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ABSTRACT. In this paper we give mixing properties (ergodic, weak-mixing and strong-mixing)
to a dynamical system on the Cantor set by showing that the one-sided (1, .2 )—shifl map is isomorphic
1o a measure preserving transformation defined on the Cantor set.

KEY WORDS AND PHRASES: Dynamical system, Mixing, Cantor set.

1991 AMS SUBJECT CLASSIFICATION CODES: 28DI10

1. INTRODUCTION

A dynamical system is a quadruple (X, A4,m, T), where X is a non-empty space, A is a 6-algebra of
subsets of X, m 1s a measure defined on A and T is a measure-preserving transformation on X. Ergodic
theory may be defined to be the study of transformations or groups of transformations, which are defined
on some measure space, which arc measurable with respect to the measure structure of that space, and
which leave the measure of all measurable subsets of the space. If arbitrary orbit of transformation of
a given dynamical system passes through every point of this system, it is said that this dynamical system
satisfies the ergodic hypothesis. The ergodic hypothesis was introduced by L. Boltzman and W. Gibbs
to establish the following principle:

A QLS ‘ 1

"anl p EO AT'x =mLf(x)dm (.n
which says that the time mean of f is equal to the space (or phase) mean of f. Many contrarguments
about this hypothesis came out but in 1912 H. Poincare proved the so-called recurrence theorem and in
1931 G. D. Birkhoff and J. Von Neumann proved the existence of time mean and thus this hypothesis
was accepted. This is the historical beginning of mathematical study of ergodic theory. The study of
ergodic theory can be categorized into one of four types, that is, (i) Measure theoretic, (ii) Topological,
(iii) Mixture of (i) and (ii), and (iv) Smooth. In this paper we are concerned about measure theoretic
type and we shall assume that the measure is finite and normalized to have total measure one (the
probability measure). We refer [1], [2] as general texts for ergodic theory.

The main purpose in this paper is to give ergodic property to a dynamical system on the Cantor
ternary set. In Section 2 we first summarize properties of the generalized Cantor set and the Cantor
measure. In Section 3 we introduce mixing properties (i.e. strong-mixing, weak-mixing and ergodic
properties) for measure preserving transformations. The one-sided shift map is shown to satisfy these
properties. In Section 4 we show that the one-sided shift transformation is isomorphic to a measure
preserving transformation defined on the Cantor ternary set so that a dynamical system on the Cantor
set has the three mixing properties.

2. THE GENERALIZED CANTOR SET AND THE CANTOR MEASURE
In this section we summarize some properties of the generalized Cantor set and the Cantor measure.
We first define the Cantor set, the Cantor function and the Cantor measure. We describe

the Lebesque measure of the Cantor set together with the topological properties of the set and the relation
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between the Cantor measure and the Lebesque measure of the set. The Cantor set 1s known to have the
same cardinality as the interval [0,1]. Finally in this section we present the ternary representation of
Cantor’s middle third set.

DEFINITION 2.1. Let n,n,....,n,, ... be a sequence of real numbers such that | <n, <eo for
every k =1,2,.... We define the generalized Cantor set denoted by C(n,.ns. ...n;....) (or bricfly

C) as follows: We remove the open interval of size % about the middle point l from the interval [0,1].

. ! . . . .
Then remove the open interval of size é( 1 - )% about the middle of each of the two remaning closed
intervals. After k removals, there are 2' closed intervals left denoted by C'(1), j = 1,2,3,...,2%

. oo ! .
and at the k + | step we remove the open intervals of size I l(l - ),—' about the center of these
2 )M

intervals. The generalized Cantor set C is defined to be the complement in the interval (0,1] of the

union of these open intervals, i.e.,
A

C=n u C'(n), Q2.1
k=1 =1
which depends on the choice of the sequence n,n,,...,n,, ...

DEFINITION 2.2. We define the Cantor function F(t), t € [0,1], by setting it equal to 1/2 on the

first interval removed, 1/2° and 3/2* on the two intervals removed at the second step. 1/2°, 3/2%, 5/3" and
7/2* on the third removal, etc. The values are chosen in the obvious way so that the function F is
monotone non-decreasing on [0,1] (F is extended to [0,1] by the continuity).

DEFINITION 2.3. The Cantor measure W, on [0,1] is defined by

K0, 1)) =F (1), (2.2)

where F(t) is the Cantor function.

We note that the above | becomes a Borel measure by the following argument: If we let 4 be the
semialgebra consisting of all intervals of the form [a,b),0<a <b < 1,and set u.([a,b)) = F(b) - F(a),
then . satisfies the following two conditions:

1.  we(B)=2'_,u-(B) for any finite disjoint union B(= U'_, B,) of B,’s in A.
2. We(B)< X" We(B,) for any countable disjoint union B(=\U;"_, B,) of B,’s in 4.

Then W, admits a unique extension to a measure on the algebra generated by 4 and thus, from Cara-
theodory extension theorem, L, can be extended to a c-algebra A containing 4 Hence we have
an extension of [ to a Borel measure.
In the following we describe the topological structure of the generalized Cantor set C and the
relation between the Cantor measure and the Lebesque measure of the Cantor set.
1.  There is a bijection map between the Cantor set C and the interval [0,1].
2. The Cantor set C is always nowhere dense.
3. The Cantor set C is a perfect set.
4. The Lebesque measure of the Cantor set C is given by the infinite product m; . ,(l —i )
5. The Cantor measure L of the Cantor set C is absolutely continuous with respect to the Lebesque
measure of the set if Y, _, ;l; < oo,

6. The Cantor measure |, is mutually singular with respect to the Lebesque measure if

o 1
Zk:l = oo

n

If n, is a fixed positive rational number (constant disection ratio) for all k = 1,2, ..., then we can



MINING DYNAMICAL SYSTEM ON LHL CANTOR SLT 609
N 3 ¥ trentlar = O ¢ = ) 1
obtam the concrete representation of the Cantor set (¢f [3]). 1 m particular n, = 3 forall k'= 1.2, ... in
the definition of the generalized Cantor set C. then v e Cifand only it v has a ternary
“ . .
iepresentation of the form 2% =, where g, € {01} forall n=1.2, In this case. the set Cis
-
called the Cantor ternary set or Cantor’s muddle third set and the Cantor function Foon €18 given

by

3. DYNAMICAL SYSTEM AND THE ONE-SIDED SHIFT
TRANSFORMATION

In this section we define a measure preserving transtormation and a dynamical system in terms of
this transformation. We introduce the three kinds of mixing propertics (1 ¢. ergodic, weak-mixing and
strong-mixing) of a measure preserving transformation. The one-sided shift map is shown to be a
transformation which has all of these three properties.

DEFINITION 3.1. Suppose the triples (X,,.3,,m,) and (X,, A,,1m,) are probability spaces. Then
(a) T:X, > X,ismeasurable if 7', c 4,.

(b) T:X, > X, is measure-preserving if T is measurable and m(T"'(B)) = my(B) for all B € 4,.

The following theorem is well known in measure theory [4]. It provides the sufficient condition
for the map T to be measure-preserving in terms of gencrating algebra.

THEOREM 3.1. Suppose (X,, A;,m,) and (X, 4,,m,) are probability spaces. Let 4, be an algebra
which generates the c-algebra 4,. If T is a map such that, for any B e &, T"'(B)e A4, and
my(T™(B)) = my(B), then Tis measure-preserving.

Since we wish to study the iteration T" of the transformation 7, we shall deal with the identical
case (X,, A4;,m,) = (X,, A, m,). A probability space (X, 4,m) together with a measure-preserving trans-
formation T defines a dynamical system (X, 4,m,T). The above Theorem 3.1 shows that whether a
given transformation is measure-preserving or not is determined only by the knowledge of an algebra
generating the c-algebra 4.

In the following we define the three mixing properties for a dynamical system. In the theory of
dynamical systems, mixing is the property of indecomposibility of a dynamical system into nontrivial

invariant subsets.
DEFINITION 3.2. (X,A4,m,T) is a dynamical system.

(a) T:X — X is ergodic if for arbitrary A, B € 4
ln—l
-z m(T*ANB) > m@A)m(B) as n —oco. (3.1)
k=0
(b) T:X — X is weak-mixing if for arbitrary A, B € 4

:E:::)]m(r‘AnB)—m(A)m(B)]—>0 as n s, G2

S |-

(c) T:X — X is strong-mixing if for arbitrary A, B € 4
m(TT"ANB) > mA)mB) as n —oo. 3.3)

REMARK. (i) It can be shown [1] that T: X -5 X is ergodic if and only if, for arbitrary
Ae AT A= (A)implies thateitherm(4) = Oorm(A)= 1. (ii) Forany sequence {a,} of real numbers,
a,—0 implies;', i ilad — 0 which in turn implies% Y. 1a, — 0, respectively, asn — oo, Therefore,
"strong-mixing" implies "weak-mixing" and "weak-mixing" implies "ergodic."
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Like measure-preserving property, mixing property is determined by the knowledge of gencrating
algebra. From this we can prove that the one-sided shift transformation defined by the following is
strong-mixing and so weak-mixing and ergodic.

DEFINITION 3.3. Let Y ={1,2, ..,n} and p, be the measure corresponding to each i € ¥ such

that X'_, p, = I. Let us define the infinite product space
1 |Il p p

Xx=1 X, X=v (3.4)

r=1
equipped with the direct product measure m. Then the map § : X — X defined by
S Xy, o, ) = (0, X X L) 3.5)
is called the one-sided (p,, ps, ..., p,)-shift transformation.

The one-sided (p,, ps, ..., p,)-shift transformation S is measure-preserving and thus the quadruple
(X,A,m,S)is adynamical systcm.

THEOREM 3.2. The one-sided (p,, py, ..., p,)-shift transformation § is strong-mixing.
PROOF. Wecalltheset Uy {A cX:A=[17_A, A =Y forall i 2k} measurable rectangles

in the probability space X. The set of all measurable rectangles in the space X creates a generating
algebra. We denote it by 4. From the above remark, we need to show the strong-mixing property for
this algebra. For arbitrary A, B € A, there exists a positive p such that if k > p, then

m(T*ANB)=m(T*A)ym(B)=m(A)m(B) (3.6)

and thus we have

"Y' m(TA ~B) =nl S (A mB)+[l —fjm(A)m(B) G.7)
k=0

1
n k=o

which converges to m(A)m(B)as n — oo. The theorem, therefore, is proved. [

4. ISOMORPHISM OF MEASURE-PRESERVING TRANSFORMATIONS

The content of this section is our main result. In previous section, we show that the one-sided
(P1s Pa» - --» Pa)-shift transformation is ergodic, weak-mixing and strong-mixing. In this section, we define

a measure-preserving transformation on the Cantor measure space, i.e., the Cantor ternary set, and then
11
272
product space X (see Definition 3.3). The Cantor measure space together with the one-sided shift

show that this transformation is isomorphic to the one-sided ( )—shift transformation defined on the

transformation, therefore, becomes a dynamical system having the three mixing properties.
THEOREM 4.1. Suppose that (C, % L) is a probability space, where Cis the Cantor ternary set,

Fis a o-algebra generated by finite disjoint unions of sets of the form [a,b)NC, 0<a <b <1, and
is the Cantor measure. Then the function T : C — Cdefined by

T(zi a—"):zi Ll e (0,1} @1
n=1 3" n=1 3"

is a measure-preserving transformation.
PROOF. We can use the form [a,b] N Cinstead of [a,b) N Cas a generating algebra, denoted by

#, since the latter is a countable union of the sets of the former form. Also, without loss of generality,
we can assume thata, b € G let

a=2% 2 p=2F 2 a, be{01}. @2)



MIXING DYNAMICAL SYSTEM ON THE CANTOR SET 611

We shall show first the equality

T"({a,b]m(’)=[[%,€-}r\(‘)r‘{[u;2,¥]0CJ 43)

which is a disjoint union because b <« +2. Then obviously the right -hand side of (4.3) belongs to 7

so that T becomes measurable. Now letx € [a,b]NCwithx =237, - . Thena, <x,<bh,upton =n,
for some n,and T7'(x)=2%7_, 1—” . where x, is either 0 or 1, and thus 77'(x) belongs to the right side

of (4.3). For the reverse direction of subset, let y € [ ]r\C with y =237 ' ", Then y, =0 and

K

+2

a, Sy, <b,_, up to n, for some n, and thus a <T(y)<b. Similarly, (he set [ hn]nc
can be shown to be a subset of 77'([a,b] N C). Therefore the equality (4.3) is established. Next we will

show that u (T ([a,b]1N O) = u,(la, b1 O).

A J—F(%)w(%*(“?l

I

b
3

< bn - an l - bn } 1 had (I"
_"5:; 2::+| -ngl 2/1 [} +(E+u§| 2n+l /_(E-'-n;l 2n+l )
< bn < Q
B ngl E_ugl 2"
=F(b)-F(a).

The theorem, therefore, is proved. o

DEFINITION 4.1. Suppose that the quadruples (X,,A4,,m,,T}) and (X,, 4, m,,T,) are two
dynamical systems. Then we say that 7, is isomorphic to T, if there exist M, € 4, and M, € A, with
m,(M,) = 1 and m,(M,) = 1 with property that

IM)cM,, T,(M)cM, @4

and there exists an invertible measure-preserving transformation @ : M, — M, such that

o7, =T,9 4.5)
on M,.

THEOREM 4.2. Suppose the quadruples (X, 4,m,S) and (G, ¥, iz, T) are the dynamical systems
defined in Definition 3.3 and Theorem 4.1, respectively, where X =17, X,, X, ={0,1}. Then S is
isomorphic to T.

PROOF. To define an appropriate map &, we first define the following notation: Let

(*1,X3 .., X,,...) be an arbitrary element in X, i.e., x, =0 or 1 for any n =1,2,...K,(x,) denotes the
closed interval of the left side of the first removed open interval ( 33 ) if x, = 0; that of the right side of
it if x; = 1. K,(x;,x;) denotes the closed interval of the left (right) side of the second removed open
interval contained in K,(x,) if x, =0 (x,=1). Inductively, K, (x,,x, ...,x,) is the closed interval of the

left (right) side of the n-th removed open interval contained in K, _ (x, X, ..., X, _) if x, = 0(x, = 1). We
observe that, for any given (x,x,, ..., x,,...) € X,N,_, K, (x,,x,,...,x,) is a singleton subset of the Cantor
ternary set C and furthermore the set C consists of the collection of these singleton set over

the space X:
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C= U N K (vv, L) (4.6)

I R N I NI

Now, n view of Definition 4.1, we take X and C as M, and M,, respectively, and define the map

d:X - Cby
D, sy X, . )= ﬂ[ K, (¥ 25,0, , 4.7)
n =
where we actually take the element of the set, not set itself, for the right hand side of (4.7). We
observe that K, (x,. x,, ...x,) is the closed interval whose left end point1s 2377, —t..\',, =, =...=0,
R
and whose rightend point1s2 37 T: Y =4,,,= o= tand Dy, Lx, )isthesameas2 Y ?
Then @ 1s continuous. increasing and invertible. Also, 1t satisfies
OS=TD 4.8)

on X. We shall show that & 1s measure-preserving. It suffices to show that, for every a. b € (0, 1] with
a<bh,®'(a,b]n0Oe Aandm @' ([a.b]1NO)=v([a,h]NC). Ifu ¢ Candb ¢ C,then at some (first)

finite step, say m, of removing open intervals both a and b are removed.

)

[(l,b]hCzlu K, (q,,a,,....a,)NC), 4.9)
e [l o

m

wherea,,q,,...,a, € {0,1}, 1 i< p(a,b), and the positive integer p(a, ) denotes the number of the

closed intervals of the form K,,,(u,l,a,’,.‘.,u,,) which lic between « and b. Theretore, from
the way of the construction of K,(¥,x,...,1,), we obtam that ®'(la,h]nO)e A and

m(@@'([a,b]N0O) = p(a,l))(%]m =Ww([a,hb]1N ). Inthe case that « € Cor b € ¢, we take a sequence
of elements in the complement of Cthat converges to a or b. The existence of the sequence comes from
the property that Cis nowhere dense. From the first case and the continuity of the map <, the desired
O

result will follow.
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