Mixture of (i) and (ii), and (iv) Smooth. In this paper we are concerned about measure theoretic

type and we shall assume that the measure is finite and normalized to have total measure one (the

probability measure). We refer [1], [2] as general texts for ergodic theory.
The main purpose in this paper is to give ergodic property to a dynamical system on the Cantor

ternary set. In Section 2 we first summarize properties of the generalized Cantor set and the Cantor
measure. In Section 3 we introduce mixing properties (i.e. strong-mixing, weak-mixing and ergodic
properties) for measure preserving transformations. The one-sided shift map is shown to satisfy these
properties. In Section 4 we show that the one-sided shift transformation is isomorphic to a measure
preserving transformation defined on the Cantor ternary set so that a dynamical system on the Cantor
set has the three mixing properties.

2. THE GENERALIZED CANTOR SET AND THE CANTOR MEASURE
In this section we summarize some properties of the generalized Cantor set and the Cantor measure.

We first define the Cantor set, the Cantor function and the Cantor measure. We describe
the Lebesque measure of the Cantor set together with the topological properties of the set and the relation



between lhe Cantor measure and the kebesque mea,,ure otlhe et. The Cantor set s knon to have the

same cardnalty as the inlerval [0,1]. Fnally n ths see[ion we present the ternary rcpresenlation of

Cantor’s mddle third

DEFINITION 2.1. Le n,n n be a sequence of real numbers such thai < tiC < Ir

every k 1,2 We define the generalized Cantor set denoted by C(, or briefly

C) as follows: We remove the open interval of size L about the mddle pon fion he nlerval [0,1].

Then remove the open interval of size (1-1,, . about the middle of each of the two remaining closed

intervals. After k removals, there are 2 closed intervals left denoted by Ct(tt), j 1,2,3 2,
(1-)abouthecentcroftheseand at the k + step we remove the open intervals of size

intervals. The generalized Cantor set C is defined to be the complement in the interval [0,1] of he

union of these open intervals, i.e.,
21

C= w C(n), (2.1)
=1 j=l

which depends on the choice of the sequence n,n2 n

DEFINITION 2.2. We define the Cantor function F(t), [0,1 ], by setting it equal to 1/2 on the

first interval removed, 1/2 and 3/2 on the two intervals removed at the second step, 1/2, 3/2, 5/3 and

7/2 on the third removal, etc. The values are chosen in the obvious way so that the Ihnction F is

monotone non-decreasing on [0,1 (F is extended to [0,1] by the coninuily).

DEFINITION 2.3. The Cantor measure F on [0,1] is defined by

laF([O,t))= F(t (2.2)

where F(t) is the Cantor function.

We note that the above r becomes a Borel measure by the following argument: If we let A be the

semialgebra consisting of all intervals of the form [a ,b), 0 < a < b _< 1, and set lar([a, b )) F(b F(a ),

then I.tr satisfies the following two conditions:

1. l.tF(B)= ’,’:tl.tF(B,) for any finite disjoint union B(=w’,’=B,) of B,’s in ..
2. tF(B) <-- Y= F(B,) for any countable disjoint union B (= w7= B,) of B,’ s in .
Then lar admits a unique extension to a measure on the algebra generated by . and thus, from Cara-

theodo extension theorem, r can extended to a -algebra containing Hence we have

an extension of to a Borel measure.

In the following we describe the topological stcture of the generalized Cantor set C d the

relation between the Cantor measure and the Lebesque measure of the Cantor set.

1. There is a bijection map between the Cantor set C and the inteal [0,1].

2. The Ctor set C is always nowhere dense.

3. The Cantor set C is a perfect set.

4. The Lebesque measure of the Cantor set C is given by the infinite product -.
5. The Ctor measure g of the Cantor set C is absolutely continuous with respect to the besque

measure of the set if 2=
6. The Cantor measure ge is mutually singular with respect to the Lebesque measure if

nk

If n, is a fixed positive rational number (constant disection ratio) for all k 1,2 then we can
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ohtaln the concrete rcpre<,cniatllln of the Cailor sot (of [3l). if in particular #ix 3 for all k= !,2

the tlol’lllillOll of the gCllOlall/cd CalllOr sol C, lhcll c (_" iI aild oi11 if h,ls ti IClllary

icpl-c,OlllilliOll t)f the l)llll ") ,; whore a,, e {(), I} for all #l " In this case, Ihc

called the Carll(li lciilary sol {)i (-’alllOi"s middle third sol and the (’alllOr ftliWIIOll P" on (’ I, given

hv

F  _kL

3. DYNAMICAL SYSTEM AND THE ONE-SIDED StlIFT
TRANSFORMATION
In this section we define a nicasurc preserving translbrmation and a dynamical system in terms of

lhs transformation. We introduc tho three kinds of mtxino properti (t e. erodic, wak-mixn and

strong-mixing) of a measure prsrvin transformalion. Th one-sided shift map is shown to b a

transformation which has all of these thre proprtos.

DEFINITION 3.1. Suppose th triplos (X,.q,m) and (X,,m) are probability spaces. Thn

(a) T’X X is measurabl if T-:: :.
(h) T’X X is masur-prsrvin if T is measurabl and m,(T-’(B))= m() for all B .

Th lllowing thorom is well known in masur theory [4]. It provides th sufficient condition

lr the map T to be measure-prsrvin in trms of gnoratin algebra.

TEEOgE 3.1. Suppos (Xt,,m) and (X:,.,m) ar probability spaces. Let : be an alebra
which generates th -alebra . If T is a map such that, for any B , t(B) t and

m(T-’()) m(), thn T is measure-prosorvin.

Sinc wo wish to study the iteration T" of the transformation T, w shall dal with the identical

case (X,t,m)= (X,,m). A probability spac (X,,m) together with a measure-preserving trans-

formation T dfins a dynamical sstem (X, m, T). Th above Theorem 3. shows that whthr a

given transformation is masur-prserving or not is determined only by the knowldge of an algebra

generating the -algebra

In th following we defin the thre mixing properties for a dynamical system. In the theory of

dynamical systems, mixing is the property of indecomposibility of a dynamical system into nontrivial

invariant subsets.
DEFINITION 3.2. (X,,m, T) is a dynamical system.

(a) T" X X is ergodi if for arbitra A, B

m(AB)m(A)m(B) as n (3.1)
II =0

(b) T’X .-) X is weak-mixing if for arbitrary A, B .
Im(T-A cB) m(A)m(B)l --) 0 as n ---) (3.2)

(c) T" X ---> X is strong-mixing if for arbitrary A, B .,q

m(T-"A B) --) m(A) re(B) as n ---) (3.3)

REMARK. (i) It can be shown [1] that T’XX is ergodic if and only if, for arbitrary
A e T-(A) (A) implies that eitherm (A) Oorm(A) 1. (ii) Forany sequence {a,,} ofreal numbers,
a, 0 implies ,: 1 a,l 0 which in turn implies -,, Y ak 0, respectively, as n ---) ,,o. Therefore,
"strong-mixing" implies "weak-mixing" and "weak-mixing" implies "ergodic."
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Like measure-preserving property, mixing property .,, determined by the knowledge of generating

algebra. From ths we can prove that the one-sided shift transformation defined by the following is

strong-mixing and .so v,’eak-mxng and ergodc.

DEFINITION 3.3. I..et Y 1,2 n and p, be the measure corresponding to each e Y such

that Y_.’,’: p, 1. Let us define the nfinte product space

X= I-I X,, X,=Y (3.4)
I--l

equipped with the direct product measure m. Then the map S :X X defined by

S (x, x_ x (x2,x r, (3.5)

is called the one-sided (p, P2 p,,)-.,,hift transformation.

The one-sided (p, P2 p,,)-shift transformation S is measure-preserving and thus the quadruple

(X,yl, m,S) is a dynamical system.

THEOREM 3.2. The one-sided (p, P2 p,,)-shift transformation S is strong-mixing.

PROOF. We call the set ’__ {A X A FI A,, A, Y for all > k measurable rectangles

in the probability space X. The set of all measurable rectangles in the space X creates a generating

algebra. We denote it by ’. From the above remark, we need to show the strong-mixing property for

this algebra. For arbitrary A, B e yl", there exists a positive p such that if k > p, then

n (T-tA B) m (T-A )m (B) tn (A m (B) (3.6)

and thus we have

tn(T-A B) pm(T-AB)+ 1--- m(A)m(B)
r/ k=0 n k=0 n

which converges to m (A)tn (B)as n --4 oo. The theorem, therefore, is proved.

(3.7)

4. ISOMORPHISM OF MEASURE-PRESERVING TRANSFORMATIONS
The content of this section is our main result. In previous section, we show that the one-sided

(p,p p,,)-shift transformation is ergodic, weak-mixing and strong-mixing. In this section, we define

a measure-preserving transformation on the Cantor measure space, i.e., the Cantor ternary set, and then

( )-shift transformation defined on theshow that this transformation is isomorphic to the one-sided 5,

product space X (see Definition 3.3). The Cantor measure space together with the one-sided shift

transformation, therefore, becomes a dynamical system having the three mixing properties.

THEOREM 4.1. Suppose that (C, Y,, lad is a probability space, where C is the Cantor ternary set,

Y-is a ’-algebra generated by finite disjoint unions of sets of the form [a, b) C, 0 < a < b < 1, and 1.F
is the Cantor measure. Then the function T C--> Cdefined by

T 2,,Z, =2,Y_.,, --, a,, {0,1} (4.1)

is a measure-preserving transformation.

PROOF. We can use the form [a, b Cinstead of [a,b) Cas a generating algebra, denoted by

y’, since the latter is a countable union of the sets of the former form. Also, without loss of generality,
we can assume that a, b C’, let

a b
a=2,Y_.,-/, b=2,,=, _,_ a,,,b,, 10,1}. (4.2)
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We shall show first the equality

T-’([a,blC)= ’- 3 3
c (4.3)

which is a disjoint union because b < a + 2. Then obviously the right-hand side of (4.3) belongs to I/"
Then a,, < x,, < b,, up to n nosothat T becomes measurable. Now lctx e [a,b]Cwithx 2Y,: e’"

’"-.__! where xo is either 0 or and thus T-(x) belongs to the right sidefor some "o and T-’ (x) " Y,7=

Then y =0 andof (4.3) For the reverse direction of subset, let y e .7,7 C with y 2 Y., v,"

[,,+2 ,,+2]a,,_<y,,<b,,_t up to no for some n0 and thus a<T(y)<b. Similarly, the set ----,-q- oC

can be shown to be a subset of T-([a,b ]cn C). Therefore the equality (4.3) is established. Next we will

show that l&(T-*([a,b1 C)) g-([a, b] C).

b a

,Z 2,-7-,,Z 2’-;

=F(b)-F(a).

The theorem, therefore, is proved. 12]

DEFINITION 4.1. Suppose that the quadruples (X,A,,m,,T) and (X:,.a2,,n2,T2) are two

dynamical systems. Then we say that TI is isomorphic to T2 if there exist M e ., and M e .2 with

m(M,) and ,n(M)= with property that

T,(M) M T:,(M:) M (4.4)

and there exists an invertible measure-preserving transformation O’M ----) M., such that

qr, T: (4.5)
on M.

THEOREM 4.2. Suppose the quadruples (X, ., m, S) and (C, ,, gF, T) are the dynamical systems

defined in Definition 3.3 and Theorem 4.1, respectively, where X l-I ’_- X,, X, {0, }. Then S is

isomorphic to T.

PROOF. To define an appropriate map @, we first define the following notation: Let

(x,x2 x, be an arbitrary element in X, i.e., x,, 0 or for any n 1,2 K(x) denotes the

closed interval of the left side of the first removed open interval ?, . if x, 0; that of the right side of

it if x, 1. K2(x,,x) denotes the closed interval of the left (right) side of the second removed open

interval contained in K,(x,) if X 0 (X 1). Inductively, K,,(x,x xn) is the closed interval of the

left (right) side of the n-th removed open interval contained in K,, (x,,xz x,,_ ) if x, O(x,, 1). We
observe that, for any given (xt,x2 x X, 7, K,,(x,x,. x,,) is a singleton subset of the Cantor

ternary set C and furthermore the set C consists of the collection of these singleton set over

the space X:
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C= u K,,(x,. v,,). (4.6)

Now, n view of Definition 4.1, we take X and C as M, and Me, respeclvely, and define the map

’X +Cby

(xl,x v,,,..)= K,,(.v,A x,,), (4.7)

where we actually take the element of the set, not ct tsclf, for the right hand sde of (4.7). We

observe that K,,(x,x2 x,,) is the closed nterval whose left end point s 2: 7" x,,, ,,
and whose right end point s 27 7’ r,,. x,,. .... and (.v,x:, ,x s the same as 2

Then s continuous. ncreasing and invertble. Also, it

S r (4.8)

on X. We shall shoxv tlat cD s measure-preserving. It suffices to show that, for every a. b [0, wth

a < b, -([a,b O e and m(-([a.b]) v([a,b]. Ira Cand b C, then at some (first)

finite step, say m, of removing open ntervals both a and b are removed.

/’(a,

[a,b] C= w (K,,,(a,,, a,,..., a,,,,)3 (4.9)

where a,,,a a, {0, < < p(a b), and the positive nteger p(a h)denotes the number of the

closed intervals of the IBrm K,,,(a,,,a,e a,,,,) whmh lie between a and b. Therefore, from

the way of the construclon of K,,(v,xz L,), we obtain that --([a,h]e and

,n(-’([a,b])= p(a,b)( )’" tF([a,b]O. In the case that a Cor h e C xve take a sequence

of elements in the complement of Cthat converges to a or b. The existence of the sequence comes from

the propey that C is nowhere dense. From the first case and the continuity of the map , the desired

result wll follow.
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